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A. Appendix
A.1. The EPK is a Kernel

Lemma 3.5. The exact path kernel (EPK) is a kernel.

Proof. We must show that the associated kernel matrix KEPK 2 Rn⇥n defined for an arbitrary subset of data {xi}Mi=1 ⇢ X

as KEPK,i,j =
R 1
0 h�s,t(xi),�s,t(xj)idt is both symmetric and positive semi-definite.

Since the inner product on a Hilbert space h·, ·i is symmetric and since the same mapping ' is used on the left and right,
KEPK is symmetric.

To see that KEPK is Positive Semi-Definite, let ↵ = (↵1,↵2, . . . ,↵n)> 2 Rn be any vector. We need to show that
↵
>
KEPK↵ � 0. We have

↵
>
KEPK↵ =

nX

i=1

nX

j=1

↵i↵j

Z 1

0
h�s,t(xi),�s,t(xj)idt (19)

=
nX

i=1

nX

j=1

↵i↵j

Z 1

0
hrwŷws(t,xi),rwŷws(t,xj)idt (20)

=

Z 1

0

nX

i=1

nX

j=1

↵i↵jhrwŷws(t,xi),rwŷws(t,xj)idt (21)

=

Z 1

0

nX

i=1

nX

j=1

h↵irwŷws(t,xi),↵jrwŷws(t,xj)idt (22)

=

Z 1

0
h

nX

i=1

↵irwŷws(t,xi),

nX

j=1

↵jrwŷws(t,xj)idt (23)

Re-ordering the sums so that their indices match, we have (24)

=

Z 1

0

�����

nX

i=1

↵irwŷws(t,xi)

�����

2

dt (25)

� 0, (26)

Note that this reordering does not depend on the continuity of our mapping function �s,t(xi).

Remark 3 In the case that our mapping function ' is not symmetric, after re-ordering, we still yield something of the form:

=

Z 1

0

�����

nX

i=1

↵irwŷws(t,xi)

�����

2

dt (27)

(28)

The natural asymmetric � is symmetric for every non-training point, so we can partition this sum. For the non-training
points, we have symmetry, so for those points we yield exactly the L

2 metric. For the remaining points, if we can pick a
Lipschitz constant E along the entire gradient field, then if training steps are enough, then the integral and the discrete step
side of the asymmetric kernel will necessarily have positive inner product. In practice, this Lipschitz constant will change
during training and for appropriately chosen step size (smaller early in training, larger later in training) we can guarantee
positive-definiteness. In particular this only needs to be checked for training points.
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A.2. The EPK gives an Exact Representation

Theorem 3.6 (Exact Kernel Ensemble Representation). A model fwN trained using discrete steps matching the conditions
of the exact path kernel has the following exact representation as an ensemble of N kernel machines:

fwN = KE(x) :=
NX

s=1

MX

i=1

ai,sKEPK(x, x
0
, s) + b (7)

where

ai,s = �"
dL(fws(0)(xi), yi)

dfws(0)(xi)
(8)

b = fw0(x) (9)

Proof. Let fw be a differentiable function parameterized by parameters w which is trained via N forward Euler steps of
fixed step size " on a training dataset X with labels Y , with initial parameters w0 so that there is a constant b such that for
every x, fw0(x) = b, and weights at each step ws : 0  s  N . Let x 2 X be arbitrary and within the domain of fw for
every w. For the final trained state of this model fwN , let y = fwN (x).

For one step of training, we consider ys = fws(0)(x) and ys+1 = fws+1(x). We wish to account for the change ys+1 � ys

in terms of a gradient flow, so we must compute
@y

dt
for a continuously varying parameter t. Since f is trained using

forward Euler with a step size of " > 0, this derivative is determined by a step of fixed size of the weights ws to ws+1. We
parameterize this step in terms of the weights:

dws(t)

dt
= (ws+1 � ws) (29)

Z
dws(t)

dt
dt =

Z
(ws+1 � ws)dt (30)

ws(t) = ws + t(ws+1 � ws) (31)
(32)

Since f is being trained using forward Euler, across the entire training set X we can write:

dws(t)

dt
= �"rwL(fws(0)(X), yi) = �"

dX

j=1

MX

i=1

@L(fws(0)(xi), yi)

@wj

(33)

Applying chain rule and the above substitution, we can write

dŷ

dt
=

dfws(t)

dt
=

dX

j=1

df

@wj

@wj

dt
(34)

=
dX

j=1

dfws(t)(x)

@wj

✓
�"

@L(fws(0)(XT ), YT )

@wj

◆
(35)

=
dX

j=1

dfws(t)(x)

@wj

 
�"

MX

i=1

dL(fws(0)(xi), yi)

dfws(0)(xi)

@fws(0)(xi)

@wj

!
(36)

= �"

MX

i=1

dL(fws(0)(xi), yi)

dfws(0)(xi)

dX

j=1

dfws(t)(x)

@wj

dfws(0)(xi)

@wj

(37)

= �"

MX

i=1

dL(fws(0)(xi), yi)

dfws(0)(xi)
rwfws(t)(x) ·rwfws(0)(xi) (38)

(39)
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Using the fundamental theorem of calculus, we can compute the change in the model’s output over step s

ys+1 � ys =

Z 1

0
�"

MX

i=1

dL(fws(0)(xi), yi)

dfws(0)(xi)
rwfws(t)(x) ·rwfws(0)(xi)dt (40)

= �"

MX

i=1

dL(fws(0)(xi), yi)

dfws(0)(xi)

✓Z 1

0
rwfws(t)(x)dt

◆
·rwfws(0)(xi) (41)

(42)

For all N training steps, we have

yN = b+
NX

s=1

ys+1 � ys

yN = b+
NX

s=1

�"

MX

i=1

dL(fws(0)(xi), yi)

dfws(0)(xi)

✓Z 1

0
rwfws(t)(x)dt

◆
·rwfws(0)(xi)

= b+
MX

i=1

NX

s=1

�"
dL(fws(0)(xi), yi)

dfws(0)(xi)

Z 1

0

⌦
rwfws(t,x)(x),rwfws(t,xi)(xi)

↵
dt

= b+
MX

i=1

NX

s=1

ai,s

Z 1

0
h�s,t(x),�s,t(xi)i dt

Since an integral of a symmetric positive semi-definite function is still symmetric and positive-definite, each step is thus
represented by a kernel machine.

A.3. When is an Ensemble of Kernel Machines itself a Kernel Machine?

Here we investigate when our derived ensemble of kernel machines composes to a single kernel machine. In order to show
that a linear combination of kernels also equates to a kernel it is sufficient to show that ai,s = ai,0 for all ai,s. The ai terms
in our kernel machine are determined by the gradient the training loss function. This statement then implies that the gradient
of the loss term must be constant throughout training in order to form a kernel. Here we show that this is the case when we
consider a log softmax activation on the final layer and a negative log likelihood loss function.

Proof. Assume a two class problem. In the case of a function with multiple outputs, we consider each output to be a kernel.
We define our network output ŷi as all layers up to and including the log softmax and yi is a one-hot encoded vector.

L(ŷi, yi) =
KX

k=1

�y
k

i
(ŷk

i
) (43)

(44)

For a given output indexed by k, if yk
i
= 1 then we have

L(ŷi, yi) = �1(ŷk
i
) (45)

@L(ŷi, yi)

@ŷi
= �1 (46)

(47)
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If yk
i
= 0 then we have

L(ŷi, yi) = 0(ŷk
i
) (48)

@L(ŷi, yi)

@ŷi
= 0 (49)

(50)

In this case, since the loss is scaled directly by the output, and the only other term is an indicator function deciding which
class label to take, we get a constant gradient. This shows that the gradient of the loss function does not depend on ŷi.
Therefore:

y = b� "

NX

i=1

SX

s=1

ai,s

Z 1

0
h�s,t(x),�s,t(xi)i dt (51)

= b� "

NX

i=1

ai,0

SX

s=1

Z 1

0
h�s,t(x),�s,t(xi)i dt (52)

This formulates a kernel machine where

ai,0 =
@L(fw0(xi), yi)

@fi
(53)

K(x, xi) =
SX

s=1

Z 1

0
h�s,t(x),�s,t(xi)i dt (54)

�s,t(x) = rwfws(t,x)(x) (55)

ws(t, x) =

(
ws, x 2 XT

ws(t), x /2 XT

(56)

b = 0 (57)

It is important to note that this does not hold up if we consider the log softmax function to be part of the loss instead of
the network. In addition, there are loss structures which can not be rearranged to allow this property. In the simple case of
linear regression, we can not disentangle the loss gradients from the kernel formulation, preventing the construction of a
valid kernel. For example assume our loss is instead squared error. Our labels are continuous on R and our activation is the
identity function.

L(fi, yi) = (yi � fi,s)
2 (58)

@L(fi, yi)

@fi
= 2(yi � fi,s) (59)

This quantity is dependent on fi and its value is changing throughout training.

In order for

SX

s=1

ai,s

Z 1

0
h�s,t(x),�s,t(xi)idt (60)

to be a kernel on its own, we need it to be a positive (or negative) definite operator and symetric. In the specific case of our
practical path kernel, i.e. that in K(x, x0) if x0 happens to be equal to xi, then positive semi-definiteness can be accounted
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for:

=
SX

s=1

2(yi � fi,s)

Z 1

0
h�s,t(x),�s,t(xi)idt (61)

=
SX

s=1

2(yi � fi,s)

Z 1

0
hrwfws(t))(x),rwfws(0)(xi)idt (62)

=
SX

s=1

2

✓
yi ·
Z 1

0
hrwfws(t))(x),rwfws(0)(xi)idt� fi,s

Z 1

0
hrwfws(t))(x),rwfws(0)(xi)idt

◆
(63)

=
SX

s=1

2

✓
yi ·
Z 1

0
hrwfws(t))(x),rwfws(0)(xi)idt�

Z 1

0
hrwfws(t))(x), fi,srwfws(0)(xi)idt

◆
(64)

=
SX

s=1

2

✓
yi ·
Z 1

0
hrwfws(t))(x),rwfws(0)(xi)idt�

Z 1

0
hrwfws(t))(x),

1

2
rw(fws(0)(xi))

2idt
◆

(65)

(66)

Otherwise, we get the usual

=
SX

s=1

2(yi � fi,s)

Z 1

0
hrwfws(t,x))(x),rwfws(t,x)(x

0)idt (67)

(68)

The question is two fold. One, in general theory (i.e. the lower example), can we contrive two pairs (x1, x
0
1) and (x2, x

0
2)

that don’t necessarily need to be training or test images for which this sum is positive for 1 and negative for 2. Second, in
the case that we are always comparing against training images, do we get something more predictable since there is greater
dependence on xi and we get the above way of re-writing using the gradient of the square of f(xi).

However, even accounting for this by removing the sign of the loss will still produce a non-symmetric function. This
limitation is more difficult to overcome.

A.4. Multi-Class Case

There are two ways of treating our loss function L for a number of classes (or number of output activations) K:

Case 1: L : RK ! R (69)

Case 2: L : RK ! RK (70)
(71)

A.4.1. CASE 1 SCALAR LOSS

Let L : RK ! R. We use the chain rule D(g � f)(x) = Dg(f(x))Df(x).

Let f be a vector valued function so that f : RD ! RK satisfying the conditions from [representation theorem above] with

x 2 RD and yi 2 RK for every i. We note that
@f

@t
is a column and has shape Kx1 and our first chain rule can be done the
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old fashioned way on each row of that column:

df

dt
=

MX

j=1

df(x)

@wj

dwj

dt
(72)

= �"

MX

j=1

df(x)

@wj

NX

i=1

@L(f(xi), yi)

@wj

(73)

Apply chain rule (74)

= �"

MX

j=1

df(x)

@wj

NX

i=1

@L(f(xi), yi)

@f

df(xi)

@wj

(75)

Let (76)

A =
df(x)

@wj

2 RK⇥1 (77)

B =
dL(f(xi), yi)

df
2 R1⇥K (78)

C =
df(xi)

@wj

2 RK⇥1 (79)

We have a matrix multiplication ABC and we wish to swap the order so somehow we can pull B out, leaving A and C to
compose our product for the representation. Since BC 2 R, we have (BC) = (BC)T and we can write

(ABC)T = (BC)TAT = BCA
T (80)

ABC = (BCA
T )T (81)

Note: This condition needs to be checked carefully for other formulations so that we can re-order the product as follows:

= �"

MX

j=1

NX

i=1

 
dL(f(xi), yi)

df

df(xi)

@wj

✓
df(x)

@wj

◆T
!T

(82)

= �"

NX

i=1

0

@dL(f(xi), yi)

df

MX

j=1

df(xi)

@wj

✓
df(x)

@wj

◆T

1

A
T

(83)

(84)

Note, now that we are summing over j, so we can write this as an inner product on j with the r operator which in this case
is computing the jacobian of f along the dimensions of class (index k) and weight (index j). We can define

(rf(x))k,j =
dfk(x)

@wj

(85)

= �"

NX

i=1

✓
dL(f(xi), yi)

df
rf(xi)(rf(x))T

◆T

(86)

(87)

We note that the dimensions of each of these matrices in order are [1,K], [K,M ], and [M,K] which will yield a matrix of
dimension [1,K] i.e. a row vector which we then transpose to get back a column of shape [K, 1]. Also, we note that our
kernel inner product now has shape [K,K].

A.5. Schemes Other than Forward Euler (SGD)

Variable Step Size: Suppose f is being trained using Variable step sizes so that across the training set X:

dws(t)

dt
= �"srwL(fws(0)(X), yi) = �"

dX

j=1

MX

i=1

@L(fws(0)(X), yi)

@wj

(88)
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This additional dependence of " on s simply forces us to keep " inside the summation in equation 11.

Other Numerical Schemes: Suppose f is being trained using another numerical scheme so that:

dws(t)

dt
= "s,lrwL(fws(0)(xi), yi) + "s�1,lrwL(fws�1(xi), yi) + · · · (89)

= "s,l

dX

j=1

MX

i=1

@L(fws(0)(xi), yi)

@wj

+ "s�1,l

dX

j=1

MX

i=1

@L(fws�1(0)(xi), yi)

@wj

+ · · · (90)

This additional dependence of " on s and l simply results in an additional summation in equation 11. Since addition
commutes through kernels, this allows separation into a separate kernel for each step contribution. Leapfrog and other first
order schemes will fit this category.

Higher Order Schemes: Luckily these are intractable for for most machine-learning models because they would require
introducing dependence of the kernel on input data or require drastic changes. It is an open but intractable problem to derive
kernels corresponding to higher order methods.

A.6. Variance Estimation

In order to estimate variance we treat our derived kernel function K as the covariance function for Gaussian process
regression. Given training data X and test data X 0, we can use the Kriging to write the mean prediction and it variance from
true µ(x) as

µ̄(X 0) = [K(X 0
, X)] [K(X,X)]�1 [Y ] (91)

Var(µ̄(X 0)� µ(X 0)) = [K(X 0
, X

0)]� [K(X 0
, X)] [K(X,X)]�1 [K(X,X

0)] (92)
(93)

Where

[K(A,B)] =

2

64
K(A1, B1) K(A1, B2) · · ·
K(A2, B1) K(A2, B2)

...
. . .

3

75 (94)

To finish our Gaussian estimation, we note that each K(Ai, Bi) will me a k by k matrix where k is the number of classes.
We take tr(K(Ai, Bi) to determine total variance for each prediction.
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