
A Summary of sections in the Appendix

In the following sections, further details and derivations are provided to elaborate the details of the
CoPE. Specifically, in sec. B the decomposition and related details on the method are developed.
The extension of our method beyond two-input variables is studied in sec. C. A method frequently
used in the literature for fusing information is concatenation; we analyze how concatenation captures
only additive and not more complex correlations (e.g., multiplicative) in sec. D. The differences
from Π-Net [Chrysos et al., 2020] is explored in sec. E. In sec. F, some recent (conditional) data
generation methods are cast into the polynomial neural network framework and their differences from
the proposed framework are analyzed. The experimental details including the evaluation metrics
and details on the baselines are developed in sec. G. In sec. H, additional experimental results are
included. Lastly, the differences from works that perform diverse generation are explored in sec. I.

B Method derivations

In this section, we expand on the method details, including the scalar output case or the notation.
Specifically, a more detailed notation is determined in sec. B.1; the scalar output case is analyzed
in sec. B.2. In sec. B.3 a second order expansion is assumed to illustrate the connection between
the polynomial expansion and the recursive formula. Sequentially, we derive an alternative model
with different factor sharing. This model, called Nested-CoPE, has a nested factor sharing format
(sec. B.4).

B.1 Notation

Our derivations rely on tensors (i.e., multidimensional equivalent of matrices) and (tensor) products.
We relay below the core notation used in our work, the interested reader can find further information
in the tensor-related literature [Kolda and Bader, 2009, Debals and De Lathauwer, 2017].

Symbols of variables: Tensors/matrices/vectors are symbolized by calligraphic/uppercase/lowercase
boldface letters e.g., W ,W ,w.

Matrix products: The Hadamard product of A,B P RIˆN is defined as A ˚B and is equal to
api,jqbpi,jq for the pi, jq element. The Khatri-Rao product of matricesA P RIˆN andB P RJˆN is
denoted byAdB and yields a matrix of dimensions pIJq ˆN . The Khatri-Rao product for a set of
matrices tArms P RImˆNuMm“1 is abbreviated byAr1s dAr2s d ¨ ¨ ¨ dArMs

.
“
ÄM

m“1Arms.

Tensors: Each element of an M th order tensor W is addressed by M indices, i.e., pWqi1,i2,...,iM
.
“

wi1,i2,...,iM . An M th-order tensor W is defined over the tensor space RI1ˆI2ˆ¨¨¨ˆIM , where Im P Z
for m “ 1, 2, . . . ,M . The mode-m unfolding of a tensor W P RI1ˆI2ˆ¨¨¨ˆIM maps W to a matrix
Wpmq P RImˆĪm with Īm “

śM
k“1
k‰m

Ik such that the tensor element wi1,i2,...,iM is mapped to the

matrix element wim,j where j “ 1`
řM

k“1
k‰m

pik ´ 1qJk with Jk “
śk´1

n“1
n‰m

In. The mode-m vector

product of W with a vector u P RIm , denoted by W ˆm u P RI1ˆI2ˆ¨¨¨ˆIm´1ˆIm`1ˆ¨¨¨ˆIM , results
in a tensor of order M ´ 1:

pW ˆm uqi1,...,im´1,im`1,...,iM “

Im
ÿ

im“1

wi1,i2,...,iMuim . (3)

We denote W ˆ1 u
p1q ˆ2 u

p2q ˆ3 ¨ ¨ ¨ ˆM upMq
.
“W

śm
m“1ˆmu

pmq.

The CP decomposition [Kolda and Bader, 2009] factorizes a tensor into a sum of component rank-one
tensors. The rank-R CP decomposition of an M th-order tensor W is written as:

W .
“ rrUr1s,Ur2s, . . . ,UrMsss “

R
ÿ

r“1

up1qr ˝ up2qr ˝ ¨ ¨ ¨ ˝ upMqr , (4)

16

+

x
τ
=

[

w
[1,1]
τ,1 , w

[1,1]
τ,2 , · · · , w

[1,1]
τ,d

]
zI,1

zII,d

zII,1
.

.

.

.

.

.

zI,d

[

w
[1,2]
τ,1 , w

[1,2]
τ,2 , · · · , w

[1,2]
τ,d

]

+

[

. . . zI,λ . . .

]

+

w
[2,3]
τ,λ,µ zI,µ

.

.

.

.

.

.

[

. . . zII,λ . . .

]

w
[2,1]
τ,λ,µ zII,µ

.

.

.

.

.

.

+

[

. . . zI,λ . . .

]

w
[2,2]
τ,λ,µ zII,µ

.

.

.

.

.

.

Figure 5: Schematic for second order expansion with scalar output xτ P R. The abbreviations
zI,λ, zI,µ are elements of zI with λ, µ P r1, ds. Similarly, zII,λ, zII,µ are elements of zII . The first
two terms (on the right side of the equation) are the first-order correlations; the next two terms are the
second order auto-correlations. The last term expresses the second order cross-correlations.

where ˝ is the vector outer product. The factor matrices

Urms “ ru
pmq
1 ,u

pmq
2 , ¨ ¨ ¨ ,u

pmq
R s P

RImˆR
(M

m“1
collect the vectors from the rank-one components. By considering the mode-1 unfolding

of W , the CP decomposition can be written in matrix form as:

Wp1q
.
“ Ur1s

ˆ 2
ä

m“M

Urms

˙T

(5)

The following lemma is useful in our method:
Lemma 1. For a set of N matrices tArνs P RIνˆKuNν“1 and tBrνs P RIνˆLuNν“1, the following
equality holds:

p

N
ä

ν“1

Arνsq
T ¨ p

N
ä

ν“1

Brνsq “ pA
T
r1s ¨Br1sq ˚ . . . ˚ pA

T
rNs ¨BrNsq (6)

An indicative proof can be found in the Appendix of Chrysos et al. [2019].

B.2 Scalar output

The proposed formulation expresses higher-order interactions of the input variables. To elaborate that,
we develop the single output case below. That is, we focus on an element τ of the output vector, e.g.,
a single pixel. In the next few paragraphs, we consider the case of a scalar output xτ , with τ P r1, os
when the input variables are zI, zII P Kd. To avoid cluttering the notation we only refer to the scalar
output with xτ in the next few paragraphs.

As a reminder, the polynomial of expansion order N P N with output x P Ro has the form:

x “ GpzI, zIIq “

N
ÿ

n“1

n`1
ÿ

ρ“1

ˆ

W rn,ρs
ρ
ź

j“2

ˆjzI

n`1
ź

τ“ρ`1

ˆτzII

˙

` β (7)

We assume a second order expansion (N “ 2) and let τ denote an arbitrary scalar output of x. The
first order correlations can be expressed through the sums

řd
λ“1 w

r1,1s
τ,λ zII,λ and

řd
λ“1 w

r1,2s
τ,λ zI,λ. The

second order correlations include both auto- and cross-correlations. The tensors W r2,1s and W r2,3s

capture the auto-correlations, while the tensor W r2,2s captures the cross-correlations.

A pictorial representation of the correlations are captured in Fig. 5. Collecting all the terms in an
equation, each output is expressed as:

xτ “ βτ `
d
ÿ

λ“1

”

w
r1,1s
τ,λ zII,λ ` w

r1,2s
τ,λ zI,λ `

d
ÿ

µ“1

w
r2,1s
τ,λ,µzII,λzII,µ `

d
ÿ

µ“1

w
r2,3s
τ,λ,µzI,λzI,µ `

d
ÿ

µ“1

w
r2,2s
τ,λ,µzI,λzII,µ

ı

(8)

where βτ P R. Notice that all the correlations of up to second order are captured in (8).

17

B.3 Second order derivation for two-variable input

In all our derivations, the variables associated with the first input zI have an I notation, e.g., Ur1,Is.
Respectively for the second input zII, the notation II is used.

Even though (7) enables any order of expansion, the learnable parameters increase exponentially,
therefore we can use a coupled factorization to reduce the parameters. Next, we derive the factorization
for a second order expansion (i.e., N “ 2) and then provide the recursive relationship that generalizes
it for an arbitrary order.

Second order derivation: For a second order expansion (i.e., N “ 2 in (1)), we factorize each
parameter tensor W rn,ρs. We assume a coupled CP decomposition for each parameter as follows:

• LetW r1,1s
p1q “ CUT

r1,IIs andW r1,2s
p1q “ CUT

r1,Is be the parameters for n “ 1.

• Let W r2,1s
p1q “ CpUr2,IIs d Ur1,IIsq

T and W r2,3s
p1q “ CpUr2,Is d Ur1,Isq

T capture the
second order correlations of a single variable (zII and zI respectively).

• The cross-terms are expressed in W r2,2s
ˆ2 zI ˆ3 zII. The output of the τ element4 is

řd
λ,µ“1 w

r2,2s
τ,λ,µzI,λzII,µ. The product Ŵ

r2,2s
ˆ2zIIˆ3zI also results in the same elementwise

expression. Hence, to allow for symmetric expression, we factorize the termW
r2,2s
p1q as the

sum of the two terms CpUr2,IIs dUr1,IsqT and CpUr2,Is dUr1,IIsqT . For each of the two
terms, we assume that the vector-valued inputs are accordingly multiplied.

The parameters C P Roˆk,Urm,φs P Rdˆk (m “ 1, 2 and φ “ tI, IIu) are learnable. The
aforementioned factorization results in the following equation:

x “ CUT
r1,IIszII `CU

T
r1,IszI `C

´

Ur2,IIs dUr1,IIs

¯T´

zII d zII

¯

`C
´

Ur2,Is dUr1,Is

¯T´

zI d zI

¯

`

C
´

Ur2,Is dUr1,IIs

¯T´

zI d zII

¯

`C
´

Ur2,IIs dUr1,Is

¯T´

zII d zI

¯

` β

(9)

This expansion captures the correlations (up to second order) of the two input variables zI, zII.

To make the proof more complete, we remind the reader that the recursive relationship (i.e., (2) in the
main paper) is:

xn “ xn´1 `

´

UT
rn,IszI `U

T
rn,IIszII

¯

˚ xn´1 (10)

for n “ 2, . . . , N with x1 “ U
T
r1,IszI `U

T
r1,IIszII and x “ CxN ` β.

Claim 1. The equation (9) is a special format of a polynomial that is visualized as in Fig. 1 of the
main paper. Equivalently, prove that (9) follows the recursive relationship of (10).

Proof. We observe that the first two terms of (9) are equal toCx1 (from (10)). By applying Lemma 1
in the terms that have Khatri-Rao product, we obtain:

x “ β `Cx1 `C

"

´

UT
r2,IIszII

¯

˚

´

UT
r1,IIszII

¯

`

´

UT
r2,IszI

¯

˚

´

UT
r1,IszI

¯

`

´

UT
r2,IszI

¯

˚

´

UT
r1,IIszII

¯

`

´

UT
r2,IIszII

¯

˚

´

UT
r1,IszI

¯

*

“

β `Cx1 `C

"

”´

UT
r2,IszI

¯

`

´

UT
r2,IIszII

¯ı

˚ x1

*

“ Cx2 ` β

(11)

The last equation is precisely the one that arises from the recursive relationship from (10).

4An elementwise analysis (with a scalar output) is provided on the supplementary (sec. B.2).

18

To prove the recursive formula for the N th order expansion, a similar pattern as in sec.C of Poly-
GAN [Chrysos et al., 2019] can be followed. Specifically, the difference here is that because of the
two input variables, the auto- and cross-correlation variables should be included. Other than that, the
same factor sharing is followed.

B.4 Nested-CoPE model for two-variable input

The model proposed above (i.e., (10)), relies on a single coupled CP decomposition, however a more
flexible model can factorize each level with a CP decomposition. To effectively do that, we utilize
learnable hyper-parameters brns P Rω for n P r1, N s, which act as scaling factors for each parameter
tensor. Then, a polynomial of expansion order N P N with output x P Ro has the form:

x “ GpzI, zIIq “

N
ÿ

n“1

n`2
ÿ

ρ“2

ˆ

W rn,ρ´1s
ˆ2 brN`1´ns

ρ
ź

j“3

ˆjzI

n`2
ź

τ“ρ`1

ˆτzII

˙

` β (12)

To demonstrate the factorization without cluttering the notation, we assume a second order expansion
in (12).

Second order derivation: The second order expansion, i.e., N “ 2, is derived below. We jointy
factorize all parameters of (12) with a nested decomposition as follows:

• First order parameters : W r1,1s
p1q “ CpAr2,IIs dBr2sq

T andW r1,2s
p1q “ CpAr2,Is dBr2sq

T .

• Let W r2,1s
p1q “ C

"

Ar2,IIs d

„

´

Ar1,IIs d Br1s

¯

Vr2s

*T

and W r2,3s
p1q “ C

"

Ar2,Is d

„

´

Ar1,Is dBr1s

¯

Vr2s

*T

capture the second order correlations of a single variable (zII

and zI respectively).

• The cross-terms are included in W r2,2s
ˆ2 br1s ˆ3 zI ˆ4 zII. The output of the τ element is

expressed as
řω
ν“1

řd
λ,µ“1 w

r2,2s
τ,ν,λ,µbr1s,ωzI,λzII,µ. Similarly, the product Ŵ

r2,2s
ˆ2 br1sˆ3

zII ˆ4 zI has output
řω
ν“1

řd
λ,µ“1 w

r2,2s
τ,ν,µ,λbr1s,ωzI,λzII,µ for the τ element. Notice that the

only change in the two expressions is the permutation of the third and forth modes of the
tensor; the rest of the expression remains the same. Therefore, to account for this symmetry
we factorize the term W r2,2s as the sum of two terms and assume that each term is multiplied

by the respective terms. LetW r2,2s
p1q “ C

"

Ar2,Is d

„

´

Ar1,IIs dBr1s

¯

Vr2s



`Ar2,IIs d

„

´

Ar1,Is dBr1s

¯

Vr2s

*T

.

19

The parameters C P Roˆk,Arn,φs P Rdˆk,Vrns P Rkˆk,Brns P Rωˆk for n “ 1, 2 and φ “
tI, IIu are learnable. Collecting all the terms above and extractingC as a common factor (we ommit
C below to avoid cluttering the notation):

pAr2,IIs dBr2sq
T pzII d br2sq ` pAr2,Is dBr2sq

T pzI d br2sq`
"

Ar2,IIs d

„

´

Ar1,IIs dBr1s

¯

Vr2s

*T

pzII d zII d br1sq`

"

Ar2,Is d

„

´

Ar1,Is dBr1s

¯

Vr2s

*T

pzI d zI d br1sq`

"

Ar2,Is d

„

´

Ar1,IIs dBr1s

¯

Vr2s

*T

pzI d zII d br1sq`

"

Ar2,IIs d

„

´

Ar1,Is dBr1s

¯

Vr2s

*T

pzII d zI d br1sq “

´

AT
r2,IIszII `A

T
r2,IszI

¯

˚

´

BT
r2sbr2s

¯

`

´

AT
r2,IIszII `A

T
r2,IszI

¯

˚

"

V T
r2s

„

´

AT
r1,IIszII `A

T
r1,IszI

¯

˚

´

BT
r1sbr1s

¯

*

(13)

The last equation is precisely a recursive equation that can be expressed with the Fig. 6 or equivalently
the generalized recursive relationship below.

𝑧𝐼

𝑧𝐼𝐼

+

𝐴 1,𝐼𝐼

𝐴 1,𝐼

∗

+

𝐴 2,𝐼𝐼

𝐴 2,𝐼

+ … ∗

+

𝐴 𝑁,𝐼𝐼

𝐴 𝑁,𝐼

𝐶
+

𝛽
𝐺(𝑧𝐼, 𝑧𝐼𝐼)

∼

∼
𝐵𝑀𝑊,…

or

𝑉 2

𝐵[2]𝑏[2]

+

𝑉𝑁

𝐵[𝑁]𝑏[𝑁]

Figure 6: Abstract schematic for N th order approximation of x “ GpzI , zIIq with Nested-CoPE
model. The inputs zI , zII are symmetric in our formulation. We denote with zI a sample from the
noise distribution (e.g., Gaussian), while zII symbolizes a sample from a conditional input (e.g., a
class label or a low-resolution image).

Recursive relationship: The recursive formula for the Nested-CoPE model with arbitrary expansion
order N P N is the following:

xn “
´

AT
rn,IszI `A

T
rn,IIszII

¯

˚

´

V T
rnsxn´1 `B

T
rnsbrns

¯

(14)

where n P r2, N s and x1 “

´

AT
r1,IszI ` AT

r1,IIszII

¯

˚

´

BT
r1sbr1s

¯

. The parameters C P

Roˆk,Arn,φs P Rdˆk,Vrns P Rkˆk,Brns P Rωˆk for φ “ tI, IIu are learnable. Then, the
output x “ CxN ` β.

The Nested-CoPE model manifests an alternative network that relies on slightly modified assumptions
on the decomposition. Thus, changing the underlying assumptions of the decomposition can modify
the resulting network. This can be an important tool for domain-specific applications, e.g., when the
domain-knowledge should be inserted in the last layers.

20

C Beyond two variables

Frequently, more than one conditional inputs are required [Yu et al., 2018b, Xu et al., 2017, Maximov
et al., 2020]. In such tasks, the aforementioned framework can be generalized to more than two input
variables. We demonstrate how this is possible with three variables; then it can trivially extended to
an arbitrary number of input variables.

Let zI, zII, zIII P Kd denote the three input variables. We aim to learn a function that captures the
higher-order interactions of the input variables. The polynomial of expansion order N P N with
output x P Ro has the form:

x “ GpzI, zII, zIIIq “

N
ÿ

n“1

n`1
ÿ

ρ“1

n`1
ÿ

δ“ρ

ˆ

W rn,ρ,δs
ρ
ź

j“2

ˆjzI

δ
ź

τ“ρ`1

ˆτzII

n`1
ź

ζ“δ`1

ˆζzIII

˙

` β (15)

where β P Ro and W rn,ρ,δs
P Roˆ

śn
m“1 ˆmd (for n P r1, N s and ρ, δ P r1, n` 1s) are the learnable

parameters. As in the two-variable input, the unknown parameters increase exponentially. To that end,
we utilize a joint factorization with factor sharing. The recursive relationship of such a factorization
is:

xn “ xn´1 `

´

UT
rn,IszI `U

T
rn,IIszII `U

T
rn,IIIszIII

¯

˚ xn´1 (16)

for n “ 2, . . . , N with x1 “ U
T
r1,IszI `U

T
r1,IIszII `U

T
r1,IIIszIII and x “ CxN ` β.

Notice that the pattern (for each order) is similar to the two-variable input: a) a different embedding
is found for each input variable, b) the embeddings are added together, c) the result is multiplied
elementwise with the representation of the previous order.

D Concatenation of inputs

A popular method used for conditional generation is to concatenate the conditional input with the
noise labels. However, as we showcase below, concatenation has two significant drawbacks when
compared to our framework. To explain those, we will define a concatenation model.

Let zI P Kd11 , zII P Kd22 where K1,K2 can be a subset of real or natural numbers. The output

of a concatenation layer is x “ P T
”

zI; zII

ıT

where the symbol ‘;’ denotes the concatenation

and P P Rpd1`d2qˆo is an affine transformation on the concatenated vector. The jth output is
xj “

řd1
τ“1 pτ,jzI,τ `

řd2
τ“1 pτ`d1,jzII,τ .

Therefore, the two differences from the concatenation case are:

• If the input variables are concatenated together we obtain an additive format, not a multi-
plicative that can capture cross-term correlations. That is, the multiplicative format does
allow achieving higher-order auto- and cross- term correlations.

• The concatenation changes the dimensionality of the embedding space. Specifically, the
input space has dimensionality d1 ` d2. That has a significant toll on the size of the filters
(i.e., it increases the learnable parameters), while still having an additive impact. On the
contrary, our framework does not change the dimensionality of the embedding spaces.

E In-depth differences from Π-Net

In the next few paragraphs, we conduct an in-depth analysis of the differences between Π-Net and
CoPE. The analysis assumes knowledge of the proposed model, i.e., (2).

Chrysos et al. [2020] introduce Π-Net as a polynomial expansion of a single input variable. Their
goal is to model functions x “ Gpzq as high-order polynomial expansions of z. Their focus is
towards using a single-input variable z, which can be noise in case of image generation or an image

21

in discriminative experiments. The authors express the StyleGAN architecture [Karras et al., 2019]
as a polynomial expansion, while they advocate that the impressive results can be attributed to the
polynomial expansion.

To facilitate the in-depth analysis, the recursive relationship that corresponds to (2) is provided below.
An N th order expansion in Π-Net is expressed as:

xn “
´

ΛT
rnsz

¯

˚ xn´1 ` xn´1 (17)

for n “ 2, . . . , N with x1 “ ΛT
r1sz and x “ ΓxN ` β. The parameters Λ,Γ are learnable.

In this work, we focus on conditional data generation, i.e., there are multiple input variables available
as auxiliary information. The trivial application of Π-Net would be to concatenate all the M input
variables zI, zII, zIII, The input variable z becomes z “

”

zI; zII; zIII; . . .
ı

, where the symbol
‘;’ denotes the concatenation. Then, the polynomial expansion of Π-Net can be learned on the
concatenated z. However, there are four significant reasons that we believe that this is not as flexible
as the proposed CoPE.

When we refer to Π-Net below, we refer to the model with concatenated input. In addition, let
zI P Kd11 , zII P Kd22 denote the input variables where K1,K2 can be a subset of real or natural
numbers.

Parameter sharing: CoPE allows additional flexibility in the structure of the architecture, since
CoPE utilizes a different projection layer for each input variable. We utilize this flexibility to share
the parameters of the conditional input variable; as we detail in (19), we set Urn,IIs “ Ur1,IIs on
(2). If we want to perform a similar sharing in Π-Net, the formulation equivalent to (17) would
be pλrnsqi “ pλr1sqi for i “ d1, . . . , d1 ` d2. However, sharing only part of the matrix might be
challenging. Additionally, when Λ is a convolution, the sharing pattern is not straightforward to be
computed. Therefore, CoPE enables additional flexibility to the model, which is hard to be included
in Π-Net.

Inductive bias: The inductive bias is crucial in machine learning [Zhao et al., 2018], however
concatenating the variables restricts the flexibility of the model (i.e. Π-Net). To illustrate that, let us
use the super-resolution experiments as an example. The input variable zI is the noise vector and zII

is the (vectorized) low-resolution image. If we concatenate the two variables, then we should use
a fully-connected (dense) layer, which does not model well the spatial correlations. Instead, with
CoPE, we use a fully-connected layer for the noise vector and a convolution for zII (low-resolution
image). The convolution reduces the number of parameters and captures the spatial correlations in
the image. Thus, by concatenating the variables, we reduce the flexibility of the model.

Dimensionality of the inputs: The dimensionality of the inputs might vary orders of magnitude,
which might create an imbalance during learning. For instance, in class-conditional generation con-
catenating the one-hot labels in the input does not scale well when there are hundreds of classes [Odena
et al., 2017]. We observe a similar phenomenon in class-conditional generation: in Cars196 (with
196 classes) the performance of Π-Net deteriorates considerably when compared to its (relative)
performance in CIFAR10 (with 10 classes). On the contrary, CoPE does not fuse the elements of the
input variables directly, but it projects them into a subspace appropriate for adding them.

Order of expansion with respect to each variable: Frequently, the two inputs do not require the
same order of expansion. Without loss of generality, assume that we need correlations up to NI and
NII order (with NI ă NII) from zI and zII respectively. CoPE includes a different transformation
for each variable, i.e., Urn,Is for zI and Urn,IIs for zII. Then, we can set Urn,Is “ 0 for n ą NI . On
the contrary, the concatenation of inputs (in Π-Net) constrains the expansion to have the same order
with respect to each variable.

All in all, we can use concatenation to fuse variables and use Π-Net, however an inherently multivari-
ate model is more flexible and can better encode the types of inductive bias required for conditional
data generation.

22

F Differences from other networks cast as polynomial neural networks

A number of networks with impressive results have emerged in (conditional) data generation the
last few years. Three such networks that are particularly interesting in our context are Karras et al.
[2019], Park et al. [2019], Chen et al. [2019]. We analyze below each method and how it relates to
polynomial expansions:

• Karras et al. [2019] propose an Adaptive instance normalization (AdaIN) method for
unsupervised image generation. An AdaIN layer expresses a second-order interaction5:
h “ pΛTwq ˚ npcphinqq, where n is a normalization, c the convolution operator and w is
the transformed noisew “MLP pzIq (mapping network). The parameters Λ are learnable,
while hin is the input to the AdaIN. Stacking AdaIN layers results in a polynomial expansion
with a single variable.

• Chen et al. [2019] propose a normalization method, called sBN, to stabilize the GAN
training. The method performs a ‘self-modulation’ with respect to the noise variable and
optionally the conditional variable in the class-conditional generation setting. Henceforth,
we focus on the class-conditional setting that is closer to our work. sBN injects the network
layers with a multiplicative interaction of the input variables. Specifically, sBN projects the
conditional variable into the space of the variable zI through an embedding function. Then,
the interaction of the two vector-like variables is passed through a fully-connected layer
(and a ReLU activation function); the result is injected into the network through the batch
normalization parameters. If we cast sBN as a polynomial expansion, it expresses a single
polynomial expansion with respect to the input noise and the input conditional variable6.

• Park et al. [2019] introduce a spatially-adaptive normalization, i.e., SPADE, to improve
semantic image synthesis. Their model, referred to as SPADE in the remainder of this work,
assumes a semantic layout as a conditional input that facilitates the image generation. We
analyze in sec. F.1 how to obtain the formulation of their spatially-adaptive normalization.
If we cast SPADE as a polynomial expansion, it expresses a polynomial expansion with
respect to the conditional variable.

The aforementioned works propose or modify the batch normalization layer to improve the per-
formance or stabilize the training, while in our work we propose the multivariate polynomial as a
general function approximation technique for conditional data generation. Nevertheless, given the
interpretation of the previous works in the perspective of polynomials, we still can express them
as special cases of MVP. Methodologically, there are two significant limitations that none of the
aforementioned works tackle:

• The aforementioned architectures focus on no or one conditional variable. On the contrary,
CoPE naturally extends to arbitrarily many conditional variables.

• Even though the aforementioned three architectures use (implicitly) a polynomial expansion,
a significant factor is the order of the expansion. In our work, the product of polynomi-
als enables capturing higher-order correlations without increasing the amount of layers
substantially (sec. 3.2).

In addition to the aforementioned methodological differences, our work is the only polynomial
expansion that conducts experiments on a variety of conditional data generation tasks. Thus, we both
demonstrate methodologically and verify experimentally that CoPE can be used for a wide range of
conditional data generation tasks.

F.1 In-depth differences from SPADE

In the next few paragraphs, we conduct an in-depth analysis of the differences between SPADE and
CoPE.

5The formulation is derived from the public implementation of the authors.
6In CoPE, we do not learn a single embedding function for the conditional variable. In addition, we do not

project the (transformed) conditional variable to the space of the noise-variable. Both of these can be achieved
by making simplifying assumptions on the factor matrices of CoPE.

23

Park et al. [2019] introduce a spatially-adaptive normalization, i.e., SPADE, to improve semantic
image synthesis. Their model, referred to as SPADE in the remainder of this work, assumes a
semantic layout as a conditional input that facilitates the image generation.

The nth model block applies a normalization on the representation xn´1 of the previous layer and
then it performs an elementwise multiplication with a transformed semantic layout. The transformed
semantic layout can be denoted asAT

rn,IIszII where zII denotes the conditional input to the generator.
The output of this elementwise multiplication is then propagated to the next model block that performs
the same operations. Stacking N such blocks results in an N th order polynomial expansion which is
expressed as:

xn “
´

AT
rn,IIszII

¯

˚

´

V T
rnsxn´1 `B

T
rnsbrns

¯

(18)

where n P r2, N s and x1 “ AT
r1,IszI. The parameters C P Roˆk,Arn,φs P Rdˆk,Vrns P

Rkˆk,Brns P Rωˆk for φ “ tI, IIu are learnable. Then, the output x “ CxN ` β.

SPADE as expressed in (18) resembles one of the proposed models of CoPE (specifically (14)). In
particular, it expresses a polynomial with respect to the conditional variable. The parametersArn,Is
are set as zero, which means that there are no higher-order correlations with respect to the input
variable zI. Therefore, our work bears the following differences from Park et al. [2019]:

• SPADE proposes a normalization scheme that is only applied to semantic image generation.
On the contrary, our proposed CoPE can be applied to any conditional data generation task,
e.g., class-conditional generation or image-to-image translation.

• SPADE is a special case of CoPE. In particular, by setting i)Ar1,IIs equal to zero, ii)Arn,Is
in (14) equal to zero, we obtain SPADE. In addition, CoPE allows different assumptions on
the decompositions which lead to an alternative structure, such as (2).

• SPADE proposes a polynomial expansion with respect to a single variable. On the other
hand, our model can extend to an arbitrary number of input variables to account for auxiliary
labels, e.g., (16).

• Even though SPADE models higher-order correlations of the conditional variable, it still
does not leverage the higher-order correlations of the representations (e.g., as in the product
of polynomials) and hence without activation functions it might not work as well as the
two-variable expansion.

Park et al. [2019] exhibit impressive generation results with large-scale computing (i.e., they report
results using NVIDIA DGX with 8 V100 GPUs). Our goal is not to compete in computationally
heavy, large-scale experiments, but rather to illustrate the benefits of the generic formulation of CoPE.

SPADE is an important baseline for our work. In particular, we augment SPADE in wo ways: a) by
extending it to accept both continuous and discrete variables in zII and b) by adding polynomial terms
with respect to the input variable zI. The latter model is referred to as SPADE-CoPE (details on the
next section).

G Experimental details

Metrics: The two most popular metrics [Lucic et al., 2018, Creswell et al., 2018] for evaluation of
the synthesized images are the Inception Score (IS) [Salimans et al., 2016] and the Frechet Inception
Distance (FID) [Heusel et al., 2017]. The metrics utilize the pretrained Inception network [Szegedy
et al., 2015] to extract representations of the synthesized images. FID assumes that the representations
extracted follow a Gaussian distribution and matches the statistics (i.e., mean and variance) of the
representations between real and synthesized samples. Alternative evaluation metrics have been
reported as inaccurate, e.g., in Theis et al. [2016], thus we use the IS and FID. Following the
standard practice of the literature, the IS is computed by synthesizing 5, 000 samples, while the FID
is computed using 10, 000 samples.

The IS is used exclusively for images of natural scenes as a metric. The reasoning behind that is that
the Inception network has been trained on images of natural scenes. On the contrary, the FID metric

24

relies on the first and second-order moments of the representations, which are considered more robust
to different types of images. Hence, we only report IS for the CIFAR10 related experiments, while
for the rest the FID is reported.

Dataset details: There are eight datasets used in this work:

• Large-scale CelebFaces Attributes (or CelebA for short) [Liu et al., 2015] is a large-scale
face attributes dataset with 202, 000 celebrity images. We use 160, 000 images for training
our method.

• Cars196 [Krause et al., 2013] is a dataset that includes different models of cars in different
positions and backgrounds. Cars196 has 16, 000 images, while the images have substantially
more variation than CelebA faces.

• CIFAR10 [Krizhevsky et al., 2014] contains 60, 000 images of natural scenes. Each image is
of resolution 32ˆ 32ˆ 3 and is classified in one of the 10 classes. CIFAR10 is frequently
used as a benchmark for image generation.

• The Street View House Numbers dataset (or SVHN for short) [Netzer et al., 2011] has
100, 000 images of digits (73, 257 of which for training). SVHN includes color house-
number images which are classified in 10 classes; each class corresponds to a digit 0 to 9.
SVHN images are diverse (e.g., with respect to background, scale).

• MNIST [LeCun et al., 1998] consists of images with handwritten digits. Each images depicts
a single digit (annotated from 0 to 9) in a 28ˆ 28 resolution. The dataset includes 60, 000
images for training.

• Shoes [Yu and Grauman, 2014, Xie and Tu, 2015] consists of 50, 000 images of shoes,
where the edges of each shoe are extracted [Isola et al., 2017].

• Handbags [Zhu et al., 2016, Xie and Tu, 2015] consists of more than 130, 000 images of
handbag items. The edges have been computed for each image and used as conditional input
to the generator [Isola et al., 2017].

• Anime characters dataset [Jin et al., 2017] consists of anime characters that are generated
based on specific attributes, e.g., hair color. The public version used7 contains annotations
on the hair color and the eye color. We consider 7 classes on the hair color and 6 classes on
the eye color, with a total of 14, 000 training images.

All the images of CelebA, Cars196, Shoes and Handbags are resized to 64ˆ 64 resolution.

Architectures: The discriminator structure is left the same for each experiment, we focus only on
the generator architecture. All the architectures are based on two different generator schemes, i.e.,
the SNGAN [Miyato and Koyama, 2018] and the polynomial expansion of Chrysos et al. [2020] that
does not include activation functions in the generator.

The variants of the generator of SNGAN are described below:

• SNGAN [Miyato and Koyama, 2018]: The generator consists of a convolution, followed by
three residual blocks. The discriminator is also based on successive residual blocks. The
public implementation of SNGAN with conditional batch normalization (CBN) is used as
the baseline.

• SNGAN-CoPE [proposed]: We convert the resnet-based generator of SNGAN to an CoPE
model. To obtain CoPE, the SNGAN is modified in two ways: a) the Conditional Batch
Normalization (CBN) is converted into batch normalization [Ioffe and Szegedy, 2015], b)
the injections of the two embeddings (from the inputs) are added after each residual block,
i.e. the formula of (2). In other words, the generator is converted to a product of two-variable
polynomials.

• SNGAN-CONC: Based on SNGAN-CoPE, we replace each Hadamard product with a
concatenation. This implements the variant mentioned in sec. D.

7The version is downloaded following the instructions of https://github.com/bchao1/
Anime-Generation.

25

https://github.com/bchao1/Anime-Generation
https://github.com/bchao1/Anime-Generation

• SNGAN-SPADE [Park et al., 2019]: As described in sec. F.1, SPADE is a polynomial
with respect to the conditional variable zII. The generator of SNGAN-CoPE is modified to
perform the Hadamard product with respect to the conditional variable every time.

The variants of the generator of Π-Net are described below:

• Π-Net [Chrysos et al., 2020]: The generator is based on a product of polynomials. The
first polynomials use fully-connected connections, while the next few polynomials use
cross-correlations. The discriminator is based on the residual blocks of SNGAN. We stress
out that the generator does not include any activation functions apart from a hyperbolic
tangent in the output space for normalization. The authors advocate that this exhibits the
expressivity of the designed model.

• Π-Net-SICONC: The generator structure is based on Π-Net with two modifications: a) the
Conditional Batch Normalization is converted into batch normalization [Ioffe and Szegedy,
2015], b) the second-input is concatenated with the first (i.e., the noise) in the input of the
generator. Thus, this is a single variable polynomial, i.e., a Π-Net, where the second-input is
vectorized and concatenated with the first. This baseline implements the Π-Net described in
sec. E.

• CoPE [proposed]: The generator of Π-Net is converted to an CoPE model with two modifi-
cations: a) the Conditional Batch Normalization is converted into batch normalization [Ioffe
and Szegedy, 2015], b) instead of having a Hadamard product with a single variable as in
Π-Net, the formula with the two-variable input (e.g., (2)) is followed.

• GAN-CONC: Based on CoPE, each Hadamard product is replaced by a concatenation. This
implements the variant mentioned in sec. D.

• GAN-ADD: Based on CoPE, each Hadamard product is replaced by an addition. This
modifies (14) to xn “

´

AT
rn,IszI `A

T
rn,IIszII

¯

`

´

V T
rnsxn´1 `B

T
rnsbrns

¯

.

• SPADE [Park et al., 2019]: As described in sec. F.1, SPADE defines a polynomial with
respect to the conditional variable zII. The generator of Π-Net is modified to perform the
Hadamard product with respect to the conditional variable every time.

• SPADE-CoPE [proposed]: This is a variant we develop to bridge the gap between SPADE
and the proposed CoPE. Specifically, we augment the aforementioned SPADE twofold:
a) the dense layers in the input space are converted into a polynomial with respect to the
variable zI and b) we also convert the polynomial in the output (i.e., the rightmost polynomial
in the Fig. 7 schematics) to a polynomial with respect to the variable zI. This model captures
higher-order correlations of the variable zI that SPADE did not not originally include. This
model still includes single variable polynomials, however the input in each polynomial
varies and is not only the conditional variable.

We should note that StyleGAN is a special case of Π-Net as demonstrated by Chrysos et al. [2020],
and converting it into a products of polynomials formulation improves its performance. Hence,
we use directly the Π-Net. The two baselines GAN-CONC and GAN-ADD capture only additive
correlations, hence they cannot effectively model complex distributions without activation functions.
Nevertheless, they are added as a reference point to emphasize the benefits of higher-order polynomial
expansions.

An abstract schematic of the generators that are in the form of products of polynomials is depicted in
Fig. 7. Notice that the compared methods from the literature use polynomials of a single variable,
while we propose a polynomial with an arbitrary number of inputs (e.g., two-input shown in the
schematic).

Implementation details of CoPE: Throughout this work, we reserve the symbol zII for the condi-
tional input (e.g., a class label). In each polynomial, we reduce further the parameters by using the
same embedding for the conditional variables. That is expressed as:

Urn,IIs “ Ur1,IIs (19)

for n “ 2, . . . , N . Equivalently, that would beArn,IIs “ Ar1,IIs in (14). Additionally, Nested-CoPE
performed better in our preliminary experiments, thus we use (14) to design each polynomial. Given

26

c

PolyD PolyC-in PolyU PolyC-out x𝑧𝐼∼

1-var 1-var 1-var 1-var
(a) Π-Net [Chrysos et al., 2020]

c

𝑧𝐼∼

𝑧𝐼𝐼∼
𝐵𝑀𝑊,…

or

PolyD PolyC-in PolyU PolyC-out x

1-var 1-var 1-var 1-var
(b) Π-Net-SICONC (baseline)

c

𝑧𝐼∼

𝑧𝐼𝐼∼
𝐵𝑀𝑊,…

or

Dense PolyC-in PolyU PolyC-out x

1-var 1-var 1-var
(c) SPADE [Park et al., 2019]

c

𝑧𝐼∼

𝑧𝐼𝐼∼
𝐵𝑀𝑊,…

or

PolyD PolyC-in PolyU PolyC-out x

2-var 2-var 2-var 2-var
(d) CoPE (proposed)

Figure 7: Abstract schematic of the different compared generators. All the generators are products
of polynomials. Each colored box represents a different type of polynomial, i.e., the green box
symbolizes polynomial(s) with dense layers, the blue box denotes convolutional or cross-correlation
layers. The red box includes the up-sampling layers. (a) Π-Net implements a single-variable
polynomial for modeling functions x “ Gpzq. Π-Net enables class-conditional generation by using
conditional batch normalization (CBN). (b) An alternative to CBN is to concatenate the conditional
variable in the input, as in Π-Net-SICONC. This also enables the non-discrete conditional variables
(e.g., low-resolution images) to be concatenated. (c) SPADE implements a single-variable polynomial
expansion with respect to the conditional variable zII . This is substantially different from the
polynomial with multiple-input variables, i.e., CoPE. Two additional differences are that (i) SPADE is
motivated as a spatially-adaptive method (i.e., for continuous conditional variables), while CoPE can
be used for diverse types of conditional variables, (ii) there is no polynomial in the dense layers in the
SPADE. However, as illustrated in Π-Net converting the dense layers into a higher-order polynomial
can further boost the performance. (d) The proposed generator structure.

the aforementioned sharing, the N th order expansion is described by:

xn “
´

AT
rn,IszI `A

T
r1,IIszII

¯

˚

´

V T
rnsxn´1 `B

T
rnsbrns

¯

(20)

for n “ 2, . . . , N . Lastly, the factorAr1,IIs is a convolutional layer when the conditional variable is
an image, while it is a fully-connected layer otherwise.

Order of each polynomial in CoPE: : Our experimental analysis demonstrates that there is not a
single order of the polynomial expansion that works in all cases. The different polynomial expansions
used (cf. Fig. 7) utilize different orders of expansion. The first set of polynomials with fully-connected

27

(a) Super-resolution 8ˆ (b) Super-resolution 8ˆ (c) Super-resolution 16ˆ

Figure 8: Synthesized images for super-resolution by (a), (b) 8ˆ, (c) 16ˆ. The first row depicts the
conditional input (i.e., low-resolution image). The rows 2-6 depict outputs of the CoPE when a noise
vector is sampled per row. Notice how the noise changes (a) the smile or the pose of the head, (b) the
color, car type or even the background, (c) the position of the car.

layers typically includes low-order polynomials (i.e., 1st ´ 3rd order), while the main polynomial
includes 6th ´ 9th degree polynomial, and the output polynomial is also 1st ´ 3rd order polynomial.

H Additional experiments

Additional experiments and visualizations are provided in this section. Additional visualizations for
class-conditional generation are provided in sec. H.1. An additional experiment with class-conditional
generation with SVHN digits is performed in sec. H.2. An experiment that learns the translation of
MNIST to SVHN digits is conducted in sec. H.3. To explore further the image-to-image translation,
two additional experiments are conducted in sec. H.4. An attribute-guided generation is performed in
sec. H.5 to illustrate the benefit of our framework with respect to multiple, discrete conditional inputs.
This is further extended in sec. H.6, where an experiment with mixed conditional input is conducted.
Finally, an additional diversity-inducing regularization term is used to assess whether it can further
boost the diversity the synthesized images in sec. H.7.

H.1 Additional visualizations in class-conditional generation

In Fig. 10 the qualitative results of the compared methods in class-conditional generation on CIFAR10
are shared. Both the generator of SNGAN and ours have activation functions in this experiment.

In Fig. 11 samples from the baseline Π-Net [Chrysos et al., 2020] and our method are depicted for
the class-conditional generation on CIFAR10. The images have a substantial difference. Similarly,
in Fig. 12 a visual comparison between Π-Net and CoPE is exhibited in Cars196 dataset. To our
knowledge, no framework in the past has demonstrated such expressivity; CoPE synthesizes images
that approximate the quality of synthesized images from networks with activation functions.

In Fig. 13, an inter-class interpolation of various compared methods in CIFAR10 are visualized. The
illustrations of the intermediate images in SNGAN-CONC and SNGAN-ADD are either blurry or
not realistic. On the contrary, in SPADE and CoPE the higher-order polynomial expansion results in
more realistic intermediate images. Nevertheless, CoPE results in sharper shapes and images even in
the intermediate results when compared to SPADE.

H.2 Class-conditional generation on house digits

An experiment on class-conditional generation with SVHN is conducted below. SVHN images
include (substantial) blur or other distortions, which insert noise in the distribution to be learned. In
addition, some images contain contain a central digit (i.e., based on which the class is assigned), and

28

(a) Female+Neutral (b) Female+Smile (Unseen)

(c) Male+Neutral (d) Male+Smile
Figure 9: Additional synthesized images for CoPE-VAE. The setup of sec. 4.2 is used to provide the
combinations, where the Woman+Smile is the combination not included in the training set. Notice
that the proposed CoPE-VAE can synthesize images from all four combinations.

29

(a) Ground-truth samples (b) SNGAN [Miyato et al., 2018] (c) CoPE
Figure 10: Qualitative results on CIFAR10. Each row depicts random samples from a single class.

(a) Π-Net [Chrysos et al., 2020] (b) CoPE
Figure 11: Qualitative results on CIFAR10 when the generator does not include activation functions
between the layers. Each row depicts random samples from a single class; the same class is depicted
in each pair of images. For instance, the last row corresponds to boats.

partial visibility of other digits. Therefore, the generation of digits of SVHN is challenging for a
generator without activation functions between the layers.

Our framework, e.g., (14), does not include any activation functions. To verify the expressivity of
our framework, we maintain the same setting for this experiment. Particularly, the generator does
not have activation functions between the layers; there is only a hyperbolic tangent in the output
space for normalization. The generator receives a noise sample and a class as input, i.e., it is a
class-conditional polynomial generator.

The results in Fig. 14(b) illustrate that despite the noise, CoPE learns the distribution. As mentioned
in the main paper, our formulation enables both inter-class and intra-class interpolations naturally.
In the inter-class interpolation the noise zI is fixed, while the class zII is interpolated. In Fig. 14(d)
several inter-class interpolations are visualized. The visualization exhibits that our framework is able
to synthesize realistic images even with inter-class interpolations.

H.3 Translation of MNIST digits to SVHN digits

An experiment on image translation from the domain of binary digits to house numbers is conducted
below. The images of MNIST are used as the source domain (i.e., the conditional variable zII), while

30

(a) Π-Net (b) CoPE
Figure 12: Qualitative results on Cars196 when the generator does not include activation functions
between the layers. Each row depicts cherry-picked samples from a single class; the same class is
depicted in each pair of images. The differences between the synthesized images are dramatic.

the images of SVHN are used as the target domain. The correspondence of the source to the target
domain is assumed to be many-to-many, i.e., each MNIST digit can synthesize multiple SVHN
images. No additional loss is used, the setting of continuous conditional input from sec. 4.3 is used.

The images in Fig. 15 illustrate that CoPE can translate MNIST digits into SVHN digits. Additionally,
for each source digit, there is a significant variation in the synthesized images.

H.4 Translation of edges to images

An additional experiment on translation is conducted, where the source domain depicts edges and the
target domain is the output image. Specifically, the tasks of edges-to-handbags (on Handbags dataset)
and edges-to-shoes (on Shoes dataset) have been selected [Isola et al., 2017].

In this experiment, the MVP model of sec. 4.3 is utilized, i.e., a generator without activation functions
between the layers. The training is conducted using only the adversarial loss. Visual results for both
the case of edges-to-handbags and edges-to-shoes are depicted in Fig. 16. The first row depicts the
conditional input zII, i.e., an edge, while the rows 2-6 depict the synthesized images. Note that in
both the case of handbags and shoes there is significant variation in the synthesized images, while
they follow the edges provided as input.

H.5 Multiple conditional inputs in attribute-guided generation

Frequently, more than one type of input conditional inputs are available. Our formulation can be
extended beyond two input variables (sec. C); we experimentally verify this case. The task selected is
attribute-guided generation trained on images of Anime characters. Each image is annotated with
respect to the color of the eyes (6 combinations) and the color of the hair (7 combinations).

Since SPADE only accepts a single conditional variable, we should concatenate the two attributes in
a single variable. We tried simply concatenating the attributes directly, but this did not work well.
Instead, we can use the total number of combinations, which is the product of the individual attribute
combinations, i.e., in our case the total number of combinations is 42. Obviously, this causes ‘few’
images to belong in each unique combination, i.e., there are 340 images on average that belong to
each combination. On the contrary, there are 2380 images on average for each eye color.

SPADE and Π-Net are trained by using the two attributes in a single combination, while in our
case, we consider the multiple conditional variable setting. In each case, only the generator differs

31

(a) SNGAN-CONC (b) SNGAN-ADD

(c) SNGAN-SPADE (d) SNGAN-CoPE
Figure 13: Inter-class linear interpolations across different methods. In inter-class interpolation, the
class labels of the leftmost and rightmost images are one-hot vectors, while the rest are interpolated
in-between; the resulting images are visualized. Many of the intermediate images in SNGAN-CONC
and SNGAN-ADD are either blurry or not realistic. On the contrary, in SPADE and CoPE the
higher-order polynomial expansion results in more realistic intermediate images. Nevertheless, CoPE
results in sharper shapes and images even in the intermediate results when compared to SPADE.

depending on the compared method. In Fig. 17 few indicative images are visualized for each method;
each row depicts a single combination of attributes, i.e., hair and eye color. Notice that SPADE results
in a single image per combination, while in Π-Net-SINCONC there is considerable repetition in each
case. The single image in SPADE can be explained by the lack of higher-order correlations with
respect to the noise variable zI.

In addition to the diversity of the images per combination, an image from every combination is
visualized in Fig. 18. CoPE synthesizes more realistic images than the compared methods of Π-Net-
SINCONC and SPADE.

32

(a) Ground-truth samples (b) CoPE (c) Intra-class interpolation(d) Inter-class interpolation
Figure 14: Synthesized images by CoPE in the class-conditional SVHN: (a) Ground-truth samples,
(b) Random samples where each row depicts the same class, (c) Intra-class linear interpolation from
a source (leftmost image) to the target (rightmost image), (d) inter-class linear interpolation. In
inter-class interpolation, the class labels of the leftmost and rightmost images are one-hot vectors,
while the rest are interpolated in-between; the resulting images are visualized. In all three cases
((b)-(d)), CoPE synthesizes realistic images.

Figure 15: Qualitative results on MNIST-to-SVHN translation. The first row depicts the conditional
input (i.e., a MNIST digit). The rows 2-6 depict outputs of the CoPE when a noise vector is sampled
per row. Notice that for each source digit, there is a significant variation in the synthesized images.

H.6 Multiple conditional inputs in class-conditional super-resolution

Figure 19: Three-
variable input gener-
ative model.

We extend the previous experiment with multiple conditional variables to
the case of class-conditional super-resolution. The first conditional variable
captures the class label, while the second conditional variable captures the
low-resolution image.

We use the experimental details of sec. 4.3 in super-resolution 8ˆ. In Fig. 19,
we visualize how for each low-resolution image the results differ depending
on the randomly sampled class label. The FID in this case is 53.63, which is
similar to the previous two cases. Class-conditional super-resolution (or similar
tasks with multiple conditional inputs) can be of interest to the community and
CoPE results in high-dimensional images with large variance.

H.7 Improve diversity with regularization

As emphasized in sec. I, various methods have been utilized for synthesizing
more diverse images in conditional image generation tasks. A reasonable
question is whether our method can be used in conjunction with such methods, since it already
synthesizes diverse results. Our hypothesis is that when CoPE is used in conjunction with any
diversity-inducing technique, it will further improve the diversity of the synthesized images. To
assess the hypothesis, we conduct an experiment on edges to images that is a popular benchmark in
such diverse generation tasks [Zhu et al., 2017b, Yang et al., 2019].

The plug-n-play regularization term of Yang et al. [2019] is selected and added to the GAN loss
during the training. The objective of the regularization term Lreg is to maximize the following term:

Lreg “ minp
||GpzI, 1, zIIq ´GpzI, 2, zIIq| |1

||zI, 1 ´ zI, 2| |1
, τq (21)

33

(a) edges-to-handbags (b) edges-to-shoes
Figure 16: Qualitative results on edges-to-image translation. The first row depicts the conditional
input (i.e., the edges). The rows 2-6 depict outputs of the CoPE when we vary zI . Notice that for
each edge, there is a significant variation in the synthesized images.

(a) Π-Net-SINCONC (b) SPADE (c) CoPE
Figure 17: Each row depicts a single combination of attributes, i.e., hair and eye color. Please zoom-in
to check the finer details. The method of SPADE synthesizes a single image per combination. Π-Net-
SINCONC synthesizes few images, but not has many repeated elements, while some combinations
result in unrealistic faces, e.g., the 5th or the 7th row. On the contrary, CoPE synthesizes much more
diverse images for every combination.

where τ is a predefined constant, zI, 1, zI, 2 are different noise samples. The motivation behind this
term lies in encouraging the generator to produce outputs that differ when the input noise samples
differ. In our experiments, we follow the implementation of the original paper with τ “ 10.

The regularization loss of (21) is added to the GAN loss; the architecture of the generator remains
similar to sec. H.4. The translation task is edges-to-handbags (on Handbags dataset) and edges-to-
shoes (on Shoes dataset). In Fig. 20 the synthesized images are depicted. The regularization loss
causes more diverse images to be synthesized (i.e., when compared to the visualization of Fig. 16
that was trained using only the adversarial loss). For instance, in both the shoes and the handbags,
new shades of blue are now synthesized, while yellow handbags can now be synthesized.

The empirical results validate the hypothesis that our model can be used in conjunction with diversity
regularization losses in order to improve the results. Nevertheless, the experiment in sec. H.4
indicates that a regularization term is not necessary to synthesize images that do not ignore the noise
as feed-forward generators had previously.

34

(a) Π-Net-SINCONC (b) SPADE (c) CoPE
Figure 18: Each row depicts a single hair color, while each column depicts a single eye color. SPADE
results in some combinations that violate the geometric structure of the face, e.g., 3rd column in
the last row. Similarly, in Π-Net-SINCONC some of the synthesized images are unrealistic, e.g.,
penultimate row. In both SPADE and Π-Net-SINCONC, in some cases the eyes do not have the same
color. CoPE synthesizes images that resemble faces for every combination.

(a) edges-to-handbags (b) edges-to-shoes
Figure 20: Qualitative results on edges-to-image translation with regularization loss for diverse
generation (sec. H.7). The first row depicts the conditional input (i.e., the edges). The rows 2-6
depict outputs of the CoPE when we vary zI . Diverse images are synthesized for each edge. The
regularization loss results in ‘new’ shades of blue to emerge in the synthesized images in both the
shoes and the handbags cases.

H.8 Generation of unseen attribute combinations

In this section, we highlight how the proposed CoPE-VAE compares to the other baselines for
the task of generating unseen attribute combinations. Following the benchmark in [Georgopoulos
et al., 2020] we compare to cVAE [Sohn et al., 2015], VampPrior [Tomczak and Welling, 2017] and
MLC-VAE-CP/T [Georgopoulos et al., 2020]. The results in Figure 4 and Table 6 showcase the
efficacy of our method in recovering the unseen attribute combination of ("smiling", "female"). In
particular, the quantitative comparison in Table 6 shows that our method is on par or outperforms
the baseline methods in both attribute synthesis and attribute transfer. The quantitative results were
obtained using attribute classifiers trained on CelebA for gender and smile.

35

Figure 21: Qualitative comparison on CelebA. The missing combination, i.e., ("Smiling", "Female"),
is in the red rectangle. Results for cVAE, VampPrior, MLC-VAE-CP and MLC-VAE-T are taken
directly from [Georgopoulos et al., 2020].

Attribute synthesis Attribute transfer
Model Acc. Gender (%) Ò Acc. Smile (%) Ò Acc. Gender (%) Ò Acc. Smile (%) Ò
cVAE 18 7.6 23.1 9

cVampPrior 17.1 2.8 44.3 5.8
MLC-VAE-CP 96.4 94 95 90.6
MLC-VAE-T 99.4 93.5 99.4 91.5
CoPE-VAE 99.9 92.6 99.5 92.38

Table 6: Quantitative comparison on CelebA using attribute classifiers. The reported results are only
for the unseen attribute combination, i.e., ("Smiling", "Female"). Results for cVAE, VampPrior,
MLC-VAE-CP and MLC-VAE-T are taken directly from [Georgopoulos et al., 2020].

I Diverse generation techniques and its relationship with CoPE

One challenge that often arises in conditional data generation is that one of the variables gets ignored
by the generator [Isola et al., 2017]. This has been widely acknowledged in the literature, e.g., Zhu
et al. [2017b] advocates that it is hard to utilize a simple architecture, like Isola et al. [2017], with
noise. A similar conclusion is drawn in InfoGAN [Chen et al., 2016] where the authors explicitly
mention that additional losses are required, otherwise the generator is ‘free to ignore’ the additional
variables. To mitigate this, a variety of methods have been developed. We summarize the most
prominent methods from the literature, starting from image-to-image translation methods:

• BicycleGAN [Zhu et al., 2017b] proposes a framework that can synthesize diverse images
in image-to-image translation. The framework contains 2 encoders, 1 decoder and 2
discriminators. This results in multiple loss terms (e.g., eq.9 of the paper). Interestingly, the
authors utilize a separate training scheme for the encoder-decoder and the second encoder
as training together ’hides the information of the latent code without learning meaningful
modes’.

36

• Almahairi et al. [2018] augment the deterministic mapping of CycleGAN [Zhu et al.,
2017a] with a marginal matching loss. The framework learns diverse mappings utilizing the
additional encoders. The framework includes 4 encoders, 2 decoders and 2 discriminators.

• MUNIT [Huang et al., 2018] focuses on diverse generation in unpaired image-to-image
translation. MUNIT demonstrates impressive translation results, while the inverse translation
is also learnt simultaneously. That is, in case of edges-to-shoes, the translation shoes-to-
edges is also learnt during the training. The mapping learnt comes at the cost of multiple
network modules. Particularly, MUNIT includes 2 encoders, 2 decoders, 2 discriminators
for learning. This also results in multiple loss terms (e.g., eq.5 of the paper) along with
additional hyper-parameters and network parameters.

• Drit++ [Lee et al., 2020] extends unpaired image-to-image translation with disentangled
representation learning, while they allow multi-domain image-to-image translations. Drit++
uses 4 encoders, 2 decoders, 2 discriminators for learning. Similarly to the previous methods,
this results in multiple loss terms (e.g., eq.6-7 of the paper) and additional hyper-parameters.

• Choi et al. [2020] introduce a method that supports multiple target domains. The method
includes four modules: a generator, a mapping network, a style encoder and a discriminator.
All modules (apart from the generator) include domain-specific sub-networks in case of mul-
tiple target domains. To ensure diverse generation, Choi et al. [2020] utilize a regularization
loss (i.e., eq. 3 of the paper), while their final objective consists of multiple loss terms.

The aforementioned frameworks contain additional network modules for training, which also results
in additional hyper-parameters in the loss-function and the network architecture. Furthermore, the
frameworks focus exclusively on image-to-image translation and not all conditional generation cases,
e.g., they do not tackle class-conditional or attribute-based generation.

Using regularization terms in the loss function has been an alternative way to achieve diverse
generation. Mao et al. [2019], Yang et al. [2019] propose simple regularization terms that can be
plugged into any architecture to encourage diverse generation. Lee et al. [2019] propose two variants
of a regularization term, with the ‘more stable variant’ requiring additional network modules.

Even though our goal is not to propose a framework for diverse generation, the synthesized images of
CoPE contain variation when the noise is changed. However, more diverse results can be exhibited
through a dedicated diverse generation technique. We emphasize that our method can be used in
conjunction with many of the aforementioned techniques to obtain more diverse examples. We
demonstrate that this is possible in an experiment in sec. H.7.

37

	Introduction
	Related work
	Conditional generative models
	Multiplicative interactions

	Method
	Two input variables
	Model extensions and technical details

	Experiments
	Class-conditional generation
	Polynomial conditioning for generating unseen attribute combinations
	Inverse problems in imaging

	Discussion
	Conclusion
	Summary of sections in the Appendix
	Method derivations
	Notation
	Scalar output
	Second order derivation for two-variable input
	Nested-CoPE model for two-variable input

	Beyond two variables
	Concatenation of inputs
	In-depth differences from -Net
	Differences from other networks cast as polynomial neural networks
	In-depth differences from SPADE

	Experimental details
	Additional experiments
	Additional visualizations in class-conditional generation
	Class-conditional generation on house digits
	Translation of MNIST digits to SVHN digits
	Translation of edges to images
	Multiple conditional inputs in attribute-guided generation
	Multiple conditional inputs in class-conditional super-resolution
	Improve diversity with regularization
	Generation of unseen attribute combinations

	Diverse generation techniques and its relationship with CoPE

