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1 DATA COLLECTION DETAILS
In this section, we providemore details about data collection process
including both human and GPT4V.

1.1 Human Annotation
1.1.1 Information of Participants. We recruited 15 participants for
this study, with a gender distribution of 10 females and 5 males. All
participants are within the age range of 20 to 30 years and possess
at least a college degree. The participants were selected to provide a
diverse representation in terms of academic backgrounds, including
disciplines such as computer science, psychology, and engineering.

1.1.2 Preparation andQuality Control. Participants underwent a
comprehensive training session to familiarize them with the an-
notation guidelines and tools used in this study. The training in-
cluded detailed explanations of the tasks and practice sessions to
ensure clarity and consistency in the annotation process. The par-
ticipants was trained on 1, 000 samples first, and the supervising
teams checked the quality and improved the process. To maintain
high standards of annotation quality, we conducted periodic checks
of the annotations during the annotation process.

1.1.3 Annotation Pipeline. Figure 1 illustrates the annotation pipeline.
To ensure simplicity and consistency in annotation, we have di-
vided the process into two steps. Firstly, participants identify the
distorted region by simply clicking on it. For instance, as shown in
Fig. 1, the subject first reviews the reference text and determines
whether the building is blurry. Upon identifying a blurry region,
subjects merely click on that area; this action prompts the system
to produce segmentation results using Semantic-SAM [2]. In the
second step, subjects refine the annotations and assign distortion
classification labels.

1.1.4 Ethical Considerations. All participants were informed about
the goals of the research and the use of the annotated data. Consent
was obtained from each participant, ensuring they understood their
rights, including the right to withdraw from the study at any time
without any consequences. Privacy and confidentiality of the par-
ticipants were strictly maintained throughout the research process.

1.2 GPT4V Annotation
The GPT4V annotation process is illustrated in Fig. 2. Within

the system message, GPT4V is characterized as an effective IQA
(Image Quality Assessment) assistant that recognizes five types of
distortions, along with a “no distortion” category. Responses
must adhere to the specified JSON format, where a short reasoning
message is required to help verify the result. Users will provide
quality prompts generated by the most recent Co-Instruct model1
using the designated prompt:

1https://huggingface.co/spaces/q-future/Co-Instruct

mouse click prompt

distortion class

SAM segment with mouse click prompt

Border adjustment and distortion classification

Reference text: The main building in the image is relatively clear, but the 
edges are slightly blurred. The composition is average, and the image is 
slightly tilted. However, the lighting is good, and the colors are vibrant. 
Therefore, the quality of this image is good. 

Figure 1: Example of human annotation steps with the help
of SAM and reference quality text.

“The input image: <|image|>. Describe and
evaluate the quality of the image.”

where “<|image|>” is the placeholder of image input. Figure 2
presents an example of the GPT4V response, in which the correct
answer is provided. We checked the response format and tried until
it met our requirements. Finally, the corresponding regions were
labelled with predicted distortions. We use shortest edit distance

https://huggingface.co/spaces/q-future/Co-Instruct
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Example of GPT4V Annotation with SoM (gpt-4-vision-preview)

#System: You are a helpful assistant to help me evaluate the quality of the image. The image is divided into several regions with
number marks. You will be given an overall evaluation of the quality as reference. Please help to identify the distortions of each region
within the following types [blur, jitter, overexposure, low light, noise, no distortion]. Please give the result in the following json format:
[{

"[mark number]": "distortion type",
"gpt4v iqa": "message",

}]

Please note that the distortion type should be one of the five types mentioned above, and the message should be a brief evaluation
of the quality of the region. Please strictly follow the format, otherwise the result will be invalid.

#User: The overall quality reference is: “The overall clarity
of this image is okay. The main subject, which
is the boat, is relatively clear. The lighting
is weak, making the overall image appear dark.
The scenery in the distance is quite blurry, and
the texture details are lost. The composition is
good, but the quality of this image is poor”. Please
help to identify the distortions of each regionwithin the following
types [blur, jitter, overexposure, low light, noise, no distortion].

#GPT4V Response:
[

{
"2": "blur",
"gpt4v iqa": "The scenery here is quite blurry, detail is lost

."
},
{

"3": "low light",
"gpt4v iqa": "This area is dark and lacks adequate lighting."

},
{

"4": "low light",
"gpt4v iqa": "The image appears dark due to weak lighting."

},
{

"5": "no distortion",
"gpt4v iqa": "The main subject, the boat, appears relatively

clear with no significant distortion."
}

]

Manually generated mask according to the text la-
bel from GPT4V and the corresponding SAM segmen-
tation masks.

Figure 2: Example of GPT4V annotation

to find the best matching distortion types because the generated
distortion words may not always exactly match the candidates.

2 TRAINING DETAILS
2.1 Loss Functions
As described in the main text, we use the following loss function to
train the network:

L = 𝜆𝑡𝑥𝑡L𝑐𝑒 (𝑦𝑡𝑥𝑡 , 𝑦𝑡𝑥𝑡 ) + 𝜆𝑠𝑒𝑔L𝑠𝑒𝑔 (𝑦𝑠𝑒𝑔, 𝑦𝑠𝑒𝑔) . (1)

where L𝑐𝑒 is the auto-regressive cross-entropy loss, L𝑠𝑒𝑔 is the
segmentation loss. We follow the same practice as [1, 3] and use a
combination of per-pixel binary cross-entropy loss and DICE loss
for L𝑠𝑒𝑔 as following:

L𝑠𝑒𝑔 = 𝜆𝑏𝑐𝑒BCE(𝑦𝑠𝑒𝑔, 𝑦𝑠𝑒𝑔) + 𝜆𝑑𝑖𝑐𝑒DICE(𝑦𝑠𝑒𝑔, 𝑦𝑠𝑒𝑔), (2)

where the loss weights are set to 𝜆𝑡𝑥𝑡 = 1.0, 𝜆𝑠𝑒𝑔 = 1.0, 𝜆𝑏𝑐𝑒 = 2.0,
𝜆𝑑𝑖𝑐𝑒 = 0.5.
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Table 1: Hyper-parameter configurations for Stage 1.

Hyper-parameter config Value

Image encoder (frozen) CLIP-L/14-336
LLM (frozen) LLaVA-v1.5-7B3

Input image size 448 × 448
Layers used for 𝜙𝑣 7, 14, 23

Optimizer AdamW
Learning rate 5e-4
Weight decay 0

(𝛽1, 𝛽2) (0.9, 0.95)
Scheduler WarmupCosineLR

Warm up steps 100
ZeRO stage (deepspeed) 2

Precision bfloat16
Batch size (with accumulation) 2 × 4 × 10

Training dataset LAION-CC-SBU4

Total epochs 1

2.2 Training Configurations
We employed the DeepSpeed framework2 to accelerate training and
reduce memory requirements. The training was conducted using 4
NVIDIA 4090 GPUs. Given our modifications to the multi-modal
projection block 𝜙𝑣 , it was necessary to adhere to training protocols
from LLaVA to align the visual and language representations. Con-
sequently, the training process was structured into three phases:
(1) Stage 1: Feature alignment between the vision encoder

and the LLM. During this phase, both the vision encoder and
LLM were fixed. Training focused solely on the projector 𝜙𝑣 to
align the vision and text representations.

(2) Stage 2: Visual instruction tuning. This phase involved fine-
tuning the model to enhance its capability to follow instructions,
utilizing multi-modal instruction-following data.

(3) Stage 3: Mixture dataset tuning. Once a robust base model
was established, it was further finetuned to integrate visual
quality grounding with other tasks.

Hyperparameters for each stage are detailed in Tab. 1 and Tab. 2.
The entire training duration was approximately two days.

3 MORE QUALITATIVE RESULTS
Figures 3 and 4 demonstrate the versatile capabilities of our model.
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Figure 3: Example of visual question answering and semantic segmentation.
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Figure 4: Example of visual visual quality reasoning and visual quality grounding.
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