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Task-Oriented Multi-Bitstream Optimization for Image
Compression and Transmission via Optimal Transport

Anonymous Authors
ABSTRACT
Image compression formachine vision exhibits various rate-accuracy
performance across different downstream tasks and content types.
An efficient utilization of constrained network resource for achiev-
ing an optimal overall task performance has thus recently attracted
a growing attention. In this paper, we propose Tombo, a task-oriented
image compression and transmission framework that efficiently
identifies the optimal encoding bitrate and routing scheme for
multiple image bitstreams delivered simultaneously for different
downstream tasks. Specifically, we study the characteristics of im-
age rate-accuracy performance for different machine vision tasks,
and formulate the task-oriented joint bitrate and routing optimiza-
tion problem for multi-bitstreams as a multi-commodity network
flow problem with the time-expanded network modeling. To ensure
consistency between the encoding bitrate and routing optimiza-
tion, we also propose an augmented network that incorporates the
encoding bitrate variables into the routing variables. To improve
computational efficiency, we further convert the original optimiza-
tion problem to a multi-marginal optimal transport problem, and
adopt a Sinkhorn iteration-based algorithm to quickly obtain the
near-optimal solution. Finally, we adapt Tombo to efficiently deal
with the dynamic network scenario where link capacities may fluc-
tuate over time. Empirical evaluations on three typical machine
vision tasks and four real-world network topologies demonstrate
that Tombo achieves a comparable performance to the optimal one
solved by the off-the-shelf solver Gurobi, with a 5× ∼ 114× speedup.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Networks
→ Traffic engineering algorithms.

KEYWORDS
Task-oriented image compression and transmission, variable bit-
stream, multi-commodity flow problem, optimal transport.

1 INTRODUCTION
To relieve contradictions between the ever-growing Internet traffic
and constrained bandwidth of real-world communication networks,
compressing data before delivering them for downstream tasks
becomes an efficient and popular solution, which alleviates net-
work congestion and reduces transmission delay [6, 7]. Among the
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Internet traffic globally, visual streams have accounted for over 65%
of the total amount [27]. Thus, studies on the efficient compression
and transmission for these visual data, such as images and videos,
have recently attracted a lot of attention [5, 8, 24].

Traditional image-coding frameworks have evolved over decades,
aiming to solve a rate-distortion optimization problem. In lossy im-
age compression, this optimization can be achieved by a trade-off
between the bitrate and distortion, where the distortion is usually
measured by peak signal-to-noise ratio (PSNR) or multiscale struc-
tural similarity (MS-SSIM) [30]. However, as more and more image
traffic is now used for machine vision tasks, such as classification
and detection, rather than for human watching, how to achieve the
optimal rate-accuracy performance for a specific machine vision
task has become an emerging research direction. Along this, vari-
ous end-to-end learnable compression systems have shown their
superior performance for task-oriented image coding [6, 22]. For
example, Cui et al. in [11] propose a rate-adjustable learned image
compression framework, providing a continuously variable bitrate
for image bitstream to adapt to time-varying network throughput.

Unfortunately, these existing studies on variable bitstream im-
age compression assume that the optimal encoding bitrate is known
in advance or determined by the estimated link capacity, with-
out taking into account the subsequent network transmissions.
When multiple image bitstreams are requested to be delivered si-
multaneously over the network, transmission cost (e.g., delay, jitter
or loss) may inevitably increase, leading to a degradation on the
quality of service for downstream tasks [4, 24]. Note that traffic
engineering (TE) techniques can find the optimal routing scheme
for these bitstreams to achieve a desired transmission performance
with given traffic demands [1]. However, separately employing the
bitrate allocation for image compression and TE solution for rout-
ing results in a poor performance, or even negative effect [26]. To
make a full utilization of network resources for the need of specific
downstream tasks, it is thus imperative to identify a compression-
and-transmission optimization scheme that jointly determines the
optimal bitrate allocation and routing scheme for requested image
bitstreams. Recently, steps [14, 26, 34] have been taken in joint
optimization of the encoding rate and routing scheme for adap-
tive video streaming, which, however, ignore differences in the
rate-accuracy performance between different machine vision tasks.

In this paper, we propose Tombo, a task-oriented multi-bitstream
optimization framework that determines the optimal image en-
coding bitrate and routing scheme for each transmission request,
according to the downstream task requirements and network con-
ditions. Specifically, we study the characteristics of image rate-
accuracy performance for different machine vision tasks, with the
widely used end-to-end image compression method. Then, we for-
mulate the task-oriented multi-bitstream image compression and
transmission problem as a multi-commodity flow (MCF) problem
using a time-expanded network model. This problem optimizes

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the image bitrates and corresponding transmission paths, aiming
to strike a trade-off between minimizing the overall network link
utilization and maximizing the overall downstream task perfor-
mance within a pre-defined transmission delay. Though off-the-
shelf solvers, e.g., Gurobi [15] and CPLEX [10], can accurately solve
this problem to get the optimal solution, they cannot scale to the
growing number of network nodes and commodities. To make the
solution feasible in practice, we further convert the MCF problem
to a multi-marginal optimal transport problem, and smooth its
feasible region by introducing an entropy regularization term. An
extended version of the Sinkhorn algorithm is then adopted to ob-
tain a near-optimal solution with high computational efficiency. For
the dynamic network scenario with fluctuating link capacities over
time, we further enhance Tombo to rapidly adapt to the network
changes. Finally, we conduct experiments on three typical machine
vision tasks and four real-world network topologies of different
node sizes, demonstrating effectiveness of the proposed method in
terms of the overall task performance and computational efficiency.
Our main contributions can be summarized as follows.
• We propose Tombo, a joint optimization framework that
performs task-oriented rate adaptation and routing for the
encoding and transmission of multiple image bitstreams.
• We formulate the multi-bitstream image compression and
transmission optimization problem as a multi-marginal op-
timal transport problem, and develop a computationally ef-
ficient algorithm based on Sinkhorn iterations to obtain a
near-optimal solution.
• For dynamic networks with fluctuating link capacities, we
enhance Tombo to efficiently adapt to these changes by lever-
aging solutions obtained in the previous transmission period.
• We evaluate Tombo on four real-world networks with three
machine vision tasks. Compared to the state-of-the-art com-
mercial solver Gurobi [15], Tombo achieves a comparable
overall performance and yields a 5× ∼ 114× speedup.

2 PROBLEM FORMULATION
2.1 Image Compression for Machine Vision
Rate-distortion optimization is the core of lossy image compression.
Classical image compression framework is usually built upon opti-
mizing the objective function: L = 𝑅 + 𝜆𝐷 , where 𝑅 is the bitrate
of the compressed image, 𝐷 measures the distortion of the recon-
structed image, and 𝜆 controls the trade-off between the rate and
distortion. In an end-to-end learned compression framework for
machine vision tasks, 𝐷 is defined as the task-oriented distortion
between the reconstructed features and the ground truth, which
is measured by specific quality metrics, such as the accuracy for
classification tasks, or the mean average precision (mAP) for de-
tection and instance segmentation [7, 29, 33]. For example, the
rate-performance curves of lossy image compression in Fig. 1 indi-
cate that the trade-off between the rate and accuracy/mAP varies
across different downstream tasks, which also differs between vari-
ous image categories.

Fig. 2(a) shows a common scenario where a sequence of com-
pressed image signals are requested to be transmitted from a source
(e.g., a monitor) to several targets to fulfill different tasks (e.g., classi-
fication or object detection). The complex network structure in the

Figure 1: Rate-performance curves presented in [7]: (left)
rate-accuracy for various image categories, and (right) rate-
mAP/accuracy for different vision tasks of Category “Bird”.

real world (e.g., existence of relays) offers multiple feasible paths
for delivering these image bitstreams. In pursuit of the optimal
task performance at targets, it is desirable to transmit as many bits
as possible, since higher bitrates often yield better performance.
However, simultaneously transmitting these image bitstreams over
bandwidth-constrained networks may lead to network congestion,
resulting in detrimental effects such as package loss, retransmission,
and significant transmission delays that adversely impact the down-
stream tasks. On the other hand, traditional routing methods strive
to optimize traffic allocation for given volumes of image bitstreams
across available paths, to minimize the transmission cost caused
by the traffic overload [26]. Thus, it is essential to strike a trade-off
between the transmission cost and overall task performance for
multi-bitstream compression-and-transmission scenarios.

2.2 Multi-Bitstream Compression and Transmission
We focus on the task-oriented optimization of encoding bitrates
and routing paths for multiple image bitstreams associated with dif-
ferent downstream tasks and various image categories. Specifically,
we consider a communication network with constrained link ca-
pacities, represented as a directed graph G = (V, E), where nodes
𝑣𝑖 , 𝑖 = 1, · · · , |V| represent the network sites and directed edges
𝑒𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗 ), 𝑖 ≠ 𝑗 denote the links between these sites. Note that
we will omit the subscripts of 𝑒 for notational simplicity throughout
this paper, i.e., 𝑒𝑖 𝑗 written as 𝑒 in places where there is no ambiguity.

For task-oriented image transmission, a source wants to send
one or multiple images to a target to perform a machine vision task,
which is referred to as traffic demand of this source-target pair. Here,
we assume that all traffic demands transmitted via the networkmust
be completed within a given duration of time Γ, i.e., the maximum
transmission delay. Thus, the optimization variables consist of both
the amount of bits that needs to be sent and the routing paths to
complete these traffic demands. Subsequent transmission of new
traffic demands can initiate only upon completion of previous ones.

As shown in Fig. 2(a), we consider a common scenario with
some network sites serving as source nodes, which send differ-
ent categories of images to some target nodes that receive these
image bitstreams for implementing various machine vision tasks.
We represent each image bitstream as a commodity with index
𝑙 = {1, · · · , 𝐿}, and denote the task index by 𝜃 = {1, · · · ,Θ}. Under
this setting, the joint bitrate allocation and routing optimization for
multi-bitstream compression-and-transmission can be modeled as
a multi-commodity flow (MCF) problem, where the objective is to
find an appropriate encoding/transmission bitrate and routing strat-
egy for each commodity to strike a balance between the network
transmission cost and task performance with a given maximum
transmission delay Γ. We assume that the transmission begins at
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Figure 2: Example network with 1 source, 2 relays and 2 targets, its augmented network and time-expanded network with
Γ = 2Δ𝜏 , where the source A sends two commodities to target B and one commodity to target C.

time 𝑡0. Specifically, we adopt the average overall network link uti-
lization within the transmission period [𝑡0, 𝑡0 + Γ) as the metric of
transmission cost, as widely used in the TE studies [26, 32]. Similar
to the setting in [26], we use a linear-form function to calculate
the instantaneous link utilization of link 𝑒 ∈ E produced by all
the commodities at time 𝑡 ∈ [𝑡0, 𝑡0 + Γ), which can be expressed
as: Ψ𝑒 ( ®𝑥𝑒,𝑡 ) =

∑𝐿
𝑙=1 𝑥

𝑙
𝑒,𝑡/𝑑𝑒𝑡 , where ®𝑥𝑒,𝑡 = {𝑥1

𝑒,𝑡 , ..., 𝑥
𝐿
𝑒,𝑡 }, 𝑥𝑙𝑒,𝑡 de-

notes the transmission bitrate of the 𝑙-th commodity on link 𝑒 at
time 𝑡 , and 𝑑𝑒𝑡 represents the instantaneous bandwidth of link 𝑒 at
time 𝑡 . In addition, we represent the task performance of machine
vision task 𝜃 w.r.t. the 𝑙-th commodity (i.e., image bitstream) by
a convex function: Φ𝑙,𝜃 (𝑟 𝑙 ) = −𝑎𝑙,𝜃 /(𝑟 𝑙 − 𝑏𝑙,𝜃 ) + 𝑐𝑙,𝜃 , where 𝑟 𝑙 is
the received average bitrate of the 𝑙-th commodity at the target
node within the transmission period [𝑡0, 𝑡0 + Γ). The value of this
task performance function increases with the increase of 𝑟 𝑙 , and
the parameters 𝑎𝑙,𝜃 , 𝑏𝑙,𝜃 , 𝑐𝑙,𝜃 can be fitted based on any existing
task-oriented image compression method. Therefore, the objective
function of our multi-bitstream image compression and transmis-
sion optimization problemwithin the transmission period [𝑡0, 𝑡0+Γ)
can be mathematically expressed as:

min
®𝑥𝑒,𝑡 ,𝑟 𝑙

1
Γ

∫ 𝑡0+Γ

𝑡0

∑︁
𝑒∈E Ψ𝑒 ( ®𝑥𝑒,𝑡 )d𝑡 − 𝜆

′∑︁𝐿

𝑙=1

∑︁Θ

𝜃=1 Φ𝑙,𝜃 (𝑟
𝑙 ), (1)

where 𝜆′ is a Lagrangemultiplier that controls the trade-off between
the transmission cost and task performance.

2.3 Bitrate Allocation via Routing Optimization
Notably, is intractable to optimize the variables in Eq. (1) with a
continuous time index. Inspired by [2, 16, 21, 31], we thus intro-
duce a discrete time-expanded network to reformulate the objective
function and address the joint optimization problem in this paper.
As illustrated in Fig. 2(c), the time-expanded network replicates the
original topology at each discretized time interval, which serves
as a singular acyclic directed graph integrating both the network
topology and temporal aspects seamlessly [19, 28]. A feasible path
in the original network can be depicted as a series of directed edges
within the time-expanded network. In this context, the total trans-
mission period Γ is divided discretely into 𝜏 ∈ N+ time intervals,
with the duration of each interval expressed as a constant value
Δ𝜏 = Γ/𝜏 ∈ R+. Note that a smaller value of Δ𝜏 indicates a fine-
grained time division in constructing the time-expanded network,
which leads to a more precise optimization for the objective in
Eq. (1), but also at the cost of a higher computational overhead.

Since optimization variables of the time-expanded network are
the allocated traffic volumes for the links, it is challenging to si-
multaneously optimize the volumes of traffic demands (e.g., the
encoding bitrate of image bitstreams), which are only reflected
on the source and target nodes. To map the traffic volumes of the
source and target nodes into the traffic volumes of the edges, we
augment the number of edges from |E | to 𝑛 = |V′ | + |E | by addi-
tionally adding specialized source nodes and target nodes to the
original network. Here, |V′ | is the total number of source and tar-
get nodes. The resulting new network topology is referred to as
the augmented network. For example, as shown in Fig. 2(b), the
received traffic volume 𝑟2 by target node 𝐶 in the original network
is equivalent to the traffic volume on the target edge 𝐶𝐶′ in the
augmented network.

We denote the set of all available paths of the 𝑙-th commodity
over the time-expanded network as 𝑃𝑙 , and a routing path of the
𝑙-th commodity for any source-target pair can be represented as
𝑝 = (𝑒𝑝+ , 𝑒𝑝1 , · · · , 𝑒

𝑝
𝜏 , 𝑒

𝑝−) ∈ 𝑃𝑙 , i.e., a sequence of directed edges that
originate from a source edge 𝑒𝑝+ = 𝑒+ ∈ E𝑙,+ and terminate at a
target edge 𝑒𝑝− = 𝑒− ∈ E𝑙,− , where E𝑙,+ and E𝑙,− denote the sets
of source edges and target edges, respectively. Moreover, we use
𝑝 [𝑖] = 𝑒

𝑝
𝑖 , 𝑖 = 1, · · · , 𝜏 to represent the transport link of path 𝑝

at the 𝑖-th time interval. Then, we denote by 𝑥𝑙𝑝 ∈ R+ the traffic
volume allocated on path 𝑝 for the 𝑙-th commodity.

In Fig. 2(c), we highlight the routing paths from the source node
𝐴 to the target nodes 𝐵 and𝐶 with bold arrows for the sake of clarity.
The sent and received traffic volumes of all the three commodities
within the period [𝑡0, 𝑡0+Γ) can be replaced with the traffic volumes
on the source edges 𝑒+ and target edges 𝑒− , respectively. Thus, the
variable 𝑟 𝑙 in Eq. (1) can be explicitly determined by the variable
𝑥𝑙𝑝 . The multi-bitstream image compression and transmission opti-
mization problem with the time-expanded network modeling can
thus be formulated as:

P1: min
𝑥𝑙𝑝

∑︁
𝑙

( ∑︁
𝑝∈𝑃𝑙

Ψ(𝑥𝑙𝑝 ) − 𝜆′
∑︁

𝑒−∈E𝑙,−

∑︁
𝜃 ∈Etask𝑒−

Φ𝑙,𝜃 (𝑟 𝑙𝑒− )
)

(2a)

s.t.
∑︁

𝑝∈𝑃𝑙 , 𝑝 [0]=𝑒+
𝑥𝑙𝑝 = 𝑟 𝑙𝑒+ , ∀ 𝑒+ ∈ E𝑙,+, 𝑙 = 1, · · · , 𝐿, (2b)

∑︁
𝑝∈𝑃𝑙 , 𝑝 [𝜏+1]=𝑒−

𝑥𝑙𝑝 = 𝑟 𝑙𝑒− , ∀ 𝑒− ∈ E𝑙,−, 𝑙 = 1, · · · , 𝐿, (2c)

∑︁
𝑙

∑︁
𝑝∈𝑃𝑙 , 𝑝 [𝑖 ]=𝑒

𝑥𝑙𝑝 ≤ 𝑑𝑒 , ∀𝑒 ∈ E, 𝑖 = 1, · · · , 𝜏, (2d)
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where the function Ψ(𝑥𝑙𝑝 ) = 1
𝜏

∑𝜏
𝑖=1 𝑥

𝑙
𝑝/𝑑𝑝 [𝑖 ] denotes the average

link utilization over path 𝑝 within the transmission period [𝑡0, 𝑡0+Γ)
and𝑑𝑝 [𝑖 ] is the average transmission capacity of link 𝑝 [𝑖] within the
time interval 𝑡0 to 𝑡0+𝑖Δ𝜏 . In addition, Etask𝑒− = {𝜃𝑒− } represents the
set of tasks that will be conducted in the target edge 𝑒− . Constraints
in Eqs. (2b) and (2c) state the relationship between the routing
paths 𝑥𝑙𝑝 and the traffic demands distributed at the source and
target edges, where 𝑟 𝑙𝑒+ is the allowed maximum traffic volume
originating from the source edge 𝑒+ for the 𝑙-th commodity, and
𝑟 𝑙𝑒− is the total received volume of bitstream at the target edge 𝑒−
for the 𝑙-th commodity. Note that the optimized encoding bitrate
of the 𝑙-th commodity is determined by the value of 𝑟 𝑙𝑒− , which can
be alternatively derived from the values of 𝑥𝑙𝑝 . Constraint Eq. (2d)
guarantees that the total traffic volume of all image bitstreams on
an edge 𝑒 does not exceed its capacity 𝑑𝑒 at each time interval.

The optimization problem P1 can be accurately solved using
off-the-shelf solvers, such as Gurobi [15] and CPLEX [10]. However,
as the values of 𝐿, Θ, and |E | increase, the number of optimiza-
tion variables in P1 grows exponentially [17], resulting in a huge
overhead in identifying the optimal solution. When new images
are required to be compressed and transmitted, or in the practical
scenarios where the network condition varies significantly, it is
necessary to re-solve problem P1. Therefore, it is crucial to find a
computationally efficient approach to solving this problem.

3 METHODOLOGY
To address the scability issue, in this section, we propose a multi-
marginal optimal transport-based method to efficiently find a near-
optimal solution to the problem P1. Specifically, we formulate prob-
lem P1 as a discrete form of the multi-marginal optimal transport
problem, and further introduce an entropy regularization term into
the objective function to make the feasible region more smooth.
Then, we adopt a variant of the Sinkhorn algorithm to quickly solve
the multi-marginal optimal transport problem with only a limited
number of iterations. Finally, we extend our method to the dynamic
network scenarios where the link capacities fluctuate over time. The
computation efficiency of our proposed Tombo algorithm is further
enhanced by leveraging the correlation of solutions between two
consecutive transmission periods, i.e., [𝑡0, 𝑡0+Γ) and [𝑡0+Γ, 𝑡0+2Γ).

3.1 Multi-Marginal Optimal Transport Problem
Optimal transport is a mathematical framework that focuses on
finding the optimal transport plan to transfer mass from an initial
distribution to a final distribution while considering the associated
costs and constraints [25]. To represent the transport paths for the
various image bitstreams, we introduce a tensor 𝑀 ∈ R𝐿×𝑛 (𝜏+2)+ ,
which denotes the transport plan over 𝜏 time intervals in the time-
expanded network as shown in Fig. 2(c). Asmentioned in Section 2.3,
𝑛 = |V′ | + |E | represents the total number of edges in the time-
expanded network. A transport plan element𝑀𝑙,𝑝 then denotes the
traffic volume of the 𝑙-th image (i.e., commodity) on the transport
path 𝑝 = (𝑒𝑝0 , 𝑒

𝑝
1 , ..., 𝑒

𝑝
𝜏 , 𝑒

𝑝
𝜏+1), where 𝑒

𝑝
𝑖 is the transport link of path

𝑝 at the 𝑖-th time interval. 𝑒𝑝0 and 𝑒𝑝𝜏+1 are source link and target link
respectively as mentioned in Section 2.3. Note that 𝑒𝑖 represents
a transport link at time interval 𝑖 that starts from a certain node

and can reach any other nodes in the time-expanded network. This
path is chosen without any specific constraints or limitations.

Thus, the elements of 𝑀 encompass all possible combinations
of directed links within the network, though it is obviously not
in accordance with the actual network topology. In order to elimi-
nate infeasible solutions, we encode the topology in the objective
function by assigning an infinitely high cost to the infeasible paths,
rather than explicitly defining the set of feasible paths in constraints.
As a result, we denote by𝐶 ∈ R𝐿×𝑛 (𝜏+2)+ the cost tensor of the trans-
port plan, with its element 𝐶𝑙,𝑝 defined as:

𝐶𝑙,𝑝 =
∑︁𝜏

𝑖=1𝐶
𝑢
𝑙,𝑒

𝑝

𝑖

+
∑︁𝜏

𝑖=0𝐶
∗
𝑒
𝑝

𝑖
,𝑒
𝑝

𝑖+1
, 𝐶𝑢

𝑙,𝑒
𝑝

𝑖

= 1/𝑑𝑒𝑖 (3)

where𝐶𝑢
𝑙,𝑒

𝑝

𝑖

denotes the transmission cost of 𝑙-th commodity on link
𝑒𝑖 for transport path 𝑝 at time interval 𝑖 , and𝐶∗𝑒𝑖 ,𝑒𝑖+1 is determined by
the original network topology, i.e.,𝐶∗𝑒𝑖 ,𝑒𝑖+1 = 0 if link 𝑒𝑖 is connected
to link 𝑒𝑖+1 in the original network and equals∞ otherwise. Here,
𝑑𝑒𝑖 denotes the average capacity of link 𝑒𝑖 , which is fixed within
the 𝑖-th time interval.

Then, the total transmission cost of transport plan 𝑀 is cal-
culated as the inner product of tensor 𝐶 and 𝑀 , i.e., < 𝐶,𝑀 >=∑𝐿
𝑙=1

∑
𝑝 𝐶𝑙,𝑝𝑀𝑙,𝑝 . Keeping the task performance term in the objec-

tive the same as in problem P1, problem P1 is then reformulated
as a multi-marginal optimal transport problem:

P2: min
𝑀

< 𝐶,𝑀 > −𝜆′
∑︁
𝑙

∑︁
𝑒𝜏+1

∑︁
𝜃

Φ𝑙,𝜃 ( [𝑃−1,𝜏+1 (𝑀)]𝑙,𝑒𝜏+1 ) (4a)

s.t. 𝑃−1,0 (𝑀) ≤ 𝑅 (−1,0) , (4b)
𝑃𝑖 (𝑀) ≤ 𝑑, ∀ 𝑖 = 1, ..., 𝜏, (4c)

where the initial and final distributions are imposed on the joint pro-
jections of tensor𝑀 on the corresponding two marginals 𝑃−1,0 (𝑀),
𝑃−1,𝜏+1 (𝑀) ∈ R𝐿×𝑛 . The two matrices depict the traffic distribution
of each image bitstream on the augmented network at the initiation
and conclusion of transmission. We denote by [𝑃−1,𝛽 (𝑀)]𝑙,𝑒𝛽 the
value of the (𝑙, idx𝛽 )-th element of the matrix 𝑃−1,𝛽 (𝑀), where
𝛽 = 1, · · · , 𝜏 + 1, and idx𝛽 denotes index of the link 𝑒𝛽 in the aug-
mented network. The elements of 𝑃−1,0 (𝑀) and 𝑃−1,𝜏+1 (𝑀) are
calculated as:

[𝑃−1,0 (𝑀)]𝑙,𝑒0 =
∑︁

𝑝,𝑒
𝑝

1 =𝑒1

𝑀𝑙,𝑝 , [𝑃−1,𝜏+1 (𝑀)]𝑙,𝑒𝜏+1 =
∑︁

𝑝,𝑒
𝑝

𝜏+1=𝑒𝜏+1

𝑀𝑙,𝑝 .

And the link-capacity constraint in Eq. (4c) is imposed on the pro-
jection on the 𝑖-th marginal 𝑃𝑖 (𝑀) ∈ R𝑛 . Similarly, the values of
elements of 𝑃𝑖 (𝑀) are calculated as:

[𝑃𝑖 (𝑀)]𝑒𝑖 =
∑︁

𝑙

∑︁
𝑝,𝑒

𝑝

𝑖
=𝑒𝑖

𝑀𝑙,𝑝 ,

which denotes the sum of traffic on link 𝑒𝑖 of the augmented net-
work at time interval 𝑖 . The vector 𝑑 ∈ R𝑛 in Eq. (4c) represents
the link capacities, and 𝑅 (−1,0) ∈ R𝐿×𝑛 in Eq. (4b) denotes the max-
imum allowable traffic volume for each source node to transmit,
which is associated with 𝑟 𝑙𝑒+ in Eq. (2b). For the sake of brevity, we
use 𝐺 (·) to denote the function 𝜆′

∑𝐿
𝑙=1

∑
𝑒𝜏+1

∑
𝜃 Φ𝑙,𝜃 (·) in Eq. (4a)

in the following sections.
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3.2 Near-Optimal Solution with Sinkhorn
An effective approach to solve the multi-marginal optimal transport
problem is to smooth the original problem by adding an entropy
regularization term [3]:𝐷 (𝑀) = ∑

𝑙,𝑝 (𝑀𝑙,𝑝 log𝑀𝑙,𝑝 −𝑀𝑙,𝑝 +1). Intro-
ducing such an entropy termmodifies the feasible region boundaries
of the optimization problem, resulting in smoother boundaries and
facilitating the identification of the optimal solution. As its reg-
ularization parameter 𝜖 approaches zero, the obtained solution
converges towards the ground truth [25]. Consequently, we add
the entropy-regularized term to the objective of problem P2, and
the corresponding optimization problem is expressed as:

P3: min
𝑀

< 𝐶,𝑀 > +𝜖𝐷 (𝑀) −𝐺 (𝑃−1,𝜏+1 (𝑀)) (5a)

s.t. Eqs. (4b) and (4c), (5b)
where 𝜖 > 0 is the regularization parameter, making the objective
function 𝜖-strongly convex. This problem can be solved via a variant
of the computationally efficient method, i.e., Sinkhorn scheme [12].

Concretely, the optimal solution to problem P3 has been proved
to take the form

𝑀 = 𝐾 ⊙ 𝑈 , 𝐾 = exp(−𝐶/𝜖) ∈ R𝐿×𝑛 (𝜏+2) , (6)
where ⊙ denotes the Hadamard product, and the elements of 𝐾 are
calculated as 𝐾𝑙,𝑝 = exp(−𝐶𝑙,𝑝/𝜖). Similar to the decomposition in
Eq. (3), 𝐾𝑙,𝑝 is decomposed as:

𝐾𝑙,𝑝 =
(∏𝜏

𝑖=1 [𝐾
𝑢 ]𝑙,𝑒𝑝

𝑖

) (∏𝜏

𝑖=0 [𝐾
∗]𝑒𝑝

𝑖
𝑒
𝑝

𝑖+1

)
,

𝐾𝑢 = exp(−𝐶𝑢/𝜖), 𝐾∗ = exp(−𝐶∗/𝜖). (7)

In addition,𝑈 ∈ R𝐿×𝑛 (𝜏+2) can be decomposed as:

[𝑈 ]𝑙,𝑝 = [𝑈 (−1,0) ]𝑙,𝑒0 [𝑈 (−1,𝜏+1) ]𝑙,𝑒𝜏+1
∏𝜏

𝑖=1 [𝑢𝑖 ]𝑒𝑖 , (8)

where 𝑈 (−1,0) ∈ R𝐿×𝑛 and 𝑢𝑖 ∈ R𝑛 can be iteratively updated.
Here, we introduce two iterative variables𝜓𝑖 and 𝜙𝑖 to simplify the
calculation of the projections of tensor𝑀 , i.e.,𝑃𝑖 (𝑀), 𝑃−1,0 (𝑀) and
𝑃−1,𝜏+1 (𝑀). Then, the projections of tensor𝑀 are given by:

𝑃𝑖 (𝑀) = 𝑢𝑖 ⊙ (𝜓𝑖 ⊙ 𝜙𝑖 ⊙ 𝐾𝑢 )𝑇 1,

𝑃−1,0 (𝑀) = 𝑈 (−1,0) ⊙𝜓0, 𝑃−1,𝜏+1 (𝑀) = 𝑈 (−1,𝜏+1) ⊙ 𝜙𝜏+1,
(9)

where𝑈 (−1,0) and 𝑢𝑖 ∈ R𝑛 can then be iteratively computed via:

𝑈 (−1,0) ← min(𝑅 (−1,0) ./𝜓0, 1), (10a)

𝑢𝑖 ← min(𝑑./((𝜓𝑖 ⊙ 𝜙𝑖 ⊙ 𝐾𝑢 )𝑇 1), 1), (10b)
where operator ./ denotes the element-wise division. The other
component𝑈 (−1,𝜏+1) ∈ R𝐿×𝑛 is updated via solving the equation:

0 = −𝑈 (−1,𝜏+1) ⊙ 𝜙𝜏+1 + 𝜕(𝐺)∗ (−𝜖log(𝑈 (−1,𝜏+1) )), (11)
where (𝐺)∗ denotes the Fenchel conjugate of function 𝐺 .

Consequently, our proposed Sinkhorn iteration-based algorithm
for quickly solving problem P3 is summarized in Algorithm 1. With-
out loss of generality, we define a tolerance threshold 𝜂 for the itera-
tive variable𝑈 (−1,𝜏+1) , in order to determine when to terminate the
iterations illustrated in Algorithm 1, Lines 4–18. Let Δ𝑈 (−1,𝜏+1) be
the difference in𝑈 (−1,𝜏+1) between the values of two consecutive
update iterations. If Δ𝑈 (−1,𝜏+1) ≤ 𝜂, the iterations in Algorithm 1
are terminated. While implementing our method, the value of 𝜂

Algorithm 1 Tombo: the Sinkhorn iteration of solving problem P3

1: Initialize 𝑢1, ..., 𝑢𝜏 ,𝑈 (−1,0) ,𝑈 (−1,𝜏+1) . ⊲ Initialization
2: 𝜓𝜏 ← 𝑈 (−1,𝜏+1)𝐾∗𝑇
3: for 𝑖 = 𝜏 − 1 to 0 do
4: 𝜓𝑖 ← (𝜓𝑖+1 ⊙𝐾𝑢 )diag(𝑢𝑖+1)𝐾∗𝑇 ⊲ Obtain initial values of𝜓𝑖
5: end for
6: while Δ𝑈 (−1,𝜏+1) ≥ 𝜂 do
7: Update𝑈 (−1,0) by Eq. (10a)
8: 𝜙1 ← 𝑈 (−1,0)𝐾∗
9: for 𝑖 = 1 to 𝜏 do
10: Update 𝑢𝑖 by Eq. (10b)
11: 𝜓𝑖+1 ← (𝜓𝑖 ⊙ 𝐾𝑢 )diag(𝑢𝑖 )𝐾∗ ⊲ Recompute𝜓𝑖 when 𝑢𝑖 is

updated
12: end for
13: Update𝑈 (−1,𝜏+1) by Eq. (11)
14: 𝜙𝜏 ← 𝑈 (−1,𝜏+1)𝐾∗𝑇
15: for 𝑖 = 𝜏 to 1 do
16: 𝜙𝑖−1 ← (𝜙𝑖 ⊙ 𝐾𝑢 )diag(𝑢𝑖 )𝐾∗𝑇
17: end for
18: end while
19: return 𝑢1, ..., 𝑢𝜏 ,𝑈 (−1,0) ,𝑈 (−1,𝜏+1)
20: /* The solution to P3 can then be derived based on Eqs. (6)–(8). */

can be customized to achieve varying trade-offs between the con-
vergence rate and computational efficiency.

3.3 Extension to Dynamic Network Scenarios
When there is a change in network capacity, it is common to collect
samples of the new link capacities and then re-solve the optimiza-
tion problem from scratch for the newnetwork scenario. To enhance
the computational efficiency of our Tombo in these dynamic net-
work scenarios, we provide an extended version Tombo-D, which
is capable of handling fluctuations in network capacities.

Specifically, we assume that the link capacities change dynami-
cally between a transmission period 𝜌1 = [𝑡0, 𝑡0 + Γ) and its subse-
quent transmission period 𝜌2 = [𝑡0 + Γ, 𝑡0 + 2Γ). As mentioned in
Eqs. (3) and (7), the matrix 𝐾𝑢 in solving problem P3 is associated
with the link capacities. We denote by 𝐾𝑢

𝜌1 the value of 𝐾
𝑢 within

the period 𝜌1, and 𝐾𝑢
𝜌2 = 𝐾𝑢

𝜌1 + Δ𝐾𝑢 the value of 𝐾𝑢 within the
period 𝜌2. Meanwhile, it is shown in Algorithm 1 that the initial
values of𝜓𝑖 is of significance to the convergence rate of variables
𝑢𝑖 ,𝑈

(−1,0) and 𝑈 (−1,𝜏+1) . Therefore, it is intuitive to leverage the
prior knowledge of 𝐾𝑢

𝜌1 and the associated variable 𝜓𝜌1
𝑖 to speed

up the iteration process of𝜓𝜌2
𝑖 , and then the update of𝑈 (−1,0) and

𝑈 (−1,𝜏+1) , rather than attempting to update their values starting
from a random initial point. Referring to the details given in Ap-
pendix A, we can replace the initialization of𝜓𝜌2

𝑖 in Algorithm 1,
Line 4 with the following equation:

𝜓
𝜌2
𝑖 = 𝜓𝜌1

𝑖 + (𝜓
𝜌1
𝑖+1 ⊙ Δ𝐾𝑢 )diag(𝑢𝑖+1)𝐾∗𝑇 . (12)

Here, the values of𝜓𝜌1
𝑖 are re-used to establish good initial values

that are close to the optimal values for the updates of 𝜓𝜌2
𝑖 . The

improved initialization of variable𝜓𝑖 results in a reduced number
of iterations for the process illustrated in Algorithm 1, Lines 4–18.
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4 PERFORMANCE EVALUATION
4.1 Experiment Setup
We implement our proposedTombo and other comparison base-
lines, and evaluate their performance in terms of the overall task
performance and computational efficiency with three typical ma-
chine vision tasks. All the experiments are conducted on a desktop
equipped with a 12-core Intel Xeon E5-2620 Processor and 32GB
DDR4 DRAM. The experiment settings are outlined as follows.

4.1.1 Network Topologies. We conduct the experiments over four
real-world network topologies, each with varying link capacities.
The number of nodes, directed edges, selected source nodes and
target nodes for these test networks are listed in Table 1, while the
corresponding network topologies are shown in Fig. 3(a).

4.1.2 Rate-Performance Function. For different categories of im-
ages, we employ the end-to-end learning task-oriented image com-
pression framework in [7] to generate the rate-accuracy curves for
the classification task, and rate-mAP curves for object detection
and instance segmentation tasks. The test image dataset used in
our experiments is COCO2017 [23], where the average image size
is 640 × 480 pixels. We fit the parameters of the function Φ𝑙,𝜃 (𝑟 𝑙 )
by using the task performance results in different discrete bitrate
values. Examples are illustrated in Fig. 3(b). The average coefficient
determination for parameter fittings is 𝑅2 = 0.97, which verifies
that the obtained parameters can well fit the actual data.

4.1.3 Baselines. We compare our method Tombo with the follow-
ing four baselines: 1) Tombo-Gurobi: a method that solves problem
P2 using the commercial solver Gurobi-v10.0.3 [15], the threads of
parallel computation of Gurobi is set to 10; 2) MCF-Gurobi [13]: a
method that solves the original MCF problem in problem P1. Before
starting the optimization, we use the Floyd-Warshall algorithm [9]
to find the top-𝑘 shortest paths for each source-target pair, and
only optimize the traffic on these paths to improve computational
efficiency; 3) TM-Sinkhorn: a variant of Tombo, which fixes the
transmitted bitrate of each image as the same value as the average
bitrate of Tombo’s solution, and then optimizes the routing strategy
using the Sinkhorn scheme; 4) SRD-Sinkhorn: a variant of Tombo,
which replaces the task-specific performance function Φ𝑙,𝜃 (𝑟 𝑙 ) with
a task performance function that depends only on the bitrate value.

4.1.4 Evaluation Metrics. We first compare the comparison base-
lines in terms of three metrics, including 1) the total objective
value: Total Obj. in Eq. (2a); 2) the transmission cost, which is
calculated as Trans. cost =

∑𝐿
𝑙=1

∑
𝑝 Ψ(𝑥𝑙𝑝 ); and 3) the surrogate

task value: Task-surr. = −𝜆′∑𝐿
𝑙=1

∑Θ
𝜃=1 [Φ𝑙,𝜃 (𝑟 𝑙 ) − 𝑐𝑙,𝜃 ]. Specifi-

cally, the transmission cost indicates the transmission performance
of the optimized routing strategy, while the surrogate task value
measures the overall task performance across various images and
downstream tasks. In addition, we measure the feasibility of the
solutions generated by Tombo, through measuring the constraint
violation on each link, i.e., violation=

∑
𝑖 ∥max(0, 𝑃𝑖 (𝑀) − 𝑑)∥1.

Thus, a higher violation value indicates a higher probability that the
obtained solution to the optimization problem is infeasible. For the
computational efficiency, we estimate the wallclock time it takes
for each comparison method to meet the termination criteria as the
value of running time.

Table 1: Details of the test network topologies.
Test Network Node Edge Source Target

B4 [18] 12 38 3 3
Janetbackbone [1] 29 90 5 9

Carnet [1] 44 86 9 9
UsCarrier [20] 158 378 9 9
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Algorithm 1 The Sinkhorn iteration of solving problem P3

1: Initialize 𝑢2, ..., 𝑢𝜏−1,𝑈 (0,1) ,𝑈 (0,𝜏 ) .
2: 𝜓𝜏−1 ← 𝑈 (0,𝜏 )𝐾𝑇
3: for 𝑡 = 𝜏 − 2 to 1 do
4: 𝜓𝑡 ← (𝜓𝑡+1 ⊙ 𝐾𝑢 )diag(𝑢𝑡+1)𝐾𝑇
5: end for
6: while not converged do
7: 𝑈 (0,1) ← min(𝑅 (0,1) ./𝜓1, 1)
8: 𝜙2 ← 𝑈 (0,1)𝐾
9: for 𝑡 = 2 to 𝜏 − 1 do
10: 𝑢𝑡 ← min(𝑑./((𝜓𝑡 ⊙ 𝜙𝑡 ⊙ 𝐾𝑢 )𝑇 1), 1)
11: 𝜓𝑡+1 ← (𝜓𝑡 ⊙ 𝐾𝑢 )diag(𝑢𝑡 )𝐾
12: end for
13: Update𝑈 (0,𝜏 ) by 0 = −𝑈 (0,𝜏 ) ⊙ 𝜙𝜏 + 𝜕(𝐺)∗ (−𝜖log(𝑈 0,𝜏 ))
14: 𝜙𝜏−1 ← 𝑈 (0,𝜏 )𝐾𝑇
15: for 𝑡 = 𝜏 − 1 to 2 do
16: 𝜙𝑡−1 ← (𝜙𝑡 ⊙ 𝐾𝑢 )diag(𝑢𝑡 )𝐾𝑇
17: end for
18: end while
19: return 𝑢2, ..., 𝑢𝜏−1,𝑈 (0,1) ,𝑈 (0,𝜏 )

4.1.1 Network Topologies. We conduct the experiments over four
real-world network topologies, each with varying link capacities.
The number of nodes, directed edges, selected source nodes and
target nodes for these test networks are listed in Table 1, while the
corresponding network topologies are shown in Fig. 3.

Table 1: Details of the test network topologies.
Test Network Node Edge Source Target

B4 [14] 12 38 3 3
Janetbackbone [1] 29 90 5 9

Carnet [1] 44 86 9 9
UsCarrier [16] 158 378 9 9
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Figure 3: Illustration of the test network topologies.

4.1.2 Rate-Performance Function. For different categories of im-
ages, we employ the end-to-end learning task-oriented image com-
pression framework in [6] to generate the rate-accuracy curves for

the classification task, and rate-mAP curves for object detection
and instance segmentation tasks. The test image dataset used in our
experiments is COCO2017 [18], where the average image size is
640× 480 pixels. We fit the parameters of the function in Eq. (??) us-
ing the task performance results in different discrete bitrate values.
Examples are illustrated in Fig. 4. The average coefficient determi-
nation for parameter fittings is 𝑅2 = 0.97, which verifies that the
obtained parameters can well fit the actual data.
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Figure 4: Illustration of rate-performance results and corre-
sponding fitted curves under three tasks.

4.1.3 Baselines. We compare ourmethod ToMOwith the following
four baselines: 1) ToMO-Gurobi: a method that solves the problem
P2 using the commercial solver Gurobi-v10.0.3 [13], the threads of
parallel computation of Gurobi is set to 10; 2) MCF-Gurobi: a method
that solves the original MCF problem in problem P1. Before starting
the optimization, we use the Floyd-Warshall algorithm [8] to find
the top-𝑘 shortest paths for each source-target pair, and only opti-
mize the traffic on these paths to improve computational efficiency;
3) TM-Sinkhorn: a variant of ToMO, which fixes the transmitted
bitrate of each image as the same value as the average bitrate of
the ToMO solution, and then optimizes the routing strategy using
the Sinkhorn scheme; 4) SRD-Sinkhorn: a variant of ToMO, which
replaces the task-specific performance function Φ𝑙,𝜃 (𝑟 𝑙 ) with a task
performance function that only depends on the bitrate value.

4.1.4 Evaluation Metrics. To evaluate the performance of ToMO,
we first compare the comparison baselines in terms of three metircs,
including the total objective value: Total Obj., the transmission
cost, which is calculated as Trans. cost=

∑𝐿
𝑙=1

∑
𝑝 Ψ(𝑥𝑙𝑝 ); and the

surrogate task value: Task-surr. = −𝜆′∑𝐿
𝑙=1

∑Θ
𝜃=1 [Φ𝑙,𝜃 (𝑟 𝑙 ) − 𝑐𝑙,𝜃 ].

The transmission cost indicates the transmission performance of the
optimized routing strategy, and the surrogate task value measures
the overall task performance across various images and downstream
tasks. In addition, we measure the feasibility of the solved solutions
for the proposed method by measuring the constraint violation on
each link, i.e., violation=

∑
𝑡 ∥max(0, 𝑃𝑡 (𝑀) − 𝑑)∥1. A high viola-

tion value indicates a high probability that the obtained solution to
the optimization problem is infeasible. For computational efficiency,
we estimate the wallclock time it takes for each comparison method
to meet the termination criteria as the value of running time.

4.1.5 Other Parameters. For fairness, we use the same experiment
settings for all comparison methods. We set the weight of the objec-
tive function as 𝜆′ = 0.2, and the number of images that are simul-
taneously compressed and transmitted within the time interval Γ as
𝐿 = 9, 15, 27, 27 for network B4, Janetbackbone, Carnet, and UsCar-
rier, respectively. The corresponding total time step is set as 𝜏 = 7.
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Figure 3: Illustration of a) test network topologies, and b)
rate-performance results and corresponding fitted curves.

4.1.5 Varying Link Capacity. In order to simulate a dynamic net-
work with fluctuating link capacities in experiments, we employ
a random selection process to choose a proportion 𝜌vl of all net-
work links. We then modify the capacities of these selected links
from their original values 𝑑 to random values within the range of
[(100 − 𝑞)%𝑑, (100 + 𝑞)%𝑑]. In the four test network topologies, we
keep the settings constant, i.e., 𝜌vl = 5%, 𝑞 = 2.5, and conduct 10
repeatedly evaluations for the performance of Tomob-D.

4.1.6 Other Parameters. We set the Lagrange multiplier of the ob-
jective function as 𝜆′ = 0.2, and the number of images that are
simultaneously compressed and transmitted as 𝐿 = {9, 15, 27, 27}
for network B4, Janetbackbone, Carnet, and UsCarrier, respectively.
We empirically set the total time interval Γ as {7, 7, 8, 37} millisec-
onds for four test networks, respectively and let Δ𝜏 always be
1 millisecond. As for the proposed Tombo, we set the entropy-
regularized weight in problem P2 as 𝜖 = 0.001. The termination
criteria for Gurobi is set as {1%, 1%, 1%, 10%} primal-dual gap for
network B4, Janetbackbone, and Carnet, and UsCarrier, respec-
tively. We set the tolerance threshold of 𝑈 (−1,𝜏+1) as 𝜂 = 0.5, and
also set the maximum iteration number of the Sinkhorn iteration
as {500, 1000, 1000, 1500} for network B4, Janetbackbone, Carnet
and UsCarrier, respectively. In addition, we further investigate the
impact of different Δ𝜏 on the performance of Tombo in Appendix B.

4.2 Results
We compare Tombo with other baselines in terms of the objective
value and running time performances in various network topologies
and downstream task settings. Table 2 shows the numerical results
of all comparison methods over all the four test network topologies.

4.2.1 Effectiveness of Solution via Optimal Transport. In the small-
scale test network scenario, e.g., B4, Tombo takes only 2.69 seconds
(5× speedup) on average to obtain a traffic allocation which is nearly
the same as the best-performing scheme Tombo-Gurobi. Tombo also
outperforms Tombo-Gurobi and MCF-Gurobi in networks Janet-
backbone and Carnet in terms of the running time, with a speedup
of 7× and 6×, respectively. In addition, Tombo has a remarkably
competitive performance in terms of total objective values com-
pared to Tombo-Gurobi in four test network topologies, with an
average solution gap of less than 2.5%. In the UsCarrier network,
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Table 2: Performance comparison in terms of different evaluation metrics in four test network topologies.

Topology Method Objective Violation ↓ Running
time (s) ↓ Speedup↑ Avg. bitrate

(bpp) ↓ Avg. link
utilization↓Total Obj.↓ Trans. cost↓ Task-surr.↓

B4
Tombo 85.84 47.71 38.13 1.82e-12 2.69 4.98× 0.1222 0.0502

Tombo-Gurobi 85.73 49.03 36.70 7.14e-11 13.39 1× 0.1255 0.0516
MCF-Gurobi (k=3) 87.74 49.65 38.09 9.09e-13 55.11 0.24× 0.1231 0.0523

TM-Sinkhorn 89.77 49.74 40.02 0 3.10e-2 431.94× 0.1222 0.0523
SRD-Sinkhorn 89.27 45.49 43.79 4.55e-13 2.68 5.00× 0.1170 0.0479

Janetbackbone
Tombo 282.24 122.48 159.76 7.63e-2 12.51 6.80× 0.1349 0.0544

Tombo-Gurobi 277.14 140.81 147.53 0 85.10 1 × 0.1447 0.0575
MCF-Gurobi (k=3) 277.47 128.44 149.03 1.25e-11 105.01 0.81× 0.1436 0.0475

TM-Sinkhorn 295.32 127.11 168.21 0 4.55e-2 1870.33× 0.1349 0.0583
SRD-Sinkhorn 305.86 136.14 169.72 9.70e-3 8.38 10.16× 0.1331 0.0605

Carnet
Tombo 593.62 181.82 411.81 8.39e-2 94.83 5.80× 0.1186 0.0701

Tombo-Gurobi 557.86 160.43 397.42 9.09e-13 550.12 1× 0.1318 0.0626
MCF-Gurobi (k=3) 890.98 101.40 789.58 0 850.77 0.65× 0.0917 0.0472

TM-Sinkhorn 622.41 150.76 471.64 1.36e-12 0.91 604.53× 0.1194 0.0704
SRD-Sinkhorn 620.01 185.12 434.88 1.33e-2 43.06 12.76× 0.1228 0.0719

UsCarrier
Tombo 311.85 169.39 142.45 1.36e-12 35.05 113.84× 0.1265 0.0026

Tombo-Gurobi 307.88 175.00 132.88 0 3990.00 1× 0.1346 0.0026
MCF-Gurobi (k=1) 322.14 151.34 170.80 0 1402.00 2.85× 0.1179 0.0061

TM-Sinkhorn 327.61 175.15 152.45 0 0.25 15960× 0.1265 0.0049
SRD-Sinkhorn 382.64 224.82 157.82 0 38.31 104.15× 0.1246 0.0049
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Figure 4: Comparison of task performance of Tombo, SRD-Sinkhorn, and TM-Sinkhorn across three different tasks.

which has 158 nodes and 378 links, Tombo shows a significantly
faster solving speed (114× speedup) compared to other compari-
son methods, while maintaining competitive performance, with
the total objective gap less than 1.2%. The results indicate that the
speedup performance compared to Tombo-Gurobi grows as the
network scale increases.

Furthermore, we observe that all comparison methods achieve a
solution with a tiny violation value, indicating that the link over-
load is negligible. Moreover, Tombo obtains comparable results for
the average bitrate and link utilization as Tombo-Gurobi. Note that
MCF-Gurobi requires a longer time compared to Tombo-based ap-
proaches in order to achieve the solution, even when the time used
to obtain preset pathways is excluded. This demonstrates the ef-
ficacy of converting MCF problems into multi-marginal optimal
transport problems as it greatly speeds up problem-solving pro-
cesses. Furthermore, MCF-Gurobi simply distributes traffic along
the shortest 𝑘 paths for each source-target node pair, without fully
using all the available network links. Consequently, there is a de-
cline in the performance of the total objective value.
4.2.2 Effectiveness of Joint Bitrate and Routing Optimization. We
then investigate the impact on the overall task performance by
introducing task-specific performance metrics and the joint opti-
mization framework. Through comparison of the task performance
achieved by Tombo with the baseline methods TM-Sinkhorn and
SRD-Sinkhorn, it is demonstrated that Tombo achieves the superior
performance in terms of the task performance over all networks. As
shown in Fig. 4, TM-Sinkhorn and SRD-Sinkhorn present a signifi-
cant degradation in the overall task performance because they do
not distinguish between different downstream tasks when optimiz-
ing bitrates. On the four network topologies, Tombo consistently

Table 3: Performance of Tombo-D vs. Tombo in dynamic
network scenarios with 𝜌vl = 5% and 𝑞 = 2.5.

Topology Objective Running time (s) SpeedupTombo-D Tombo Tombo-D Tombo
B4 86.17 86.17 1.75 ± 2.04 2.85 ± 1.55 1.62×

Janetbackbone 309.05 309.05 10.04 ± 3.77 14.30 ± 1.31 1.42×
Carnet 641.75 641.75 36.48 ± 28.69 82.51 ± 6.83 2.26×

UsCarrier 311.85 311.85 35.83 ± 13.58 53.71 ± 0.93 1.50×

demonstrates a fairer performance across different image tasks.
Notably, for the other two methods, particularly TM-Sinkhorn in
the Carnet network, the performance of the object detection task
significantly surpasses that of instance segmentation. This observa-
tion can be attributed to the average distribution of bitstreams at
the receiving end for different tasks. However, it is crucial to recog-
nize that different image tasks impose distinct requirements on the
image compression to achieve comparable performance levels.

4.2.3 Adaptation to Dynamic Network Changes. As shown in Ta-
ble 3, the running time of Tombo-D, which uses the iterative vari-
ables from the last transmission period to initialize the current
variables, is significantly shorter than that of Tombo across the four
test networks scenarios. Overall, Tombo-D achieves a minimum
1.5× speedup in running time over Tombo. This finding highlights
a strong capacity of Tombo-D to adapt to the time-varying network
capacity. By initializing iterative variables using the intermediate
variables from the solution of previous transmission period, Tombo-
D speeds up the convergence while preserving the same level of
accuracy as Tombo. These results also demonstrate that slight modi-
fications in the capacity of network links have only a minimal effect
on the feasible domain of the optimization problem. By re-using
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Figure 5: Comparison of running time across different varied link ratio and capacity fluctuation degree.
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Figure 6: Comparison of iteration number across different varied link ratio and capacity fluctuation degree.

iterative variables from the previous solution, we provide an initial
starting point for new iterations that is close to optimum solution.

4.3 Ablation Study
4.3.1 Regularization Parameter. In order to examine the influence
of the regularization entropy term 𝜖 on the solution’s quality, we
compared Tombo using various values of 𝜖 in terms of the overall
objective value, capacity violation, and running time. As depicted
in Table 4, Tombo with the smallest 𝜖 consistently yields the closest
approximation to the optimal solution. However, achieving a feasi-
ble solution with a smaller 𝜖 requires more time due to insufficient
iterations, resulting in a significant violation of capacity constraints.
Nevertheless, with the increase in the number of iterations, the vio-
lation of link capacity constraints gradually diminishes. Moreover,
as 𝜖 increases, the time required for each iteration decreases. With
a larger 𝜖 , the objective value remains the same as the number
of iterations increases, indicating that a higher 𝜖 fosters a swifter
convergence of Tombo. This phenomenon can be attributed to the
smoother boundaries of feasible regions. While Tombo with a large
𝜖 can swiftly compute a feasible solution, it deviates notably from
the optimum. Notably, in comparison to B4, which comprises only
12 nodes, the disparity between the solution and the optimum is
more pronounced in larger-scale networks like Janetbackbone.

4.3.2 Link Capacity Fluctuation. To assess the impact of network
link capacity fluctuations on the performance of Tombo-D, we con-
duct experiments focusing on two key factors: the proportion 𝜌vl
of selected links where the capacity changes, and the correspond-
ing threshold of link capacity fluctuation 𝑞. We first conduct the
experiments with the settings 𝜌vl = {5%, 10%, 20%, 50%} with fixed
𝑞 = 2.5, and then adjusted values of 𝑞 = {1.25, 2.5, 5, 12.5, 25} with
fixed 𝜌vl = 5%. The comparison result between Tombo-D and Tombo
in terms of the running time and iteration number in the Carnet
and UsCarrier networks are illustrated in Figs. 5 and 6, respectively.
It is seen that Tombo-D can expedite iterative convergence and save
computational time across different proportions of varying links in
the two test scenarios. This phenomenon can be attributed to the
effective initialization of the iteration variables, facilitating faster
convergence and the discovery of optimal solutions. Nonetheless,

Table 4: Ablation results w.r.t. regularization parameter 𝜖.
Topology 𝜖 Iteration Total Obj. Violation Running time (s)

B4

5e-4
50 86.16 1.73 0.2488
200 86.17 1.15e-8 1.0455
500 86.17 2.27e-13 2.1639

1e-3
50 87.62 4.30e-3 0.1767
200 87.62 2.27e-13 0.6165
500 87.63 2.27e-13 1.4488

5e-3
50 105.53 0 0.1089
200 105.53 0 0.3321
500 105.53 0 0.8360

Janetbackbone

5e-4
50 279.61 560.51 0.8917
200 281.98 33.61 3.7333
500 282.23 1.19 10.1919

1e-3
50 297.96 81.31 0.6150
200 298.48 2.01 2.4022
500 298.48 2.90e-3 6.2031

5e-3
50 368.14 2.21e-7 0.4025
200 368.14 0 1.5481
500 368.14 0 3.6269

as the value of 𝜌vl rises, the advantage in running time diminishes.
This phenomenon is reasonable since in the extreme scenario where
all link capacities change, a completely new optimization problem
emerges. As shown in Figs. 5(c) and 5(d), Tombo-D demonstrates a
notable acceleration across all levels of link capacity fluctuations.
Nevertheless, as network link capacities undergo more pronounced
changes, the running time advantage diminishes. This phenomenon
arises because the starting point of iterations in the feasible region
becomes further away from the updated optimal solution.

5 CONCLUSION
We have proposed a framework for jointly optimizing the encoding
bitrates and routing scheme for multiple image bitstreams with
various machine vision tasks, named Tombo. The task-oriented
multi-bitstream compression and transmission problem was formu-
lated as anMCF problemwith time-expanded networkmodeling. To
quickly solve the problem, we re-formulated the MCF problem to a
multi-marginal optimal transport problem and proposed a Sinkhorn
iteration-based algorithm to speed up the solving process. Then,
we proposed the enhanced Tombo-D to adapt to dynamic networks
where link capacities fluctuate over time. Evaluations on three typ-
ical machine vision tasks and four real-world network topologies
have demonstrated the effectiveness of Tombo and Tombo-D.
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