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ABSTRACT

Recent video generation models demonstrate remarkable ability to capture com-
plex physical interactions and scene evolution over time. To leverage their spa-
tiotemporal priors, recent robotics works have adapted video models for policy
learning but introduce complexity by requiring multiple stages of post-training
and new architectural components for action generation. In this work, we in-
troduce Cosmos Policy, a simple approach for adapting a large pretrained video
model (Cosmos-Predict2) into an effective robot policy through a single stage of
post-training and with no architectural modifications, fine-tuning only on the robot
demonstration data collected on the target platform. Cosmos Policy learns to di-
rectly generate robot actions encoded as latent frames within the video model’s
latent diffusion process, harnessing the model’s rich priors and core learning algo-
rithm to capture complex action distributions. Additionally, Cosmos Policy gener-
ates future state images and values (expected total cumulative rewards), which are
similarly encoded as latent frames, enabling test-time planning of action trajecto-
ries with higher likelihood of success. In our evaluations, Cosmos Policy achieves
state-of-the-art performance on the LIBERO simulation benchmark (98.5% aver-
age success) and the highest average success rate in challenging real-world bi-
manual manipulation tasks, outperforming strong diffusion-based policies trained
from scratch, video model-based policies, and state-of-the-art vision-language-
action models fine-tuned on the same robot demonstration dataset. Furthermore,
given policy rollout data, Cosmos Policy can learn from experience to refine its
future state and value predictions and leverage model-based planning to achieve
even higher success rates on challenging tasks.

1 INTRODUCTION

Large pretrained video generation models have shown impressive ability to generate physically plau-
sible and temporally coherent videos (NVIDIA et al., 2025; Wan et al., 2025; Yang et al., 2024; Bao
et al., 2024; Kong et al., 2024; Zheng et al., 2024). Unlike pretrained vision-language models—
which learn semantic concepts from static image-text pairs and have been popularized as robot
policy backbones by recent vision-language-action (VLA) model research ((Brohan et al., 2023;
Kim et al., 2024; Intelligence et al., 2025; Li et al., 2025b))—pretrained video generation models
learn temporal causality, implicit physics, and motion patterns from millions of videos. These spa-
tiotemporal priors hold significant value for robotics applications. In this work, we explore how to
effectively leverage video models for robotic control and how they can incorporate policy rollout
data to refine their world models and enable more effective planning.

Prior works have made significant progress on adapting video models for robotic manipulation,
leveraging both robot action data and “action-less” Internet video data to train generalizable policies
and perform new tasks with small amounts of demonstrations (Liang et al., 2025; Zhong et al., 2025;
Hu et al., 2024; Liao et al., 2025; Unitree, 2025; Feng et al., 2025; Yang et al., 2025; Wang et al.,
2025). However, these works often require training stages (e.g., video fine-tuning followed by action
module training) and introduce new architectural components, such as separate action diffusers or
inverse dynamics models. Other works avoid these complexities by training unified video-action
models (Li et al., 2025a; Zhu et al., 2025), but they do not leverage pretrained video models due to
their custom design, limiting their ability to capitalize on the learned spatiotemporal priors.
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Figure 1: The latent diffusion sequence of Cosmos Policy. We illustrate latent frame injection—the main
mechanism for adapting the pretrained Cosmos-Predict2 into a policy that can predict robot actions, future
states, and values. These additional modalities are inserted directly between latent frames representing images.
The video diffusion model is then tasked to denoise the noised latent frames conditioned on the clean frames.

In this work, we address these limitations with Cosmos Policy: an effective robot policy that is
adapted from a pretrained video model (Cosmos-Predict2 (NVIDIA et al., 2025)) through a single
stage of post-training on robot demonstrations and with no architectural modifications. Our method
directly fine-tunes a video model to simultaneously generate robot actions, future state images, and
future state values (expected total cumulative rewards), which are all encoded as latent frames within
the video model’s diffusion process. By leveraging the video model’s spatiotemporal priors and core
algorithm for learning complex high-dimensional distributions, our method accurately models action
distributions and enables planning via world model and value function predictions. Concretely,
Cosmos Policy can perform best-of-N sampling by generating N action proposals, predicting the
result future state, ranking the proposals based on the future state values, and deploying the highest-
value action. This iterative search process results in trajectories that are more likely to succeed at
the task.

Our main contribution is the Cosmos Policy approach for fine-tuning pretrained video models to in-
corporate different modalities that enable visuomotor control and planning. We evaluate our method
in two modes: first as a direct policy (without planning) and then with model-based planning using
the world model and value function predictions. As a direct policy, Cosmos Policy achieves a new
state of the art in the LIBERO simulation benchmark (98.5% average success rate), outperform-
ing diffusion-based policies trained from scratch, video-based policies (e.g., UVA, Video Policy),
and even fine-tuned VLAs (e.g., π0.5, OpenVLA-OFT, CogVLA, UniVLA). It also achieves the
highest average success rate among state-of-the-art policies in challenging real-world bimanual ma-
nipulation tasks. Moreover, when enhanced with model-based planning using policy rollout data,
we observe further improved task completion rates (averaging an increase of 16 percent). We pro-
vide detailed analysis comparing alternative planning formulations, including a model-free variant,
and demonstrate the relative effectiveness of our model-based approach in challenging real-world
manipulation tasks.

2 RELATED WORK

Video-based robot policies. Recent works have made great strides in leveraging video models for
manipulation. Some methods first fine-tune video models on robot data and then train separate action
modules to predict robot actions from generated video frames (Liang et al., 2025; Zhong et al., 2025;
Hu et al., 2024; Liao et al., 2025; Unitree, 2025; Feng et al., 2025; Yang et al., 2025; Wang et al.,
2025). Other works train unified video-action models that jointly predict future frames and actions
(Li et al., 2025a; Zhu et al., 2025), but these approaches do not leverage pretrained video models
and thus do not benefit from their spatiotemporal priors. In contrast to these works, we propose a
single-stage fine-tuning approach that directly adapts pretrained video models to generate actions
(as well as other modalities such as robot proprioceptive state and state values) within their native
latent diffusion process.
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Vision-language-action models. State-of-the-art robotic manipulation policies increasingly lever-
age large pretrained backbones. Vision-language-action (VLA) models such as RT-2 (Brohan et al.,
2023), OpenVLA (Kim et al., 2024), π0.5 (Intelligence et al., 2025), UniVLA (Bu et al., 2025),
and CogVLA (Li et al., 2025b) fine-tune vision-language models on large-scale robotic imitation
data, achieving strong performance across diverse manipulation tasks. While these methods exhibit
strong generalization to various semantic concepts unseen in robotic interaction data, they leverage
pretrained models that have mostly been trained on static image-text pairs rather than videos. In con-
trast to these VLAs, we leverage a pretrained video model that has learned spatiotemporal dynamics
and implicit physics from predicting future frames for Internet-scale datasets. We hypothesize that
this different type of pretrained backbone can serve as a strong foundation for low-level control
policies.

World models and value functions. World models have been used in various ways in robotics
and reinforcement learning, from classical model-predictive control to modern neural approaches.
Influential works such as Dyna (Sutton, 1991), MBPO (Janner et al., 2019), TD-MPC (Hansen et al.,
2022; 2023), and the Dreamer family of works (Hafner et al., 2019; 2020; 2023) demonstrate the
benefits of integrating planning with learning, using learned dynamics models to improve decision
making in various control tasks. Recent works have explored different paradigms: FLARE (Zheng
et al., 2025) adds learnable future tokens to diffusion transformer sequences to predict compact
representations of future state, SAILOR (Jain et al., 2025) uses separate world and reward models
with MPPI planning to iteratively search for better actions and refine the base policy, and Latent
Policy Steering (Wang et al., 2025) pretrains world models using optical flow as an embodiment-
agnostic action representation and subsequently trains a separate value function to steer the policy
towards states with higher rewards. In contrast to these prior works that rely on separate modules for
the policy, world model, and value function and typically train from models from scratch, we use a
single unified architecture that serves simultaneously as the policy, world model, and value function
and initialize from a pretrained video model.

3 PRELIMINARIES

Cosmos video model. The pretrained video model that serves as the initialization for Cosmos Policy
is Cosmos-Predict2-2B-Video2World (NVIDIA et al., 2025), a latent video diffusion model that
receives a starting image and textual description as input and predicts subsequent frames to create a
short video. The model operates over continuous tokens encoded by the Wan2.1 spatiotemporal VAE
tokenizer (Wan et al., 2025) and is trained using the EDM denoising score matching formulation
(Karras et al., 2022). The core training objective for the denoiser network Dθ at noise level σ
is: L(Dθ, σ) = Ex0,c,n

[
∥Dθ(x0 + n;σ, c)− x0∥22

]
, where x0 is a clean VAE-encoded image

sequence, c represents the textual description encoded as T5-XXL embeddings (Raffel et al., 2020),
n ∼ N (0, σ2I) is i.i.d. Gaussian noise used to corrupt x0, and Dθ is a diffusion transformer (Peebles
& Xie, 2023) that learns to recover the clean sample given the corrupted one. Dθ conditions on c via
cross-attention and on σ via adaptive layer normalization (Perez et al., 2018; Peebles & Xie, 2023).
The Wan2.1 tokenizer compresses a video sequence of size (1 + T ) × H × W × 3 into a latent
sequence of size (1 + T ′) × H ′ × W ′ × 16, where T ′ = T

4 , H ′ = H
8 , W ′ = W

8 ; these resulting
latent frames compose x0 above. The first frame undergoes no temporal compression to allow for
conditioning on a single input image. During training, a conditioning mask is used to ensure that the
first latent frame corresponding to the input image remains clean (without noise) while subsequent
frames are corrupted with noise.

MDP formulation and imitation learning. We frame robotic manipulation tasks as finite-horizon
Markov decision processes (MDPs) defined by the tuple ⟨S,A, T,R,H⟩, where S is a set of states,
A is a set of actions, T : S × A → Π(S) is the state transition function, R : S × A → R
is the reward function, and H ∈ N is the time horizon, with time steps t ∈ {1, 2, . . . , H}. We
train a policy π : S → Π(A) to maximize rewards, using sparse rewards where R(st, at) = 0
for t < H and terminal rewards R(sH , aH) ∈ [0, 1]. Note that in this work, our ”observations”
represent the “state”, so we use the terms interchangeably. We train policies via imitation learning
on expert demonstrations containing observation-action pairs. Following Zhao et al. (2023), all
policies predict action chunks—sequences of actions for multiple timesteps—to improve motion
smoothness and success rates.
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World models and value functions. A world model T̂ : S×A → Π(S) learns to predict the future
state given current state and action, approximating the true environment dynamics. The value func-
tion for a policy π at state s represents expected discounted returns from s under π. It is defined as
V π(s) = Eτ∼π

[∑H
k=t γ

k−tR(sk, ak) | st = s
]
= Eτ∼π

[
γH−tR(sH , aH) | st = s

]
in the sparse

reward setting, where γ is a discount factor that backpropagates the terminal reward through time.
We simply use Monte Carlo returns in this work, labeling each transition in a rollout with the ob-
served return γH−tR(sH , aH).

4 COSMOS POLICY: ADAPTING VIDEO MODEL FOR CONTROL & PLANNING

In this section, we discuss how to adapt Cosmos-Predict2 into a unified model that can predict
actions, future states, and values. We also discuss leveraging policy rollout data to enable effective
planning.

4.1 INCORPORATING NEW MODALITIES & CAMERA VIEWS VIA LATENT FRAME INJECTION

The original Cosmos-Predict2 model takes as input an image and a textual description to generate
a short video for a single camera view. It does not support robot proprioception as input, robot
actions or state values as output, nor multiple camera views—all of which are desired or required
for manipulation policies.

Rather than designing new model components or making architectural modifications as done in prior
works, we propose to encode additional modalities as new latent frames that are directly injected into
the video model’s latent diffusion sequence. Given a (1 + T ′) ×H ′ ×W ′ × 16 sequence of latent
frames, which originally correspond to images in a video, we interleave new modalities (robot state,
action chunk, and state values) and images from additional camera views by inserting new latent
frames between existing image latent frames.

For example, for a robotic platform with a static third-person camera and a wrist-mounted camera,
our latent sequence contains 9 latent frames: (1) a blank placeholder,1 (2) robot proprioceptive
state, (3) wrist camera image, (4) third-person camera image, (5) action chunk, (6) future robot
proprioceptive state, (7) future wrist camera image, (8) future third-person camera image, and (9)
future state value. Among these, (2), (5), and (6) represent new modalities while (3) and (7) represent
additional camera views. To encode the new modalities as latent frames, we fill each H ′ ×W ′ × 16
latent volume with normalized and duplicated copies of the robot state, action chunk, or value.
See Figure 1 for an illustration. This ordering represents (s, a, s′, V (s′)), allowing for optional
autoregressive decoding of actions, future state, and future state value from left to right (see Section
4.2 for further discussions on this). Note that s and s′ only consist of the observations at time t and
t+K, respectively, where K is the action chunk size. In other words, we do not use input history nor
predict future frames across multiple subsequent timesteps. Lastly, for robotic manipulators with a
second wrist camera, we simply add two more latent frames for the current and future wrist image,
resulting in 11 total frames.

4.2 JOINT TRAINING OF POLICY, WORLD MODEL, & VALUE FUNCTION

Implementing joint training objectives. Now that we have a latent diffusion scheme that incor-
porates additional modalities and camera views that are compatible with robotic policy learning,
we can adapt the video model into a policy by training on robot demonstrations. For each training
step, we sample (s, a, s′, V (s′)) tuples and apply a conditioning mask so that latent frames corre-
sponding to s are clean while frames for (a, s′, V (s′)) are corrupted and must be denoised by the
model. We weight the three targets by apportioning the samples in each training batch. Specifically,
50 percent of the samples are used to learn p(a, s′, V (s′)|s) (policy), 25 percent are used to learn
p(s′, V (s′)|s, a) (world model), and the last 25 percent are used to learn p(V (s′)|s, a, s′) (value
function). Note that policy and world model training involves additional targets, e.g., the policy
learns not just p(a|s) but instead p(a, s′, V (s′)|s). We find that this additional supervision improves
policy performance (as we will discuss in Section 5).

1The blank first latent frame is simply a placeholder that we set apart since the VAE tokenizer in the video
model treats the first image in the sequence in a special way, by not applying temporal compression to it (as
discussed in Section 3). Therefore, to ensure that current timestep observations and future timestep observations
have similarly structured latent representations, we place them after the blank first latent frame in the video
diffusion sequence.
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Note that the V (s′) predictions are conditioned on the full latent prefix (i.e., all of (s, a, s′)) during
initial Cosmos Policy training. However, when we later fine-tune this base checkpoint on policy
rollout data to produce a model with more accurate future state and value predictions, we can choose
to condition the value generation on a subset of (s, a, s′) via input masking. The choice of the
input mask determines whether the value function represents V (s′) or Q(s, a); we compare these
variations in Section 5.

Parallel vs. autoregressive decoding. Since Cosmos Policy learns to both jointly and condition-
ally predict the targets (a, s′, V (s′)) based on apportioned training samples, it can generate actions,
future states, and values either jointly in parallel or autoregressively from left to right. Parallel de-
coding offers greater speed, while autoregressive decoding may provide higher-quality predictions
and allow for separate checkpoints to be used for the policy versus the world model and value func-
tion. For direct policy evaluation without planning, only the actions are required for task execution,
while the latter two outputs can be discarded. Therefore, we use parallel decoding in this case. For
evaluations with planning, we enable autoregressive decoding for higher-quality future state and
value predictions.

4.3 PLANNING WITH COSMOS POLICY’S WORLD MODEL AND VALUE FUNCTION

Cosmos Policy can be deployed as (1) a direct policy without planning or (2) a planning policy using
future state and value predictions to search for higher-quality actions. However, training on demon-
strations alone is insufficient for effective planning since the data only covers successful outcomes,2
which means that the world model and value function see a narrow state-action distribution and may
struggle to generalize beyond that distribution. We thus find it critical to collect policy rollout data
and learn from these experiences.

Learning from rollout experiences. We collect rollout data by deploying Cosmos Policy in diverse
initial conditions and recording the trajectory as well as the episode outcome (success/fail or a
fractional score). Given the rollout dataset, we fine-tune our Cosmos Policy checkpoint, with heavier
weighting on the world model and value function predictions: 90 percent of each training batch is
split evenly between training the world model and value function, while only 10 percent is used to
train the policy.

Once we have the fine-tuned checkpoint for refined world modeling and policy learning, we propose
dual deployment: the original Cosmos Policy checkpoint serves as the policy (we thus call it the
“policy model”), while the refined checkpoint serves as the world model and value function (we
thus call it the “planning model”). This ensures that the refined world model and value function are
trained on on-policy data collected by the original policy.

Model-based planning. Given the policy model and the planning model, we implement best-of-
N sampling as follows: (1) sample multiple action proposals from the policy, (2) use the planning
model to predict the future state and value for each proposal, (3) select and deploy the action that
leads to the predicted state with the highest predicted value. For greater accuracy and better mod-
eling of potentially multimodal future state and value distributions, we ensemble the predictions by
querying the world model three times per action and the value function five times per future state,
resulting in fifteen total value predictions for each action proposal. We aggregate these via ”major-
ity mean”: we determine whether the majority predict success or failure (via a fixed threshold) and
then average values within the majority group. This approach is more robust to outliers than naive
averaging when value predictions are bimodal or exhibit high variance.

To speed up the search process, we use parallelized inference, using N GPUs in best-of-N sampling.
We also execute the full action chunk (rather only part of it, as done in receding-horizon control) to
avoid further increases in computational cost.

5 EXPERIMENTS

We evaluate Cosmos Policy to answer four key questions: (Q1) How does Cosmos Policy compare
with state-of-the-art imitation learning policies when used as a direct policy? (Q2) How important

2Some demonstration datasets, including the LIBERO simulation benchmark training set, includes subop-
timal behaviors that may not lead to success when replayed in the training environment, due to human errors
during teleoperation. Typically, however, most (if not all) trajectories in a demonstration dataset used for imi-
tation learning are successful.
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Figure 2: Cosmos Policy in the ALOHA robot tasks. Cosmos Policy can successfully execute real-world
robotic control tasks that require long-horizon, high-precision manipulation and have high action multimodality.

are different components of Cosmos Policy? (Q3) Can Cosmos Policy leverage rollout experiences
and learn an accurate world model and value function for effective planning? (Q4) Is it more ef-
fective to search using a world model and state value function or a Q-value function (a model-free
variation)? We answer these through simulated and real-world evaluations spanning single-arm and
dual-arm manipulation tasks.

5.1 EXPERIMENTAL SETUP

LIBERO simulation benchmark. The LIBERO simulation benchmark (Liu et al., 2024) consists
of a variety of environments and tasks featuring a single Franka Emika Panda robot arm. The four
primary task suites include LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long
(also called LIBERO-10); these assess a policy’s ability to handle different spatial layouts, objects,
language-specified goals, and long-horizon tasks, respectively. Each task suite provides a training
dataset of 500 total demonstrations (10 tasks and 50 demonstrations each). Following Kim et al.
(2024), we filter unsuccessful demonstrations for policy training but use the full unfiltered set for
world model and value function training. We train Cosmos Policy for 40K gradient steps using 64
H100 GPUs with global batch size 1920 (taking 48 hours total). We use an action chunk size of 16
steps and execute the full chunk.

Real-world ALOHA robot tasks. The ALOHA platform (Zhao et al., 2023) consists of two ViperX
300 S robot arms with three cameras: one top-down and two wrist-mounted. We reduce the con-
troller frequency from 50 Hz to 25 Hz for computational efficiency. All policies take as input robot
proprioceptive state (14 joint angles), three camera images, and task descriptions, predicting action
chunks of 50 timesteps (2 seconds).3 We deploy the full action chunk before requerying the policy.

Our evaluation suite consists of four challenging bimanual manipulation tasks (shown in Figure 2):
(1) “put X on plate” (80 demos): place objects on a plate based on language instructions, testing
language following; (2) “fold shirt” (15 demos): fold one of three T-shirts in multiple steps, testing
long-horizon contact-rich manipulation; (3) “put candies in bowl” (45 demos): collect scattered
candies, testing ability to handle multimodal grasp sequences; and (4) “put candy in ziploc bag”
(45 demos): open and place items in a ziploc slider bag, testing high-precision manipulation with
millimeter tolerance.

We train Cosmos Policy and all other evaluated methods on all four tasks combined (185 total
demonstrations). Cosmos Policy is trained for 50K gradient steps using 8 H100 GPUs with global
batch size 200 (taking 48 hours total). The evaluations consist of both in-distribution and out-of-
distribution testing conditions, with 101 trials total per method across all tasks. We ensure fair
comparison between methods by using the same fixed set of initial states for each method.

5.2 COMPARING AGAINST STATE-OF-THE-ART IMITATION POLICIES WITHOUT PLANNING

Here we aim to answer questions Q1 and Q2 posed in the beginning of this section. We answer
Q1 by comparing Cosmos Policy as a direct policy (without planning) with state-of-the-art imita-
tion learning policies and assessing their relative effectiveness. We answer Q2 by ablating various
components of Cosmos Policy and analyzing the resulting effects on task performance.

3Diffusion Policy is an exception, as it predicts 48-timestep action chunks since the implementation requires
a multiple of 4.
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Table 1: LIBERO simulation benchmark results. Success rates (SR) across four LIBERO benchmark task
suites (Liu et al., 2024). Cosmos Policy success rates are averaged over 500 trials for each suite (10 tasks ×
50 episodes) and three random seeds. Our method achieves highest performance overall, even outperforming
state-of-the-art vision-language-action (VLA) models fine-tuned on the same tasks.

Spatial Object Goal Long Average
SR (%) SR (%) SR (%) SR (%) SR (%)

Diffusion Policy (Chi et al., 2023) 78.3 92.5 68.3 50.5 72.4
Dita (Hou et al., 2025) 97.4 94.8 93.2 83.6 92.3
π0 (Black et al., 2024) 96.8 98.8 95.8 85.2 94.2
UVA (Li et al., 2025a) – – – 90.0 –
UniVLA (Bu et al., 2025) 96.5 96.8 95.6 92.0 95.2
π0.5 (Intelligence et al., 2025) 98.8 98.2 98.0 92.4 96.9
Video Policy (Liang et al., 2025) – – – 94.0 –
OpenVLA-OFT (Kim et al., 2025) 97.6 98.4 97.9 94.5 97.1
CogVLA (Li et al., 2025b) 98.6 98.8 96.6 95.4 97.4

Cosmos Policy (ours) 98.1 100.0 98.2 97.6 98.5
w/o auxiliary losses 97.6 99.8 96.7 94.0 97.0
w/o pretrained model 94.7 98.9 96.3 88.6 94.6

Figure 3: Real-world ALOHA robot evaluation results. We evaluate state-of-the-art policies on a suite of
four tasks and measure the score, which represents average percent completion of each task. Cosmos Policy
achieves highest overall score, outperforming all other methods in three of four tasks.

Methods in comparison. In LIBERO, we compare against recent top-performing methods includ-
ing diffusion-based policies trained from scratch (Diffusion Policy (Chi et al., 2023), Dita (Hou et al.,
2025)), video model-based policies (UVA (Li et al., 2025a), Video Policy (Liang et al., 2025)), and
fine-tuned VLA models (π0, π0.5, OpenVLA-OFT, CogVLA). In real-world ALOHA evaluations,
we compare against a competitive subset of policies that have demonstrated strong performance in
real-world bimanual manipulation tasks: Diffusion Policy, OpenVLA-OFT+, π0, and π0.5.

Results. Table 1 shows the performance of Cosmos Policy and prior works in LIBERO, while Figure
3 shows performance on the ALOHA robot. We find that Cosmos Policy achieves highest overall
performance in both domains, while establishing a new state of the art in the LIBERO benchmark
with a 98.5% average success rate. Notably, in ALOHA robot evaluations, we find that Cosmos
Policy outperforms fine-tuned VLAs π0.5 and OpenVLA-OFT+—which have been pretrained on
large amounts of robotic imitation data—despite not having benefited from similar large-scale action
supervision. This finding suggests that video model priors provide a strong initialization for control
policies without requiring additional action-labeled robot data. Sample Cosmos Policy rollouts are
visualized in Figure 2.

Qualitatively, we find that while the fine-tuned VLAs show strong performance on the first two
tasks, they encounter difficulties in the last two tasks—“put candies in bowl” and “put candy in zi-
ploc bag”—which require handling high action multimodality and executing high-precision grasps,
respectively. Figure 4 visualizes two common failure modes of π0.5 and OpenVLA-OFT+: (1) π0.5,
despite showing highly competitive performance on the first three tasks, struggles to reliably handle
the ziploc bag, often missing the initial grasp of the slider with the right arm or not grasping the left
side of the bag securely enough with the left arm. (2) OpenVLA-OFT+ often reaches in between
two candies rather than directly going for one; we hypothesize that its L1 regression of actions leads
to inaccurate modeling of the action distribution in tasks with high multimodality. Compared to
these methods, Cosmos Policy handles both high multimodality and high precision with substan-
tially greater reliability.
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Figure 4: Common failure modes of π0.5 and OpenVLA-OFT+ on two challenging ALOHA robot tasks.
Left: π0.5 struggles to execute a high-precision grasp and loses grip of the ziploc bag. Right: OpenVLA-
OFT+ reaches between two candies rather than towards one, suggesting difficulty with modeling the highly
multimodal action distribution.

Figure 5: World model predictions: base Cosmos Policy vs. fine-tuned checkpoint. Top: The base Cosmos
Policy’s world model may fail to predict errors such as losing grasp of the ziploc bag slider, as it is only trained
on demonstrations. Bottom: After fine-tuning on policy rollout data, the world model more accurately predicts
the resulting state, enabling more effective planning and eventual episode success.

Ablation experiments. Recall from Section 4.2 that Cosmos Policy’s policy and world model train-
ing involves additional targets which provide additional supervision: the policy learns to jointly pre-
dict p(a, s′, v(s′))|s) instead of p(a|s), and the world model learns to jointly predict p(s′, V (s′)|s, a)
instead of p(s′|s, a). To evaluate the effect of this joint learning objective, we train a version of Cos-
mos Policy without it by masking the loss on the additional targets. In addition, we assess the
importance of the video model priors by training Cosmos Policy from randomly initialized weights.
We use the same number of gradient steps as the full policy for both of these variants. As shown in
Table 1, removing the auxiliary losses leads to a 1.5% absolute drop in average success rate while
training from scratch leads to a 3.9% drop, suggesting that these components are important for max-
imal performance. We further evaluate Cosmos Policy trained from scratch on the ALOHA robot
for additional supporting evidence and find that it obtains an average score of 80.8 on the “fold shirt”
task, which is 18.7 points lower than the full Cosmos Policy. Qualitatively, the from-scratch variant
exhibits jerky motions that may damage the robot over prolonged deployment, so we halt further
evaluations with it.

5.3 EVALUATIONS OF COSMOS POLICY WITH MODEL-BASED PLANNING

Here we aim to answer Q3 by evaluating Cosmos Policy when deployed with model-based planning
(as described in Section 4.3), and Q4 by analyzing how the proposed model-based approach com-
pares different variants of planning, such as directly learning a Q-value function without a world
model. Since our base Cosmos Policy already obtains high success rates in LIBERO and on the first
two ALOHA robot tasks, we focus our study on the last two more challenging ALOHA robot tasks
(“put candies in bowl” and “put candy in ziploc bag”), where there is more room for improvement.
Further, we focus on a more challenging set of initial conditions (e.g., difficult in-distribution con-
ditions or OOD conditions) and assess whether planning can lead to enhanced performance in these
settings.

Rollout data collection. To refine Cosmos Policy’s world model and value function predictions
and enable more effective planning, we gather a rollout dataset that we use for post-training. Con-
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Figure 6: Model-based planning results. We evaluate the base Cosmos Policy on challenging initial states
for the last two ALOHA robot tasks, and compare it with two planning variants. We find that the V (s′) variant
leads to highest overall performance.

veniently, by running the prior direct policy evaluations, we have already aggregated 505 policy
rollouts across all policies. Adding to this, we collect 143 more rollouts from Cosmos Policy for
the ”put candy in ziploc bag” task. The additional episodes are important for this task since train-
ing an accurate world model for it is particularly challenging due to low camera observability from
the robot’s self-occlusion and highly stochastic environment dynamics where even millimeter dif-
ferences in control can dictate success or failure. We fine-tune the base Cosmos Policy checkpoint
on this pool of 648 rollouts to produce a refined ”planning model” for world modeling and value
prediction, as described in Section 4.3.

Comparing different value function formulations. When fine-tuning the base Cosmos Policy
checkpoint on the rollout dataset, we use three independent formulations for value function training
by using input masks to condition the value predictions on different subsets of inputs: V (s′) (mask
out (s, a)) or Q(s, a) (mask out s′). The V (s′) variant requires a world model to predict the future
state before the value can be estimated, while the Q(s, a) variant enables model-free planning by
directly predicting Q-values without future state predictions.

Results. We observe that model-based planning using the V (s′) formulation consistently improves
success rates over the base Cosmos Policy without planning, as shown in Figure 6. In ALOHA
tasks, we observe a 16-point average score increase on the two challenging manipulation tasks which
involve multiple grasp sequences and high-precision manipulation. This is a notable result given the
limited amount of rollout data available for refining the planning model. Qualitatively, we find that
the fine-tuned planning model predicts future states more accurately (see Figure 5) and can plan
more effectively, ultimately avoiding making mistakes that the base Cosmos Policy makes, such as
losing grasp of the slider while opening the ziploc bag. When comparing the different value function
formulations, we find that V (s′) performs better than Q(s, a). We attribute the effectiveness of the
V (s′) variant to a reduced potential for overfitting since irrelevant inputs are masked out. On the
other hand, Q(s, a) is more prone to overfitting given higher input dimensionality.

6 DISCUSSION

We presented Cosmos Policy, a simple approach for adapting pretrained video models to robotic ma-
nipulation through single-stage fine-tuning that directly generates actions, future states, and values
as latent frames within the video diffusion process. Our method achieves state-of-the-art perfor-
mance on the LIBERO benchmark and even outperforms fine-tuned VLA models on challenging
real-world bimanual tasks, demonstrating that video model priors provide a strong foundation for
control policies. Additionally, we show that incorporating policy rollout data to refine world model
and value function predictions enables effective model-based planning. Limitations and future
work: We observe substantially lower inference speed when using model-based planning with best-
of-N sampling (e.g., around 5 seconds to produce one action chunk), which may limit applicability
to dynamic tasks. How to speed up the search process is a promising avenue for future study. In
addition, effective planning requires substantial rollout data to achieve accurate predictions beyond
the demonstration distribution. Learning from fewer rollouts would have significant impact on the
adoptability of our approach. Lastly, we have only trained embodiment-specific policies rather than
cross-embodiment models; whether the policy performs better given large-scale training would be
an interesting direction for future explorations.
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