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A COMMENTS ON EPIC

In this appendix, we will show that EPIC has a number of undesirable properties. For the sake of
readability, the proofs of the theorems in this section are given in Appendix [F.3] rather than here.

First of all, while EPIC does induce an upper bound on a form of regret, this is not the type of regret
that is typically relevant in practice. To demonstrate this, we will first provide a generalisation of the
regret bound given in|Gleave et al.|(2020):

Theorem 3. There exists a positive constant U, such that for any reward functions Ry and R, and
any T and g, if two policies w1 and s satisfy that Jo(me) = Jo(m1), then we have that

Jl(’ﬂ'l) — Jl(’ﬂ'z) < U - LQ(Rl) . DEPIC(Rl,RQ).

Theoremcovers the special case when 71 is optimal under R, and 75 is optimal under Rs. This
means that this theorem is a generalisation of the bound given in |Gleave et al.|(2020). However, we
will next show that EPIC does not induce a regret bound of the form given in Definition [5}

Theorem 4. EPIC is not sound, for any choice of T or .

These results may at first seem paradoxical, since the definition of soundness is quite similar to
the statement of Theorem [3] The reason why these statements can both be true simultaneously is
that Lo (R;) can be arbitrarily large even as max, J; () — min, J; (7) becomes arbitrarily small.
Moreover, we argue that it is more relevant to compare J; (m1) — J1 (72) to max, Jq () —min, Jy (7),
rather than Lo (R;). First of all, note that it is not informative to just know the absolute value of
J1(m1) — J1(me), since this depends on the scale of R;. Rather, what we want to know how much
reward we might lose, relative to the total amount of reward that could be had. This quantity is
measured by max, Ji (7) — min, Ji(7), not Ly(Ry). For example, if Jy(m) — J1(72) = ¢, but
max, Ji(m) —min, J; () is just barely larger than €, then this should be considered to be a large loss
of reward, even if Ly(R1) » €. For this reason, we consider the regret bound given in Deﬁnitionto
be more informative than the regret bound given in|Gleave et al.|(2020) and in Theorem 3]

Another relevant question is whether EPIC induces a lower bound on worst-case regret. We next
show that this is not the case, regardless of whether we consider the type of regret used in|Gleave
et al|(2020), or the type of regret used in Theorem 3] or the type of regret used in Definition [5}

Theorem 5. There exist rewards R, Ry such that DEPIC(Rl, Ry) > 0, but where Ry and Ry induce
the same ordering of policies for any choice of T or .

This means that EPIC cannot induce a lower bound on worst-case regret, for almost any way of
defining regret. Together, we think these results show that EPIC lacks the theoretical guarantees that
we desire in a reward function pseudometric.

B COMMENTS ON DARD

In this appendix, we briefly discuss some of the properties of DARD. In so doing, we will criticise
some of the choices made in the design of DARD, and argue that STARC metrics offer a better way
to incorporate information about the environment dynamics.

C«DARD

To start with, recall that DARD uses the canonicalisation function , which is the function

where CPARD(R) (s, a, ') is given by
R(s,a,s") + E[yR(s', A, S") — R(s, A,S") —vyR(S’, A, S")],

where A ~ Dy, S ~ 7(s,A), and S” ~ 7(s', A). Moreover, also recall that CPARD only
is designed to remove potential shaping, whereas the canonicalisation functions we specify in
Deﬁnition are designed to remove both potential shaping and S’-redistribution.

Now, first and foremost, note that while CPARP is designed to remove potential shaping, it does this

in a somewhat strange way. In particular, while it is shown in Wulfe et al.| (2022) that CPARP (R,) =
CPARD(R.) if Ry and R, differ by potential shaping, it is in general not the case that R and
CPARD(R) differ by potential shaping. To see this, note that the term yR(S’, A, S”) depends on
both s and s, which a potential shaping function cannot do. This has a few important consequences.
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In particular, it is unclear if CPARP (R, % CDARD (R2) only if Ry and R, differ by potential
shaping. It is also unclear if R and C’DAR ) in general even have the same policy ordering. Note
also that CPARP (R) is not monotonic, in the sense that CPARD (CPARD (RY)) and CPARP (R) may
be different. This seems undesirable.

Another thing to note is that E[CPARP (R)(S, A, S")] may not be 0. This means that it is unclear
whether or not DARD can be expressed in terms of norms, like EPIC can (c.f. Proposition[T2). It is
also unclear if DARD induces an upper bound on regret, since Wulfe et al.|(2022) do not provide a
regret bound. The fact that CPARP(R) is not a potential shaping function does not necessarily imply
that DARD does not induce an upper bound on regret. However, without a proof, there is a worry that
there might be reward pairs with a bounded DARD distance but unbounded regret.

Yet another thing to note is that, while DARD is designed to be used in cases where the environment
dynamics are known, it can still be influenced by the reward of transitions that are impossible
according to the environment dynamics. For example, the final term of CPARP (R)(s, a, s’) can be
influenced by impossible transitions. This gives us the following result:

Proposition 8. There exists transition functions T and initial state distributions g for which DARD
is not complete.

Proof. Consider an environment (S, A, 7, po, _,y) where S = {s1, s2,s3}, A = {a1, a2}, and
where the transition function is given by 7(s1,a) = s, 7(s2,a) = s3, and 7(s3,a) = s1, for any
a € A. We may also suppose pg = s1, and vy = 0.9.

Next, let Ry = Ry = 0 for all transitions which are possible under 7, but let R (s,a1,5’) = 1,
Ri(s,as,8") =0, Ra(s,a1,8") =0, and Rs(s, as,s’) = 1 for all transitions which are impossible
under 7. Now DDARD (R1, R2) > 0, even though (S, A, 7, po, R1,7) and (S, A, 7, po, Ro, ) have
exactly the same policy ordering. O

Together, the above leads us to worry that DARD might lead to misleading measurements. Therefore,
we believe that STARC metrics offer a better way to incorporate knowledge about the transition
dynamics into the reward metric, especially in the light of our results from Section

C A GEOMETRIC INTUITION FOR STARC METRICS

In this section, we will provide a geometric intuition for how STARC metrics work. This will help to
explain why STARC metrics are designed in the way that they are, and how they work. It may also
make it easier to understand some of our proofs.

First of all, note that the space of all reward functions R forms an |S||.A||S|-dimensional vector
space. Next, recall that if two reward functions R; and Rs differ by (some combination of) potential
shaping and S’-redistribution, then R; and R» induce the same ordering of policies. Moreover, both
of these transformations are additive. In other words, they correspond to a set of reward functions
{Ro}, such that R; and R differ by a combination of potential shaping and S’-redistribution if and
only if Ry — Ry € {Ry}. This means that { R} is a linear subspace of R, and that for any reward
function R, the set of all reward functions that differ from R by a combination of potential shaping
and S’-redistribution together form an affine subspace of R.

A canonicalisation function is a linear map that removes the dimensions that are associated with
{Ro}. In other words, they map R to an |S|(|.A| — 1)-dimensional subspace of R in which no reward
functions differ by potential shaping or S’-redistribution. The null space of a canonicalisation function
is always { Ry }. The canonicalisation function that is minimal for the Ly-norm is the orthogonal map
that satisfies these properties, whereas other canonicalisation functions are non-orthogonal.

When we normalise the resulting reward functions by dividing by a norm n, we project the entire
vector space onto the unit ball of n (except the zero reward, which remains at the origin). The metric
m then measures the distance between the resulting reward functions on the surface of this sphere:
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To make this more clear, it may be worth considering the case of non-sequential decision making.
Suppose we have a finite set of choices C, and a utility function U : C' — R. Given two distributions
D1, Dy over C, we say that we prefer Dy over D if Eqwp, [U(c)] > E.wp,[U(c)]. The set of
all utility functions over C forms a |C|-dimensional vector space. Moreover, in this setting, it is
well-known that two utility functions U;, Uz induce the same preferences between all possible
distributions over C'if and only if they differ by an affine transformation. Therefore, if we wanted
to represent the set of all non-equivalent utility functions over C, we may consider requiring that
U(cp) = 0 for some ¢g € C, and that Lo (U) = 1 unless U(c) = 0 for all ¢ € C. Any utility function
over C is equivalent to some utility function in this set, and this set can in turn be represented as the
surface of a (|C| — 1)-dimensional sphere, together with the origin.

This is essentially analogous to the normalisation that the canonicalisation function c and the normali-
sation function n perform for STARC metrics. Here C' is analogous to the set of all trajectories, the
trajectory return function G is analogous to U, and a policy 7 induces a distribution over trajectories.
It is worth knowing that affine transformations of the trajectory return function, G, correspond exactly
to potential shaping and positive linear scaling of R (see |Skalse et al., 2022a, their Theorem 3.12).
However, while the cases are analogous, it is not a direct correspondence, because not all distributions
over trajectories can be realised as a policy in a given MDP.

Another perspective that may help with understanding STARC metrics comes from considering
occupancy measures. Specifically, for a given policy 7, let its occupancy measure ™ be the |S||.A||S|-
dimensional vector in which the value of the (s, a, s’)’th dimension is

0
Z ’Ytpfwr(st =541 =a,54+1 = 5/)-
t=0

Now note that J(7) = n™ - R. Therefore, by computing occupancy measures, we can divide the
computation of J into two parts, the first of which is independent of R, and the second of which is a
linear function. Moreover, let Q@ = {n™ : w € II} be the set of all occupancy measures. We now have
that the policy value function J of a reward function R can be visualised as a linear function on this
set. Moreover, if we have two reward functions R, Rs, then they can be visualised as two different
linear functions on this set:
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Q is located in a |S|(]A| — 1)-dimensional affine subspace of RISIIISI and contains a set which is
open in this space (Skalse & Abate} [2023)). Moreover, it can be represented as the convex hull of a
finite set of points (Feinberg & Rothblum, |2012). It is thus a polytope.

From this image, it is visually clear that the worst-case regret of maximising R; instead of Ry, should
be proportional to the angle between the projections of Ry and R onto (2. Moreover, this is what
STARC metrics measure; any STARC metric is bilipschitz equivalent to the angle between reward
functions projected onto 2. This in should in turn give an intuition for why the STARC distance
between two rewards provide both an upper and lower bound on their worst-case regret.

D APPROXIMATING STARC METRICS IN LARGE ENVIRONMENTS

In small MDPs, STARC metrics can be computed exactly (in time that is polynomial in |S| and |.A|).
However, most realistic MDPs are too large for this to be feasible. As such, we will here discuss how
to approximate STARC metrics in large environments, including continuous environments.

First, recall the VAL canonicalisation function (Proposition [2), given by
C(R)(S, a, S/) = ES’~T(s,a) [R(Sa a, S,) - VW(S) + ,-YVT"(S’)] )

where 7 can be any (fixed) policy. This canonicalisation function is straightforward to approximate
in any environment where reinforcement learning can be used, including large-scale environments.
To do this, first pick an arbitrary policy 7, such as e.g. the uniformly random policy. Then compute
an approximation of V™ — this can be done using a neural network updated with on-policy Bellman
updates (Sutton & Bartol 2018)). Note that 7 should not be updated, and must remain fixed. Then
simply estimate the expected value of R(s,a,S") — V™ (s) + vV 7(S’) by sampling from 7. This
approximation can be computed in any environment where it is possible to sample from 7 and
approximate V'™ (which is to say, any environment where reinforcement learning is applicable). Note
that we do not require direct access to 7, we only need to be able to sample from it.

Next, note that if v is an n-dimensional vector, and { is the uniform distribution over {1...n}, then

Ly(v) = (n-Eg[|oiPD"? = 0P - Eyqu[Jus P12
p} 1/p

This in turn means that
v w
P ) i~
Ly(v)" Lp(w)

since the n'/P-terms cancel out. Therefore, the normalisation step and distance step can also be
estimated through sampling; simply sample enough random transitions to approximate each of the
expectations in the expression above. Indeed, this can even be done if the state space and action space
are continuous. Recall that the L,,-norm of an infinite-dimensional vector v is defined as

Lyoxto) = ([l ) v

where X < R"™. This value can also be approximated through sampling.

v; w;
Ejauallog P17 Bjnaa ey P17
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It is also possible to approximate division by n and taking the distance with m using the Pear-
son distance, which is what EPIC does. In particular, let D be a distribution over S x A x S
that assigns positive probability to all transitions, and let R;, R be reward functions such
that Eg 4 s/p[R1(S, A, S")] = Eg a,5~p[R1(S,A,S")] = 0. We then have that the Pearson
distance /(1 — p(R1(S, A4, 5"), R2(S, A, 5")))/2 between R (S, A, S’) and R(S, A, S"), where

S,A,S" ~D,is equal to

1 < Ry Ry >

5 LQ,W ) )

2 Low (R1)" La,w(Ra)
where W is a weight matrix depending on D, and p denotes the Pearson correlation. For details, see
the proof of Proposition For this identity to hold, it is crucial that Eg 4 ¢ p[R1(S, 4,5")] =
Es.a.s~p[R1(S, A4, S")] = 0. However, this can easily be ensured; for an arbitrary canonicalisation
function c¢1, let c2(R) = ¢1(R) — Eg 4 5~p[c1(R)(S, A, S5")]. If ¢1 is a valid canonicalisation
function, then so is cy. The Pearson correlation can of course be estimated through sampling.

E PROOFS OF MISCELLANEOUS CLAIMS

In this Appendix, we provide proofs for several miscellaneous claims and minor propositions made
throughout the paper, especially in Section[2.2]

Proposition 9. For any policy w, the function ¢ : R — R given by
C(R)(S> a, S/) = ES’~T(S,¢1) [R(Sa a, S/) - Vﬂ(s) + ’YVW(S/)]

is a canonicalisation function.
Proof. To prove that c is a canonicalisation function, we must show

1. that cis linear,
2. that ¢(R) and R only differ by potential shaping and S’-redistribution, and

3. that ¢(R1) = ¢(Ry) if and only if Ry and Ry only differ by potential shaping and S’-
redistribution.

We first show that c is linear. Given a state s, let v, be the |S||.A||S|-dimensional vector where

©
U5[8/7a, S//] = Z ’Yi : IFD(S’L = S/a Ai = a, Si+1 = 8//)a
i=0
where the probability is given for a trajectory that is generated from 7 and 7, starting in s. Now note
that V7 (s) = v - R, where R is represented as a vector. Using these vectors {v;}, it is possible to
express c as a linear transformation.

To see that ¢(R) and R differ by potential shaping and S’-redistribution, it is sufficient to note that
V7™ acts as a potential function, and that setting Ro(s, a,5") = Eg/or(5,0)[R1(5, a,5")] is a form of
S’-redistribution.
To see that ¢(R;) = ¢(R2) if Ry and R» differ by potential shaping and S’-redistribution, first note
that if R, and Ry differ by potential shaping, so that R (s, a,s’) = R1(s,a,s’) + vP(s") — ®(s) for
some D, then Vi (s) = V" (s) — ®(s) (see e.g. Lemma B.1 in [Skalse et al.l [2022a). This means that
c(R2)(s,a,s") = E[Ry(s,a,8") + 7 - V5 (5) = V5" (s)]

=E[Ri(s,a,8") +7- () = ®(s) +v- (V' (F') = (5)) — (V{"(s) — @(s))]

=E[Ri(s,a,8) + 7 VI(S) = V" (s)]

=c(Ry)(s,a,5).
To see that ¢(R;) = ¢(R2) only if Ry and Rs differ by potential shaping and S’-redistribution, first
note that we have already shown that R and ¢(R) differ by potential shaping and S’-redistribution for
all R. This implies that Ry and c¢(R;) differ by potential shaping and S’-redistribution, and likewise

for Ry and ¢(R3). Then if ¢(R1) = ¢(Rz), we can combine these transformations, and obtain that
R; and R; also differ by potential shaping and S’-redistribution. This completes the proof. [
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Note that this holds regardless of which environment V'™ is calculated in. Therefore, V™ could be
computed in an environment that is entirely distinct from the training environment. For example,
V7™ could be computed in an environment (and using a policy) designed specifically to make this
computation easy.

Proposition 10. For any weighted Lo-norm, a minimal canonicalisation function exists and is unique.

Proof. Let Ry be the reward function that is O for all transitions. First note that the set of all reward
functions that differ from Ry by potential shaping and S’-redistribution form a linear subspace of
‘R. Let this space be denoted by )/, and let X’ denote the orthogonal complement of ) in R. Now
any reward function R € R can be uniquely expressed in the form Ry + Ry, where Ry € X
and Ry € ). Consider the function ¢ : R — R where ¢(R) = Rx. Now this function is a
canonicalisation function such that n(c¢(R)) < R’ for all R’ such that ¢(R) = ¢(R’), assuming that
n is a weighted Lo-norm.

To see this, we must show that

1. cis linear,

2. ¢(R) and R differ by potential shaping and S’-redistribution,

3. ¢(R1) = ¢(Ry) if Ry and R differ by potential shaping and S’-redistribution, and
4. n(c(R)) < n(R') for all R’ such that ¢(R) = ¢(R').

It follows directly from the construction that ¢ is linear. To see that ¢(R) and R differ by potential
shaping and S’-redistribution, simply note that ¢(R) = R — Ry, where Ry is given by a combination
of potential shaping and S’-redistribution of Ry. To see that ¢(R;) = ¢(Rz) if Ry and Ry differ
by potential shaping and S’-redistribution, let Ry = R; + R’, where R’ is given by potential
shaping and S’-redistribution of Ry, and let Ry = Ry + Ry, where Ry € X and Ry € ). Now
¢(R1) = Rx. Moreover, Ry = Ry + Ry + R’. We also have that R’ € )). We can thus express
Ry as Ry + (Ry + R'), where Ry € X and (Ry + R') € Y, which implies that ¢(R2) = Rx.
Therefore, if Ry and Ry differ by potential shaping and S’-redistribution, then ¢(R;) = ¢(Rz). To
see that ¢(R;) = ¢(R2) only if Ry and R differ by potential shaping and S’-redistribution, first note
that we have already shown that R and ¢(R) differ by potential shaping and S’-redistribution for all
R. This implies that Ry and ¢(R;) differ by potential shaping and S’-redistribution, and likewise for
Ry and ¢(Rs). Then if ¢(R;) = ¢(R2), we can combine these transformations, and obtain that Ry
and Ry also differ by potential shaping and S’-redistribution.

To see that n(c(R)) < n(R') for all R’ such that ¢(R) = ¢(R’), first note that if ¢(R) = ¢(R’),
then R = Ry + Ry and R' = Ry + R’y, where Ry € X and Ry, R), € Y. This means that
n(c(R)) = n(Rx),and n(R') = n(Rx + R),). Moreover, since n is a weighted Lo-norm, and since
Rx and RY, are orthogonal, we have that n(Rx + Ry) = A/n(Rx)? +n(Ry)? = n(Rxy). This
means that n(c(R)) < n(R/).

To see that this canonicalisation function is the unique minimal canonicalisation function for any
weighted Lo-norm n, consider an arbitrary reward function R. Now, the set of all reward functions
that differ from R by potential shaping and S’-redistribution forms an affine space of R, and a
minimal canonicalisation function must map R to a point R’ in this space such that n(R’) < n(R")
for all other points R” in that space. If n is a weighted Lo-norm, then this specifies a convex
optimisation problem with a unique solution. O

Note that this proof only shows that a minimal canonicalisation function exists and is unique when n
is a (weighted) Lo-norm. It does not show that such a canonicalisation function only exists for these
norms, nor does it show that it is unique for all norms.

Proposition 11. If ¢ is a canonicalisation function, then the function n : R — R given by n(R) =
max, J(m) — min, J(m) is a norm on Im(c).

Proof. To show that a function n is a norm on Im(c), we must show that it satisfies:
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1. n(R) = 0 forall R € Im(c).

2. n(R) = 0if and only if R = Ry for all R € Im(c).

3. n(a- R) = a-n(R) for all R € Im(c) and all scalars «.
4. n(Ry + Rz) < n(Ry) +n(Ry) for all Ry, R2 € Im(c).

Here Ry is the reward function that is 0 everywhere. It is trivial to show that Axioms 1 and 3 are
satisfied by n. For Axiom 2, note that n(R) = 0 exactly when max, J(7) = min, J(7). If Ris Ry,
then J(7m) = 0 for all 7, and so the “if” part holds straightforwardly. For the “only if” part, let R
be a reward function such that max, J(7) = min, J(7). Then R and Ry induce the same policy
ordering under 7 and po, which means that they differ by potential shaping, S’-redistribution, and
positive linear scaling (see Proposition[I)). Moreover, since Ry is 0 everywhere, this means that R
and Ry in fact differ by potential shaping and S’-redistribution. However, from the definition of
canonicalisation functions, if Ry, Ry € Im(c) differ by potential shaping and S’-redistribution, then
it must be that R, = R5. Hence Axiom 2 holds as well.

We can show that Axiom 4 holds algebraically:
n(Ri + Ry) = mT&er(Jl (m) + Ja(m)) — Irgn(Jl (m) + Ja(m))
< max Ji(m) + max Jo(m) — H%Tin Ji(m) — mrén Jo(7)
= (mfrix Ji(m) — rririn Ji(m)) + (IHEX Jo(m) — rr£11 Ja (7))
= n(R1) + n(R2)

This means that n(R) = max, J(7) — min, J(7) is a norm on Im(c). O

This means that we can normalise the reward functions so that max, J(7) — min, J(7) = 1, which
is nice. This proposition will also be useful in our later proofs.

Proposition 12. EPIC can be expressed as

1 ' L2 R < CEPIC (Rl) OEPIC (R2) )
2 LQ’D(C’EPIC(Rl)y LQ’D(CEPIC(RQ))

DEPIC (R17 RZ) —
where Ly p is a weighted Lo-norm.

Proof. Recall that by default, D¥PIC(R;, Ry) is defined to be the Pearson distance between
CFPIC(R1)(S, A, S") and CFPIC(R,)(S, A, S"), where S, 8" ~ Ds and A ~ Dy, and where

the “Pearson distance” between two random variables X and Y be defined as 1/(1 — p(X,Y))/2,
where p denotes the Pearson correlation. Recall also that CEFIC(R)(s, a, s') is equal to

R(S7 a, S/) + ]E[VR(S,7 Aa S/) - R(87 A7 S/) - IVR(Su A7 S/)]
For the sake of brevity, let RY = CEPIC(R;) and RY = CFPIC(R,), and let D be the distribution
over Sx AxS given by
Ps,a,5)~p(S =5,A4=0,5 =5) =Pgps(S =5) Pap,(A=a) Py.ps(S =5).

Moreover, let X = R{(T) and Y = RS (T"), where T and T" are random transitions distributed

according to D. We now have that D¥FIC(R;, Ry) = 4/(1 — p(X,Y))/2, where p is the Pearson
correlation.

Next, recall that the Pearson correlation between two random variables X and Y is defined as

E[(X —E[XD - E[Y])]

)

OxX0y

where oy and oy are the standard deviations of X and Y. Recall also that the standard deviation o x
of a random variable X is equal to A/E[X?] — E[X]2.
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Next, note that we in this case have that E[X ] and E[Y'] both are equal to 0. This follows from the
way that these variables were defined, together with the linearity of expectation. Therefore, we can
rewrite p(X,Y) as

E[XY]
E[X?]VE[Y?]

Let W be the (|S||.A[|S|) x (|S]|A||S|)-dimensional diagonal matrix in which the diagonal value that
corresponds to transition ¢ is equal to A/ Pr~p(T = t). We now have that 4/E[X?2] = Lo( WRC

and \/E[Y?2] = Ly(WRY). Moreover, we also have that E[XY] = (WRY) - (WRC). Next, recall
that the dot product VW between two vectors v and w can be written as Lo(v) - Lo(w) - cos(6),
where 6 is the angle between v and w. This means that we can rewrite p(X,Y") as

Ly(WRY) - Lo(WRY) - cos()
Ly(WRY) - Ly(WRS)

= cos(h),

where 6 is the angle between W R{ and W RY .

Since the angle between two vectors is unaffected by the scale of those vectors, we have that 6 is
also the angle between W R /Lo(W RY') and W RS /La(W RS'). We can now apply the Law of
Cosines, and conclude that the Lo-distance between W R{ /Ly(W RY) and W RS /Lo(W RS) is

equal to 4/2 — 2cos(f) = 4/2 — 2p(X,Y) = 2- DEPIC(Ry, Ry). This means that

1 (& C
DFPIC(R, R,) = L( W Ry W RS )

2 Lo(WRS) Ly(WRS)

Rewriting this completes the proof. O

The fact that EPIC can be expressed in this form is also asserted in|Gleave et al.|(2020)), but a proof is
not given. We have provided the proof here, to make the equivalence more accessible and intuitive. It
is worth noting that this equivalence only holds when the “coverage distribution” is the same as the
distribution used to compute C*FIC, which is left somewhat ambiguous in Gleave et al.|(2020).

F MAIN PROOFS

In this section, we give the proofs of all our results. We have divided it into four parts. In the first
part, we prove that STARC metrics are sound. In the second part, we prove that STARC metrics are
complete. In the third part, we prove that EPIC (and a class of similar metrics) all are subject to the
results discussed in Appendix[A] In the final part, we prove a few remaining theorems.

F.1 SOUNDNESS

Before we can give the proof of Theorem|[I] we will first state and prove several supporting lemmas.

Lemma 1. For any reward functions Ry and Ro, and any policy w, we have that

I (7) — Ja(m)| < <11V) Loo(Ry, Ro).
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Proof. This follows from straightforward algebra:

|J1(m) — Ja(m)| :‘ngr [Z VtR1<St;AtaSt+1)1

t=0

V| Eer[R1(St, Ar, Si41) — Ra(St, At, Siv1)]]

0
—Eer lZ 7 Ro (S, Ar, Ser1)

t=0

8

t=0

8

<) V' Eeor[|R1(St, Ar, Sis1) — Ra(St, Ar, Si41)]]
t=0
= 1

< Z '7tLoO(R1>R2) = (1—7) Loc(RlaR2)'
t=0

Here the second line follows from the linearity of expectation, and the third line follows from Jensen’s
inequality. O

Thus, the L.,-distance between two rewards bounds the difference between their policy evaluation
functions. Since all norms are bilipschitz equivalent on any finite-dimensional vector space, this
extends to all norms:

Lemma 2. [f p is a norm, then there is a positive constant K, such that, for any reward functions R,
and Ry, and any policy w, |J1(m) — Jao(m)| < K, - p(R1, R2).

Proof. If p and q are norms on a finite-dimensional vector space, then there are constants k£ and K
such that & - p(z) < ¢(z) < K - p(z). Since S and A are finite, R is a finite-dimensional vector
space. This means that there is a constant K such that Lo, (R1, R2) < K - p(R1, R2). Together with
Lemmal(T} this implies that

1

() — Jo()| < (1—7) K -m(Ry, Ry).

Letting K, = (%) completes the proof. O

Note that the constant /&, given by Lemma 2] may not be the smallest value of K for which this
statement holds of a given norm p. This fact can be used to compute tighter bounds for particular
STARC-metrics.

Lemma 3. Let Ry and Ry be reward functions, and w1, 7o be two policies. If | J1(7) — Jo(w)| < U
Jor e {my, w2}, and if Jo(ma) = Jo(m1), then

J1(7T1) — J1(7T2) <2- U.

Proof. First note that U must be non-negative. Next, note that if J; (m1) < Jy (m2) then Jy(m) —
J1(m2) < 0, and so the lemma holds. Now consider the case when Jy (1) = Ji(m3):

J1(7T1) — J1(7T2) = Jl(ﬂ'l) — J2(7T2) + Jg(ﬂ'g) — J1(7T2)
< | Ji(m) = Ja(m2)| + [ a(m2) — Ji(m2)|

Our assumptions imply that |Jo(m2) — J1(m2)| < U. We will next show that |J; (71) — Ja(m2)| < U
as well. Our assumptions imply that
[J1(m1) — Jo(m)| < U
:>J2(7T ) Jl(ﬂ'l)—

1) = U
=>J2(7T2)>J1(7T1) U
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Here the last implication uses the fact that J5(m2) > Jo(71). A symmetric argument also shows that
Ji(m1) = Ja(mwa) — U (recall that we assume that J; (1) = Ji(m2)). Together, this implies that
|J1(m1) — Jo(m2)| < U. We have thus shown that if Jy (1) > J; () then

|J1(m1) = Ja(m2)| + [J2(m2) — Ji(m2)| < 2- U,
and so the lemma holds. This completes the proof. O

Lemma 4. For any linear function c : R™ — R™ and any norm n, there is a positive constant K,
such that n(c(v)) < K, - n(v) for all v e R™.

Proof. First consider the case when n(v) > 0. In this case, we can find an upper bound for n(c(v))
in terms of n(v) by finding an upper bound for %. Since c is linear, and since n is absolutely

homogeneous, we have that for any v € R™ and any non-zero o € R,

nc(e-v)) (a) nf;((vv))) _ nf:((fvv))).

n(a-v) a

In other words, ”;C((:))) is unaffected by scaling of v. We may thus restrict our attention to the unit

ball of n. Next, since the surface of the unit ball of n is a compact set, and since % is continuous

on this surface, the extreme value theorem implies that % must take on some maximal value K,

on this domain. Together, the above implies that n(c(v)) < K, - n(v) for all R such that n(v) > 0.

Next, suppose n(v) = 0. In this case, v is the zero vector. Since c is linear, this implies that c(v) = v,
which means that n(c(v)) = 0 as well. Therefore, if n(v) = 0, then the statement holds for any K,,.
In particular, it holds for the value K,, selected above. O

Lemma 5. Let c be a linear function ¢ : R — R, and let n be a norm on Im(c). Let R be any reward

function, let Rc = ¢(R), and let Rg = (%) ifn(Rc) > 0, and Rc otherwise. Assume there is a

constant B such that Jo(m) = J(7)+ B forall w. Then J(m1) —J(m2) = n(c(R))-Js(m1) —Js(m2).

Proof. Let us first consider the case where n(R) = 0. Since n is a norm, R must be the reward
function that is 0 everywhere. Since c is linear, this also implies that n(c(R)) = 0. In that case, both
J(m1) — J(mq) = 0 for all w1 and 7o, and n(c(R)) - & = 0 for all z. Therefore, the statement holds.

Let us next consider the case when n(R) > 0. Since c is linear, this means that n(c¢(R)) > 0.
Moreover, since Rs = Rc/n(R¢), and since Jo(m) = J(7) + B, we have that

15 = ety ) 0 + B)

This further implies that

JS(Wl) - JS(Wz) = (n(c?R))) (J(Wl) - J(W2))

since the B-terms cancel out. By rearranging, we get that

J(m1) = J(m2) = n(e(R))(Js(m) — Js(m2)).
This completes the proof. O
Lemma 6. If Ry and Rs differ by potential shaping with ®, then for any T and o, we have that

Jo(m) = Ji(7) — Esympo [P(S0)]. Moreover, if Ry and Ry differ by potential shaping with ® and
S’-redistribution for T, then for any po, we have that Jo(w) = J1(m) — Egympuo [2(S0)]-

Proof. The first part follows from Lemma B.1 in|Skalse et al.[(2022a)). The second part then follows
straightforwardly from the properties of S’-redistribution. O

Theorem 1. Any STARC metric is sound.
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Proof. Consider any transition function 7 and any initial state distribution i, and let d be a STARC
metric. We wish to show that there exists a positive constant U, such that for any R, and Ry, and any
pair of policies 7r; and 7o such that Jo (7o) = Ja(7), we have that

Jl(ﬂ'l) — Jl(ﬂ'g) < (I’IlélXJl(ﬂ') — HlﬂinJl(TF)) . Kd . d(Rl,RQ).

Recall that d(Ry, R2) = m(s(Ry1), s(Rz)), where m is an admissible metric. Since m is admissible,
we have that p(s(R1), s(R2)) < Ky,,»m(s(Ry), s(R2)) for some norm p and constant K ,,. Moreover,
since p is a norm, we can apply Lemma to conclude that there is a constant K, such that for any
policy 7, we have that

|3 (1) = J5 ()| < K - p(s(R1), 5(R2)),

where J; is the policy evaluation function of s(R;), and J5 is the policy evaluation function of
s(R2). Combining this with the fact that p(s(Ry), s(R2)) < K., - m(s(R1), s(R2)), we get

|J7 () = J5 (m)| < Kp - p(s(R1), s(R2))
< K, - Ky, - m(s(R1), s(R2))
= Kmp : d(Rla RZ)

where K,,,, = K, - K,;,. We have thus established that, for any 7, we have

| (7)) = J3 ()| < Ky - d(Ry, Ra).

Let 71 and 72 be any two policies such that Jy(m2) = Jo(71). Note that Jy(m2) = Jo(77) if and
only if J5 (m2) = J5 (m1). We can therefore apply Lemma [3|and conclude that

Jig(ﬂ-l) - ‘]15(772) <2 Kmp : d(Rh R2)
By Lemma@ there is a constant B such that J& = .J; + B. We can therefore apply Lemma
Jl(ﬂ'l) — Jl(ﬂ'g) < n(C(Rl)) -2 Kmp . d(Rl,RQ).

We have that n is a norm on Im(c). Moreover, max, J1(7) — min, Ji () is also a norm on Im(c)
(Proposition . Since Im(c) is a finite-dimensional vector space, this means that there is a constant
K, such that n(c(R1)) < K, - (max, Ji(7) —min, Jy (7)) forall Ry € R. LetU = 2 - K, - K.
We have now established that, for any 7 and 72 such that Jo(m2) = Jo(71), we have

Jl(ﬂ'l) — J1(7T2) < (Hl;lXJl(TF) 7m73nJ1(7r)) -U - d(Rl,RQ).

This completes the proof. O

F.2 COMPLETENESS

In this section we give the proofs that concern completeness. We will need the following lemma:

Lemma 7. Let S © R"™ be the boundary of a bounded convex set whose interior includes the origin.
Then there is an « > 0 such that for any x,y € S, the angle between x and y — x is at least «.

Proof. Let L be the largest sphere which is centred around the origin, and whose interior does not
intersect S. Note that since the interior of .S’ contains the origin, the radius of L is positive. Similarly,
let U be the smallest sphere which is centred around the origin, and whose exterior does not intersect
S. (In other words, L and U are two spheres such that S lies “between” L and U. Note that if S is a
sphere centred around the origin, then L = U.)

Let = and y be two arbitrary points in S, and let 6 be the angle between —x and y — x:
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Consider the line that passes through x and y. This line cannot intersect the interior of L, since S is
the boundary of a convex set. Note also that 6 gets bigger if we reduce the magnitude of x. Thus, let
2’ be the vector that results from reducing the magnitude of z until the line between =’ and y is a
tangent of L:

Now the angle 6 between —x and y — x is at most as big as the angle 6’ between —z’ and y — 2.
Next, let the point where the line between z’ and y intersects L be called A, and the point where it
intersects U be called B. Consider the line segment between A and B:

This line segment is a compact set, which means that there is a point z” along this line which
maximises the angle between —x” and y — 2 (note that this point in fact is equal to B, but we will
not need this fact in our proof). Let this angle be #”. We now have that § > 6’ > 6”. Moreover, the
value of #” does not depend on x or y, which means that the angle 6 between —z and y — « is at most
0 for all points =,y € S. This in turn means that the angle between = and y — x is at least « = m — 6,
which completes the proof. O

22



Published as a conference paper at ICLR 2024

Using this, we can now show that we can get a lower bound on the angle between two standardised
reward functions in terms of their STARC-distance:

Lemma 8. For any STARC metric d, there exist an {1 € R" such that the angle 0 between s(R;)
and s(Ryg) satisfies £1 - d(Ry1, R2) < 0 for all Ry, Ry for which neither s(R1) or s(Rz) is 0.

Proof. Let d be an arbitrary STARC-metric, and let R; and Ry be two arbitrary reward functions
for which neither s(R;p) or s(Rgz) is 0. Recall that d(R;, R2) = m(s(Ry), s(Rz2)), where m is a
metric that is bilipschitz equivalent to some norm. Since all norms are bilipschitz equivalent on any
finite-dimensional vector space, this means that m is bilipschitz equivalent to the Lo-norm. Thus,
there are positive constants p, ¢ such that

p-m(s(Ry),s(R2)) < La(s(R1), s(Rp)) < g - m(s(R1),s(Rz)).
In particular, the Lo-distance between s(R;) and s(Ry) is at least € = p - d(Ry, R2). For the rest of

our proof, it will be convenient to assume that € < Ly(s(R1)); this can be ensured by picking a p
that is sufficiently small.

Let us plot the plane which contains s(R;), s(Rz), and the origin, and orient it so that s(R;) points
straight up, and so that s(R3) is not on the left-hand side:

Since the distance between s(R;) and s(R2) is at least ¢, and since s(R3) is not on the left-hand
side, we know that s(R3) cannot be inside of the region shaded grey in the figure above (though it
may be on the boundary). Moreover, as per Lemma([7] we know that the angle between s(R;) and
s(R2) — s(Ry) is at least o, where « > 0. This means that we also can rule out the following region:
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Moreover, let v be the element of Im(s) that is perpendicular to s(R;), lies on a plane with s(R;),
s(R2), and the origin, and points in the same direction as s(Rz) within this plane. Since Im(s) is
convex, we know that s(Rz) cannot lie within the triangle formed by the z-axis, the y-axis, and the
line between s(R;) and v:

Since Im(s) is closed and convex, we know that there is a vector @ in Im(s) whose Lo-norm is bigger
than all other vectors in Im(s), and a (non-zero) vector b in Im(s) whose Lo-norm is smaller than
all other (non-zero) vectors in Im(s). From this, we can infer that the angle between s(R;) and
v — s(Ry) is at least § = arctan(b/a). Also note that 8 > 0.

We now have everything we need to derive a lower bound on the angle 6 between s(R;) and s(Rz).
First note that this angle can be no greater than the angle between s(R;) and the points marked A
and B in the figure below (whichever is smaller):

A 4
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To make things easier, replace both v and 3 with v = min(c, 5). Since this makes the shaded region
smaller, we still have that s(Ry) cannot be in the interior of the new shaded region. Moreover, in
this case, we know that the angle between s(R;) and s(Rz) is no smaller than the angle ' between
s(Ry) and the point marked A:

-
Yeaa

\4

Deriving this angle is now just a matter of trigonometry. Letting z denote Lo(A), we have that:
€ z z

sin(z)  sin(m—«)  sin(y)

From this, we get that

§' = arcsin <<§) Sin(’Y))
> (2) sin(7)

Moreover, it is also straightforward to find an upper bound 2z’ for z. Specifically, we have that
2% = La(s(Ry1))? + €2 — 2La(s(Ry))ecos(m — 7). Since € < La(s(Ry)), this means that

2 < \/2Ly(s(R1))2 — 2La(s(R1))2 cos(m — 7).

Moreover, since Im(s) is compact, there is a vector a in Im(s) whose Lo-norm is bigger than all
other vectors in Im(s). We thus know that

2 < 2 =/2L5(a)? — 2La(a)? cos(m — 7).
Putting this together, we have that

0=0 > (Zi) sin(y) = m(s(R1), s(Rs)) - p- (Sm(,”> .

z

Setting ¢1 = p - (%@) thus completes the proof. O

Finally, before we can give the full proof, we will also need the following:
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Lemma 9. For any invertible matrix M : R™ — R" there is an {s € (0,1] such that for any
v,w € R™, the angle 0’ between Mv and Mw satisfies 0' > s - 0, where 0 is the angle between v
and w.

Proof. We will first prove that this holds in the 2-dimensional case, and then extend this proof to the
general n-dimensional case.

Let M be an arbitrary invertible matrix R? — R2. First note that we can factor M via Singular Value
Decomposition into three matrices U, 3, V, such that M = U VT, where U and V are orthogonal
matrices, and X is a diagonal matrix with non-negative real numbers on the diagonal. Since M is
invertible, we also have that > cannot have any zeroes along its diagonal. Next, recall that orthogonal
matrices preserve angles. This means that we can restrict our focus to just ¥

Let o and 3 be the singular values of M. We may assume, without loss of generality, that

z_(g g).

Moreover, since scaling the x and y-axes uniformly will not affect the angle between any vectors
after multiplication, we can instead equivalently consider the matrix

Y= (O“éﬂ (1)) .

Let v, w € R? be two arbitrary vectors with angle @, and let ¢’ be the angle between v and Yw. We
will derive a lower bound on 6’ expressed in terms of 6. Moreover, since the angle between v and w
is not affected by their magnitude, we will assume (without loss of generality) that both v and w have
length 1 (under the Lo-norm).

First, note that if & = 7 then v = —w. This means that Yv = —Xw, since X is a linear transformation,
which in turn means that ' = 7. Thus 6’ > /5 - 6 as long as £5 < 1. Next, assume that § < .

We may assume (without loss of generality) that the angle between v and the z-axis is no bigger than
the angle between w and the z-axis. Let ¢ be the angle between the z-axis and the vector that is
in the middle between v and w. This means that we can express v as (cos(¢ — 0/2),sin(¢ — 0/2))
and w as (cos(¢ + 6/2),sin(¢ + 6/2)). Moreover, since reflection along either of the axes will not
change the angle between either v and w or v and Yw, we may assume (without loss of generality)
that ¢ € [0, 7/2]. For convenience, let 0 = /0.

SIf there are vectors x, i such that the angle between x and y is 6 and the angle between Mz and My is ¢,
then there are vectors v, w such that the angle between x and y is 6 and the angle between Yv and Yw is §’, and
vice versa.
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(Note that we can visualise the action of X as scaling the z-axis in the figure above by ¢.)

We now have that v = (o cos(¢ — 6/2),sin(¢ — 0/2)) and Xw = (o cos(¢ + 0/2),sin(¢ + 6/2)).
Using the dot product, we get that

o2 cos(¢p — 0/2) cos(¢ + 0/2) + sin(¢ — 0/2) sin(¢ + 0/2) .
\/02 cos2(¢p — 0/2) + sin®(¢p — 0/2)\/02 cos2(¢ + 0/2) + sin?(¢ + 6/2)

We next note that if § € [0, 7) and ¢ € [0, 7/2], then the derivative of this expression with respect to
¢ can only be 0 when ¢ € {0, 7/2})'| This means that cos(6’) must be maximised or minimised when
¢ is either 0 or 7/2, which in turn means that the angle #’ must be minimised or maximised when ¢
is either 0 or 7/2.

cos(0') =

It is now easy to see that if ¢ > 1 then #’ is minimised when ¢ = 0, and that if o < 1 then ¢’ is

minimised when ¢ = 7/2. Moreover, if ¢ = /2, then

ocos(m/2 —0/2)
sin(7/2 — 0/2)

which in turn is greater than 6 - ¢ when ¢ < 1. Similarly, if ¢ = 0, then
sin(6/2)

o cos(6/2)

0" = 2arctan < ) = 2arctan (o tan(6/2)),

¢’ = 2arctan ( ) = 2arctan (o~ ' tan(6/2)) ,

which is in turn greater than o~1 .60 when o > 1. In either case, we thus have that
0 =6 -min(o,0 ') = 6 - min(B/a, a/p).

We have therefore show that, for any invertible matrix M : R2 — R2, there exists a positive constant
min(3/a, a/B), where a and 3 are the singular values of M, such that if v, w € R? have angle 6,
then the angle between Mv and Mw is at least § - min(5/a, a/3).

To generalise this to the general n-dimensional case, let v, w € R™ be two arbitrary vectors. Consider
the 2-dimensional linear subspace given by S = span(v,w), and note that M (S) also is a 2-
dimensional linear subspace of R™ (since M is linear and invertible). The linear transformation
which M induces between S and M (S) is isomorphic to a linear transformation M’ : R? — RQE
We can thus apply our previous result for the two-dimensional case, and conclude that if the angle
between v and w is 6, then the angle between Mv and Mw is at least 6 - min(3/a, a/3), where «
and [ are the singular values of M’. Next, note that the singular values of M’ cannot be smaller than
the smallest singular values of M or bigger than the biggest singular values of M. We can therefore
let ¢5 = /B, where « is the smallest singular value of M and (3 is the greatest singular value of M,
and conclude that the angle between M v and Mw must be at least /5 - 6. Since the value of ¢5 does
not depend on v or w, this completes the proof. O

With these lemmas, we can now finally prove that all STARC metrics are complete:
Theorem 2. Any STARC metric is complete.

Proof. Let d be an arbitrary STARC metric. We need to show that there exists a positive constant L
such that, for any reward functions R; and Ra, there are two policies 71, mo with Ja(m3) = Jo(m1)
and

Jl(’/Tl) - Jl(’/TQ) = L- (m;iX Jl(’/T) - mﬁin J1(7T)) . d(Rl, Rz),

and moreover, if both max, J;(7) — min, J;(7) = 0 and max, Ja(7) — min, J2(7) = 0, then we
have that d(Ry, R2) = 0.

"For example, this may be verified using tools such as Wolfram Alpha.

8To see this, let A be an orthonormal matrix that rotates R? to align with S, and let B be an orthonormal
matrix that rotates M (S) to align with R?. Now M’ = BM A is an invertible linear transformation R? — RZ.
Moreover, since orthonormal matrices preserve the angles between vectors, we have that v, w € S have angle 6
and Mv, Mw € M(S) have angle ¢’, if and only if A~ v, A~ w € R? have angle § and BMv, BMw € R?
have angle 6. Note that M’ A~ *v = BMwv and M’ A~ w = BMw. This means that there are v, w € S such
that v, w have angle 6 and Mv, Mw have angle @', if and only if there are v/, w’ € R? such that v, w’ have
angle # and M’v" and M'w’ have angle ' (with v’ = A v and w’ = A~ w).
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We first note that the last condition holds straightforwardly. If max, Ji () — min, J1(7) = 0 and
max, Ja(7) — min, Jo(7) = 0 then R; and Ry have the same policy order, which means that
Proposition@implies that d(Ry, R2) = 0. This condition is therefore satisfied.

For the first condition, first note that if max, Ji () — min, J; () = 0, then the statement holds
trivially for any non-negative L (since the other two terms on the right-hand side of the inequality are
strictly non-negative).

Let us next consider the case where both max, Ji(7w) — min, Ji(7) > 0 and max, J;(7w) —
min, J; () > 0. We need to introduce a new definition. Let m : IT — RISIIIS| be the function that
takes a policy 7, and returns the vector where m(w)[s, a, s'] = ch:o YP(Sy, Ag, Si1 = s,a,8"),
where the probability is for a trajectory sampled from 7 under 7 and . In other words, m returns
the long-run discounted cumulative probability with which 7 visits each transition. Next, note that
J(m) = m(x) - R. This means that m can be used to decompose J into two steps, the first of which
is independent of the reward function, and the second of which is a linear function.

We will use d to derive a lower bound on the angle 6 between the level sets of .J; and J5 in Im(m).
We will then show that Im(m) contains an open set with a certain diameter. From this, we can find
two policies that incur a certain amount of regret.

First, by Lemma [8] there exists an /1 such that for any non-trivial R; and Rs, the angle between
s(Ry) and s(Ry) is at least ¢1 - d(R1, Rz2). To make our proof easier, we will assume that we pick an
¢, that is small enough to ensure that /1 - d(Ry, R2) < w/2 for all Ry, R».

Note that s(R;) and s(R2) may not be parallel with Im (), which means that the angle between
s(R1) and s(Rz) may not be the same as the angle between the level sets of .JJ; and J> in Im(m).
Therefore, consider the matrix M that projects Im(c) onto the linear subspace of R that is parallel to
Im(m), where c is the canonicalisation function of d. Now the angle between M s(R) and M s(Ry)
is the same as the angle between the level sets of the linear functions which J; and J, induce on
Im(m). Moreover, note that M is invertible, since any two reward functions in Im(c) induce different
policy orderings except when they differ by positive linear scaling (Proposition[I)). We can therefore
apply Lemma and conclude that there exists an ¢5 € (0, 1], such that the angle 6 between the level
sets of J; and J5 in Im(m) is at least £ - £1 - d(Ry, Ra). Moreover, since ¢; - d(R1, Ry) is at most
/2, and since ¢5 < 1, we have that {5 - 1 - d(Ry, Rg) is at most 7/2.

This gives us that, for any two policies 7y, 79, we have:

Ji(m1) — Ji(me) = J1C(7T1) - ch(ﬁ)

(Ry)m(m) — c¢(R1)m(ma)

c(Ry) 1) —m(mz))
(m2))

= M(c(Ry))(m(m1) —m
= La(M(c(R1))) - La(m(m) —m(mz)) - cos(¢)

c

(m(m

where ¢ is the angle between M (c¢(R;)) and m(m;) — m(ms), and JE is the evaluation function
of ¢(Ry). Note that the first line follows from Lemma @ We can thus derive a lower bound on
worst-case regret by deriving a lower bound for the greatest value of this expression.

We have that Im(m) contains a set that is open in the smallest affine space which contains Im(m)
(see |Skalse et al [2022b). This means that there is an e such that Im(m) contains a sphere of
diameter e. We will show that we always can find two policies within this sphere that incur a certain
amount of regret. Consider the 2-dimensional cut which goes through the middle of this sphere and
is parallel with the normal vectors of the level sets of J; and J,. The intersection between this cut
and the e-sphere forms a 2-dimensional circle with diameter €. Let 71, w5 be the two policies for
which m(m1) and m(m2) lie opposite to each other on this circle, and satisfy that Jy(71) = Ja(m2)
(or, equivalently, that Mc(Ry) - m(m1) = Mc(R1) - m(mz)). Without loss of generality, we may
assume that Jy (1) = Ji(m2).
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Now note that Lo (m(m1) — m(m2)) = e. Moreover, recall that the angle 6 between Mc¢(R;) and
Mec(R2) is atleast 0’ = {1 - {5 - d(R1, R2), and that this quantity is at most 7r/2. This means that the
angle ¢ is at most /2 — ¢’, and so cos(¢) is at least cos(m/2 — 8) = cos(7/2 — {1 - £ - d(R1, Ra)).
This means that we have two policies 71, T2 wWhere Jo(m3) = Jo() and such that

Ji(m1) = Ji(m2) = La(M(c(R1))) - L2(m(m1) — m(m2)) cos(¢)
= LQ(M(C(Rl))) € COS(ﬂ'/2 - 62 . 61 . d(Rh RQ))

Note that cos(7/2 — ) = x - 2/w when x < 7/2, and that {5 - ¢1 - d(Ry, R2) < 7/2. Putting this
together, we have that there must exist two policies 71, o with Ja () = Ja(m1) such that

€-ly-0y-2
™

Ji(m) — () > La(M(e(Ry)) - ( ) d(Rr, Ry).

Next, note that, if p is a norm and M is an invertible matrix, then p o M is also a norm. Furthermore,
recall that max, J; (7) — min, J; () is a norm on Im(c), when c is a canonicalisation function
(Proposition[d). Since all norms are equivalent on a finite-dimensional vector space, this means that
there must exist a positive constant ¢5 such that Lo (M (c(Ry))) = 43 - (max, Ji(7) — min, Jy(7)).
We can therefore set L = (e - {1 - {5 - {3 - 2/7), and obtain the result that we want:

Jl(’ﬂ'l) - Jl(ﬂ'g) = L- (m;a,x J1(7T) - mﬂin Jl(ﬂ')) . d(Rl,Rz).

Finally, we must consider the case where R» is trivial under 7 and pg, but where 11 is not. In this case,
Jo(mg) = Ja(m) for all y and mo, which means that maX,, r,.7,(n0)>Js () J1(71) — J1(m2) =
max, Ji(7) — min, Jy (7). Therefore, the statement holds for any L as long as we ensure that
L -d(R1,Ro) < 1forall Ry and Ry. This completes the proof. O

F.3 ISSUES WITH EPIC, AND SIMILAR METRICS

In this appendix, we prove the results from in Appendix|A] Moreover, we state and prove versions of
these theorems that are more general than the versions given in the main text. First, we need a few
new definitions:

Definition 7. A function ¢ : R — R is an EPIC-like canonicalisation function if c is linear, ¢(R) and
R differ by potential shaping, and ¢(R;) = ¢(Rg) if and only if Ry and Ry only differ by potential
shaping.

Definition 8. A function d : R x R — R is an EPIC-like metric if there is an EPIC-like canon-
icalisation function ¢, a function n that is a norm on Im(c), and a metric m that is admissible on
Im(c), such that d(Ry, R2) = m(s(Ry), s(Rz)), where s(R) = ¢(R)/n(c(R)) when n(c(R)) # 0,
and ¢(R) otherwise.

Note that CEPIC s an EPIC-like canonicalisation function, and that EPIC is an EPIC-like metric.
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Theorem 3. For any EPIC-like metric d there exists a positive constant U, such that for any reward
functions Ry and Rs, if two policies w1 and m satisfy that Jo(m2) = Jo(71), then we have that

J1(7T1) — J1(7T2) < U - LQ(Rl) . d(Rl, RQ)
Proof. We wish to show that there is a positive constant U, such that for any R; and Ry, and any
pair of policies 71 and 7 such that J(m3) > Jo(m1), we have

J1(7T1) - J1(7T2) < U - LQ(Rl) . d(Rl,RQ).
Moreover, this must hold for any choice of 7 and pg.

Recall that d(Ry, Ry) = m(s(Ry), s(Rz)), where m is an admissible metric. Since m is admissible,
we have that p(s(Ry), s(Rz)) < Ky,-m(s(Ry1), s(Rz)) for some norm p and constant K,,,. Moreover,
since p is a norm, we can apply Lemmato conclude that there is a constant K, such that for any
policy 7, any transition function 7, and any initial state distribution p, we have that

| TP () = J3 ()] < Ky - p(s(R1), s(Rz)).
Combining this with the fact that p(s(R1), s(R2)) < K, - m(s(R1), s(Rz)), we get
K, - p(s(R1),s(R2)) < K, - K, - m(s(R1), s(R2))
= Kpp - d(R1, R2)
where K,,,, = K,, - K,;,. We have thus established that, for any 7, 7, and y1, we have
| () = J3 ()| < K - d(Ry, Ra).

Consider an arbitrary transition function 7 and initial state distribution p, and let 771 and 75 be any
two policies such that Jo(m2) > Jo(m1) under 7 and p19. Note that Jo(72) = Jo () if and only if
Js (ma) = J5 (m1). We can therefore apply Lemma and conclude that

JZ(my) — Jf (m2) <2+ Kpp - d(Ry, Ry).
By Lemma@ there is a constant B such that J& = J; + B. We can therefore apply Lemma
Ji(m) — Ji(m2) < n(e(Ry)) -2+ Ky - d(R1, Ra).
By Lemma 4] there is a positive constant K, such that n(c(R)) < K,, - n(R) forall R € R.
Ji(m1) — Ji(me) < Ky -n(R1) -2+ Kpp - d(R1, Ra).

Moreover, since n is a norm, and since R is a finite-dimensional vector space, we have that there is a
constant Ko such that n(R) < Ky - Lo(R) forall Re R. LetU = 2 K, - K., - K5. We have now
established that, for any 7, and 7 such that Jo(m2) > Jo(71), we have that

J1(7T1) — Jl(ﬂ'g) <U- LQ(Rl) . d(Rl,RQ).
Note that U does not depend on 7 or 1o. This completes the proof. O

Theorem 4. No EPIC-like metric is sound.

Proof. Consider an arbitrary transition function 7 and an arbitrary initial state distribution 1o, and let
d be an EPIC-like metric with canonicalisation function ¢, normalisation function n, and admissible
metric m.

Let X be a linear subspace of Im(c), such that there, for any reward function R € Im(c), is exactly
one reward function R’ € X such that R and R’ differ by S’-redistribution under 7.

Let R; be an arbitrary reward function in X such that n(R;) = 1, and let Rs = —R;. Note that R;
and the reward function that is 0 everywhere do not differ by potential shaping and S’-redistribution —
this is ensured by the fact that they are distinct, and both included in X. As per Proposition [I] this
implies that R; does not have the same policy order as the reward function that is 0 everywhere.
This, in turn, means that max, Ji (7) — min, Jy () > 0. Moreover, since Ry = — Ry, this implies
that, if 7 is a policy that is optimal under R;, and 72 is a policy that is optimal under R, then 7o
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is maximally bad under R;, and 7; is maximally bad under R5. In other words, there are policies
71, mo such that Jg(ﬂ'g) = Jg(ﬂ'l), and

J1(771)—J1(772) _
max;, Ji(m) — min, Jy ()

This is the greatest value for this expression, and so the regret for R; and Ry is maximally high.

Next, let R} = €- Ry, and R, = € - Ry, for some small positive value e. Since positive linear scaling
does not affect the regret, we have that the regret for R} and R} also is 1.

Let x be a vector in Im(c) that is orthogonal to X'. Note that movement along x corresponds to
S’-redistribution under 7. Next, let RY = R} + o- z and R) = R, + /3 - «, where « and j3 are two
positive constants such that n(R7) = 1 and n(Rj) = 1. Since movement along x corresponds to
S’-redistribution under 7, and since S’-redistribution under 7 does not affect regret, we have that the
regret for R} and RY is 1.

. .‘/ ’ 4/ H
‘_'—0 ‘\ S’-redistribution

unit ball of 7in Im(c)

Now, since R and R} are in Im(c), and since n(R}) = 1 and n(Rj) = 1, we have that d(R/, R}) =
m(RY, RY). By making e sufficiently small, we can ensure that this value is arbitrarily close to 0.
Therefore, for any simple STARC metric d and any environment, there are reward functions such that
R} and RJ have maximally high regret, but d(RY, Rj) is arbitrarily close to 0. O

Theorem 5. There exist reward functions Ry, Ry such that d(Ry, Ra) > 0 for any EPIC-like metric
d, but where Ry and Ry induce the same ordering of policies for any choice of transition function
and any choice of initial state distribution.

Proof. Recall that S must contain at least two states s1, s2, and A must contain at least two actions
ay,as. Let Ry(s1,a1,81) = 1, R1(s1,a1, 82) = €, Ra(s1,a1,$1) = ¢, and Ra(s1,a1,52) = 1, and
let R; and Ry be O for all other transitions. ?; and Ry do not differ by potential shaping or positive
linear scaling; this means that d(R;, R2) > 0 for any EPIC-like metric d. However, R; and R» have
the same policy ordering for all 7 and p. O

F.4 OTHER PROOFS

In this section, we provide a the remaining proofs of the results mentioned in the main text.
Proposition 1. Any STARC metric is a pseudometric on R.

Proof. To show that d is a pseudometric, we must show that

1. d(R,R) =0
2. d(Ry, Ry) = d(Rg, Ry)
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3. d(Rh R3) < d(Rl, Rz) + d(R27 Rg)

1 follows from the fact that m is a metric, and 2 follows directly from the fact that the definition
of STARC metrics is symmetric in R; and R. For 3, the fact that m is a metric again implies that
d(Rl, Rg) = m(S(R1>, S(R3)) < m(s(Rl), S(RQ)) + m(s(Rg), S(Rg)) = d(Rl, Rg) + d(RQ7 Rg)
This completes the proof. O

Proposition 2. All STARC metrics have the property that d(Ry, Re) = 0 if and only if Ry and Rs
induce the same ordering of policies.

Proof. This is immediate from Proposition |1} together with the fact that if R; and R, differ by
potential shaping, S’-redistribution, and positive linear scaling, applied in any order, then Ry = a- R3
for some scalar o and some Rj3 that differs from R; via potential shaping and S’-redistribution. [

Proposition 3. If two pseudometrics dy, do on R are both sound and complete, then dy and dy are
bilipschitz equivalent.
Proof. Since d; is complete, we have that

Ly - dy(R1, R2) - (max Jy(7) — min Jy (7)) < max Ji(m1) — J1(m2).

my,mo:Ja(m2)=J2 ()
Similarly, since ds is sound, we also have that

max J1(7T1) — Jl(ﬂ'g) <U;- d2(R1,R2) . (max Jl(ﬂ') — min Jl(ﬂ'))

71,mo:Ja(me)=J2 (1)
This implies that
Ly - di(Ry, Rz) - (max Jy(7) — min Ji (7)) < Uz - d2(R1, R2) - (max Ji(7) — min Ji (7).

First suppose that (max, J; (7) — min, J; (7)) > 0. We can then divide both sides, and obtain that
Us
d1(Ry, Rs) < fl dz(R1, R2).
Similarly, we also have that
Ly
i da(R1, R) < di(R1, R2).

This means that we have constants (%) and (5—?) not depending on R; or Ry, such that

L U

2 ) da(Ry, Ro) < di(R1, Ry) < =2 ) do(Ry, Ro)
Uy Ly

for all Ry and Rj such that (max, Ji(7) — min, Jy (7)) > 0.

Next, assume (max, Ji(m) — min, J1 (7)) = 0 but (max, Jo(7) — min, Jo(7)) > 0. Since d;
and dy are pseudometrics, we have that d; (R, R2) = di(Rs2, R1) and d2(R1, Rs) = da(Ra, Ry).

Therefore, (5—) do(Ry, R2) < dy(Ry, R) < (%) da(Ry, Ry) in this case as well.

Finally, assume that (max, J;(7) — min, Ji (7)) = 0 and (max, J2(7) — min, Jo(7)) = 0. In
this case, R, and R» induce the same policy order (namely, the order where m; = 7o for all 71, 73).

This in turn means that d; (Rl, Rg) = dy (R1, RQ) = 0, and so (%) da (Rl, Rg) < dy (Rl, Rg) <
(%) ds(R1, R2) in this case as well. This completes the proof. O

G EXPERIMENTAL SETUP OF SMALL MDPs

In this appendix, we give the precise details required to reproduce our experimental results, as well as
more of the raw data than what is provided in the main text.
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G.1 ENVIRONMENTS AND REWARDS

As mentioned in the main text, we used Markov Decision Processes with 32 states and 4 actions. The
discount factor was set to 0.95 and the initial state distribution was uniform.

The transition distribution 7(s, a, s’) was generated as follows:

1. Sample i.i.d. Gaussians (u = 0,0 = 1) to generate a matrix of shape [32, 4, 32].

2. For each item in the matrix: if the item is below 1, set its value to -20. This is done to ensure
the transition distribution is sparse and therefore more similar to real-world environments.
Without this step, when an agent is in state .S and takes action A, the distribution 7(S, 4, s)
would be close to uniform, meaning that the choice of the action would not make much of a
difference.

3. Softmax along the last dimension (which corresponds to s’) to get a valid probability
distribution.

We then generated pairs of rewards. This worked in two stages: random generation and interpolation.

In the random generation stage, we choose two random rewards R, Ry using the following procedure:

1. Sample i.i.d. Gaussians (1 = 0,0 = 1) to generate a matrix of shape [32, 4, 32] correspond-
ing to R(s,a,s’).

2. With a 20% probability, make the function sparse in the following way — for each item in
the matrix: if the item is below 3, set its value to 0.

3. With a 70% probability, scale the reward function in the following way — sample a uniform
distribution between 0 and 10, multiply the matrix by this number.

4. With a 30% probability, translate the reward function in the following way — sample a
uniform distribution between 0 and 10, add this number to the matrix.

5. With a 50% probability, apply random potential shaping in the following way — sample
32 i.i.d. Gaussians (u = 0,0 = 1) to get a potential vector ®. Then sample a uniform
distribution between 0 and 10 and multiply the vector by this number. Then sample a
uniform distribution between 0 and 1 and add this number to the vector. Then apply potential
shaping to the reward function: Ryey(S,a,s’) = R(s,a,s’) + y®(s") — ®(s).

When we say "With an X% probability", we are sampling a random number from a uniform dis-
tribution between 0 and 1 and if the number is above (100-X)%, we perform the action described,
otherwise we skip the step.

Then in the interpolation stage, we take the pair of reward functions generated above and do a linear
interpolation between them, finding 16 functions which lie between R, and R,. More precisely, we
set R(;) = Ry + id where d = (Ry — R1)/16 and with 4 ranging from 1 to 16.

The interpolation step exists to give us pairs of rewards which are relatively close to each other —
for instance, Ry and R(;) are very similar. This is important because nearly all reward functions
generated with the random generation process described above will be orthogonal to each other, and
thus their distances to each other would always be quite large. By including this interpolation step,
we ensure a greater variety in the range of distance values and regret values we expect to see.

For each environment, we generated 16 pairs of reward functions, and then for each pair we performed
16 interpolation steps. This means that for each transition distribution, we compared 256 different
reward functions.

We then compute all distance metrics as well as rollout regret between R; and R ;) for all i.

G.2 ROLLOUT REGRET

We calculate rollout regret in 3 stages: 1, find optimal and anti-optimal policies, 2, compute returns
under various policies and reward functions, 3, calculate regret.

In stage 1, we use value iteration to find policies m; which maximises reward R;, m(;) which
maximises reward R(i), 7, which minimises reward R, (in other words maximising reward —R;,
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meaning 7 is the worst possible policy under 1), and 7, which minimises reward 5. Note that all
of these policies are deterministic, i.e. 7 : S — A.

In stage 2, we simulate a number of episodes to determine the average return of the policy. Specifically,
we simulate 32 episodes such that no two episodes start in the same initial state (this helps reduce
noise in the return estimates). The episode terminates when the discount factor being applied (i.e. v%)
is below 1075,

In stage 3, we calculate regret as follows. The regret is the average of two regrets: the regret of
using ;) instead of 7, when evaluating using R;, and the regret of using 7 instead of ;) when
evaluating using R;) (with both of these being normalised by the range of possible returns):

Reg; + Reg;

Reg = 5
Req. — Ji(m1) — Ji(miy)
gl_ J1(7T1>—J1(7Tw)
T — T
Reg) = o) (m@y) = Jay (1)

Jay(m@y) — Jay(my)

In cases where the denominator is zero, we simply replace it with 1 (since the numerator in these
cases is also necessarily 0).

G.3 LIST OF METRICS

Our experiment covers hundreds of metrics, derived by creating different combinations of canon-
icalisation functions, normalisations, and distance metrics. Specifically, we used 6 “pseudo-
canonicalisations” (some of which, like C¥FPIC and CPARD | do not meet the conditions of Def-
inition , 7 normalisation functions, and 6 distance norms.

For canonicalisations, we used None (which simply skips the canonicalisation step), CFFIC,

CPARD 'MinimalPotential (which is the minimal “pseudo-canonicalisation” that removes
potential shaping but not S’-redistribution, and therefore is easier to compute), VALPotential
(which is given by R(s,a,s’) — V™(s) + vV 7(s')), and VAL (defined in Proposition [2| as
Esor(s,a)[R(s,a,8") — V™ (s) + yV™(5)]). For both CEPIC and CPARD both Ds and D4
were chosen to be uniform over S and A. For both VALPotential and VAL, m was chosen to
be the uniformly random policy. E] Note that VAL is the only canonicalisation which removes both
potential shaping and S’-redistribution, and thus the only one that meets the STARC definition
of a canonicalisation function (Definition [[). The other pseudo-canonicalisations were used for
comparison. It is worth noting that our experiment does not include the minimal canonicalisation
functions, given in Definitiond} because these functions are prohibitively expensive to compute. They
are therefore better suited for theoretical analysis, rather than practical evaluations.

The normalisation step and the distance step used L1, Lo, Ly, weighted_Lj, weighted_ Lo,
and weighted_Ls. The weighted norms are weighted by the transition function 7, i.e.
L (R)(s,a,8") = (X 4.0 T(5,a,8)|R(s,a, s')|P)1/P. We also considered metrics that skip the
normalisation step.

We used almost all combinations of these — the only exception was that we did not combine

MinimalPotential with normalisation norms Ly, or weighted_ Ly, because the optimisation
algorithm for MinimalPotential does not converge for these norms.

G.4 NUMBER OF REWARD PAIRS

We used 49,152 reward pairs. This number was chosen in advance as the stopping point — it
corresponds to using 96 CPU cores, generating 2 environments on each core, choosing 16 reward
pairs within each environment and then performing 16 interpolation steps between them.

“Since VAL is a valid canonicalisation function for any choice of policy 7, we simply picked a policy for
which V™ would be easy to estimate. The reason for choosing a uniformly random policy, rather than some
deterministic policy, is that this policy has exploration build in.
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H FULL RESULTS OF SMALL MDP EXPERIMENTS

We used the Balrog GPU cluster at UC Berkeley, which consists of 8 A100 GPUs, each with 40 GB
memory, along with 96 CPU cores.

The notation in this table is in the format Canonicalisation—-normalisation—-distance.
For instance, VAL-2-weighted_1 means using the Val canonicalisation function, Lo normali-
sation function, and then taking the distance with the weighted L; norm. 0 means normalisation is
skipped.

Table 2: Full experimental results

Distance function Correlation to regret
VALPotential-1-weighted_1 0.876
VAL-1-weighted_1 0.873
VAL-1-1 0.873
VAL-weighted_1-weighted_1 0.873
VAL-weighted_1-1 0.873
VAL-1-2 0.870
VAL-weighted_1-2 0.870
VAL-1-weighted_2 0.870
VAL-weighted_1-weighted_2 0.870
VALPotential-weighted_1-weighted_1 0.867
DARD-1-weighted_1 0.861
VAL-weighted_2-inf 0.858
VAL-2-inf 0.858
VAL-weighted_2-weighted_2 0.856
VAL-2-2 0.856
VAL-weighted_2-2 0.856
VAL-2-weighted_2 0.856
VALPotential-weighted_2-weighted_2 0.845
DARD-weighted_1-weighted_1 0.835
DARD-weighted_2-weighted_2 0.831
EPIC-weighted_1-weighted_1 0.830
VALPotential-2-weighted_2 0.828
DARD-2-weighted_2 0.826
DARD-1-1 0.824
EPIC-weighted_2-weighted_2 0.823
EPIC-1-weighted_1 0.819
VAL-weighted_inf-inf 0.816
MinimalPotential-1-1 0.815
MinimalPotential-2-weighted_2 0.814
EPIC-2-weighted_2 0.814
EPIC-1-1 0.814
VALPotential-weighted_2-weighted_inf 0.807
EPIC-weighted_2-weighted_inf 0.806
VAL-2-1 0.804
VAL-2-weighted_1 0.804
VAL-weighted_2-1 0.804
VAL-weighted_2-weighted_1 0.804
VALPotential-1-1 0.800
VALPotential-weighted_2-weighted_1 0.784
VAL-weighted_2-weighted_inf 0.783
VAL-2-weighted_inf 0.783
VALPotential-2-2 0.782
DARD-2-2 0.782
MinimalPotential-2-2 0.778
EPIC-2-2 0.778
VALPotential-1-weighted_2 0.776
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DARD-weighted_2-weighted_1
DARD-2-weighted_1
VALPotential-2-weighted_1
VAL-weighted_inf-weighted_2
VAL-weighted_inf-2
DARD-1-weighted_2
VAL-inf-inf
DARD-weighted_1-weighted_2
VALPotential-2-1
DARD-2-1
EPIC-weighted_1-1
VAL-1-inf
VAL-weighted_1-inf
MinimalPotential-2-weighted_1
EPIC-2-weighted_1
VAL-1-weighted_inf
VAL-weighted_1-weighted_inf
EPIC-weighted_2-weighted_1
VALPotential-weighted_inf-weighted_inf
EPIC-2-1
VAL-weighted_inf-weighted_inf
MinimalPotential-2-1
EPIC-weighted_1-weighted_2
VAL-inf-weighted_2
VAL-inf-2
VALPotential-weighted_inf-weighted_1
MinimalPotential-1-weighted_1
DARD-weighted_inf-weighted_2
DARD-weighted_inf-weighted_1
DARD-weighted_2-1
DARD-weighted_2-weighted_inf
VAL-inf-weighted_1
VAL-inf-1
VAL-inf-weighted_inf
VAL-weighted_inf-1
VAL-weighted_inf-weighted_1
DARD-weighted_inf-weighted_inf
VALPotential-weighted_1-weighted_inf
EPIC-weighted_inf-weighted_2
EPIC-weighted_inf-weighted_1
VALPotential-1-weighted_inf
DARD-weighted_inf-1
EPIC-weighted_2-1
DARD-weighted_1-weighted_inf
VALPotential-2-weighted_inf
DARD-2-weighted_inf
EPIC-weighted_inf-weighted_inf
DARD-inf-weighted_1
DARD-1-weighted_inf
VALPotential-inf-weighted_1
DARD-inf-weighted_2
VALPotential-inf-weighted_2
EPIC-1-2
EPIC-weighted_inf-1
DARD-inf-1
DARD-inf-2
MinimalPotential-2-weighted_inf
EPIC-2-weighted_inf
VALPotential-inf-1
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0.774
0.767
0.767
0.766
0.766
0.761
0.756
0.754
0.752
0.751
0.749
0.749
0.749
0.746
0.746
0.741
0.741
0.738
0.735
0.734
0.734
0.733
0.730
0.723
0.723
0.722
0.718
0.718
0.713
0.711
0.708
0.708
0.708
0.707
0.707
0.707
0.698
0.692
0.692
0.686
0.685
0.685
0.680
0.679
0.677
0.675
0.661
0.657
0.654
0.653
0.652
0.648
0.647
0.642
0.639
0.637
0.637
0.637
0.636
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VALPotential-inf-2
MinimalPotential-2-inf
EPIC-2-inf
None-2-weighted_2
DARD-inf-weighted_inf
DARD-2-inf
EPIC-inf-weighted_2
EPIC-inf-weighted_1
VALPotential-2-inf
VALPotential-inf-weighted_inf
EPIC-1-weighted_2
None-weighted_2-weighted_inf
DARD-weighted_1-1
EPIC-inf-1
None-2-2
EPIC-inf-2
None-weighted_2-weighted_2
EPIC-weighted_1-weighted_inf
None-weighted_1-weighted_1
None-1-1
None-2-weighted_1
MinimalPotential-1-2
None-weighted_2-weighted_1
None-2-1
EPIC-inf-weighted_inf
MinimalPotential-1-weighted_2
VALPotential-inf-inf
None-inf-inf
EPIC-inf-inf
DARD-inf-inf
EPIC-1-inf
None-inf-weighted_2
None-weighted_inf-weighted_1
None-inf-2
None-inf-weighted_1
None-inf-1
None-weighted_inf-weighted_inf
EPIC-weighted_1-2
EPIC-1-weighted_inf
None-1-weighted_1
None-2-weighted_inf
MinimalPotential-1-inf
MinimalPotential-1-weighted_inf
None-inf-weighted_inf
DARD-1-2
None-2-inf
EPIC-weighted_1-inf
None-weighted_1-weighted_inf
None-1-weighted_2
DARD-1-inf
None-1-weighted_inf
None-1-2
None-0-inf
DARD-weighted_inf-2
None-0-weighted_inf
None-0-2
None-0-weighted_2
None-0-weighted_1
None-0-1
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0.634
0.634
0.634
0.633
0.632
0.630
0.630
0.629
0.625
0.624
0.622
0.622
0.621
0.620
0.618
0.617
0.615
0.607
0.598
0.597
0.579
0.576
0.573
0.571
0.571
0.568
0.557
0.555
0.554
0.552
0.542
0.539
0.539
0.538
0.537
0.537
0.530
0.529
0.517
0.515
0.513
0.493
0.489
0.487
0.453
0.444
0.436
0.429
0.390
0.376
0.353
0.352
0.333
0.319
0.312
0.304
0.303
0.296
0.296
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None-1-inf
DARD-weighted_1-2
VALPotential-1-2
EPIC-weighted_2-2
DARD-weighted_1-inf
EPIC-weighted_inf-2
EPIC-0-inf
DARD-weighted_2-2
VALPotential-1-inf
VAL-0-weighted_inf
VALPotential-0-inf
DARD-0-inf
VAL-0-weighted_1
VAL-0-1
VAL-0-weighted_2
VAL-0-2
VALPotential-0-weighted_inf
DARD-0-weighted_inf
VAL-0-inf
EPIC-0-weighted_inf
DARD-0-weighted_1
VALPotential-0-weighted_1
DARD-0-weighted_2
VALPotential-O-weighted_2
EPIC-0-weighted_2
EPIC-0-weighted_1
EPIC-weighted_2-inf
DARD-0-2
DARD-0-1
VALPotential-0-2
DARD-weighted_2-inf
VALPotential-0-1
EPIC-0-1
EPIC-0-2
VALPotential-weighted_2-1
DARD-weighted_inf-inf
VALPotential-weighted_2-2
VALPotential-weighted_inf-1
VALPotential-weighted_inf-weighted_2
VALPotential-weighted_2-inf
EPIC-weighted_inf-inf
VALPotential-weighted_inf-2
VALPotential-weighted_inf-inf
None-weighted_2-1
VALPotential-weighted_1-1
None-weighted_inf-1
VALPotential-weighted_1-weighted_2
None-weighted_inf-weighted_2
VALPotential-weighted_1-2
None-weighted_inf-2
None-weighted_2-2
VALPotential-weighted_1-inf
None-weighted_1-1
None-weighted_inf-inf
None-weighted_2-inf
None-weighted_1-weighted_2
None-weighted_1-2
None-weighted_1-inf
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0.278
0.241
0.240
0.224
0.220
0.197
0.184
0.178
0.171
0.171
0.171
0.170
0.149
0.149
0.146
0.146
0.141
0.141
0.140
0.140
0.137
0.136
0.136
0.135
0.131
0.130
0.129
0.125
0.124
0.123
0.122
0.122
0.122
0.122
0.112
0.095
0.093
0.077
0.073
0.065
0.052
0.051
0.024
-0.034
-0.035
-0.035
-0.037
-0.040
-0.040
-0.043
-0.043
-0.044
-0.045
-0.046
-0.046
-0.047
-0.047
-0.048
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H.1 COMPARISON OF EXPERIMENTAL PERFORMANCE BASED ON CHOICE OF NORMS

As discussed in the main text, the choice of normalisation and metric functions can make a noticeable
difference to the performance of a reward metric. To make it easier to see the impact that this choice
has, this appendix contains the same data as Appendix [H] but organised together by canonicalisation
function, and then arranged by normalisation and metric.

1 2 inf weighted_1 | weighted_2 | weighted_inf

0 0.296 | 0.304 | 0.333 0.296 0.303 0.312

1 0.597 | 0.352 | 0.278 0.515 0.39 0.353

2 0.571 | 0.618 | 0.444 0.579 0.633 0.513

inf 0.537 | 0.538 | 0.555 0.537 0.539 0.487
weighted_1 | -0.045 | -0.047 | -0.048 0.598 -0.047 0.429
weighted_2 | -0.034 | -0.043 | -0.046 0.573 0.615 0.622

weighted_inf | -0.035 | -0.043 | -0.046 0.539 -0.04 0.53

Table 3: Correlation to regret for the None canonicalisation for each normalization and distance
metric. Each row corresponds to a normalisation function, and each column corresponds to a metric
function.

1 2 inf weighted_1 | weighted_2 | weighted_inf

0 0.122 | 0.122 | 0.184 0.13 0.131 0.14

1 0.814 | 0.647 | 0.542 0.819 0.622 0.517

2 0.734 | 0.778 | 0.634 0.746 0.814 0.637

inf 0.62 | 0.617 | 0.554 0.629 0.63 0.571
weighted_1 | 0.749 | 0.529 | 0.436 0.83 0.73 0.607
weighted_2 0.68 | 0.224 | 0.129 0.738 0.823 0.806
weighted_inf | 0.642 | 0.197 | 0.052 0.686 0.692 0.661

Table 4: Correlation to regret for the EPIC canonicalisation for each normalization and distance
metric. Each row corresponds to a normalisation function, and each column corresponds to a metric
function.

1 2 inf weighted_1 | weighted_2 | weighted_inf
0 0.124 | 0.125 | 0.17 0.137 0.136 0.141
1 0.824 | 0.453 | 0.376 0.861 0.761 0.654
2 0.751 | 0.782 | 0.63 0.767 0.826 0.675
inf 0.639 | 0.637 | 0.552 0.657 0.652 0.632
weighted_1 | 0.621 | 0.241 | 0.22 0.835 0.754 0.679
weighted_2 | 0.711 | 0.178 | 0.122 0.774 0.831 0.708
weighted_inf | 0.685 | 0.319 | 0.095 0.713 0.718 0.698

Table 5: Correlation to regret for the DARD canonicalisation for each normalization and distance
metric. Each row corresponds to a normalisation function, and each column corresponds to a metric
function.

1 2 inf weighted_1 | weighted_2 | weighted_inf
1| 0.815 | 0.576 | 0.493 0.718 0.568 0.489
2 10.733 | 0.778 | 0.634 0.746 0.814 0.637

Table 6: Correlation to regret for the MinimalPotential canonicalisation for each normalization
and distance metric. Each row corresponds to a normalisation function, and each column corresponds
to a metric function.
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1 2 inf weighted_1 | weighted_2 | weighted_inf

0 0.122 | 0.123 | 0.171 0.136 0.135 0.141

1 0.8 024 | 0.171 0.876 0.776 0.685

2 0.752 | 0.782 | 0.625 0.767 0.828 0.677

inf 0.636 | 0.634 | 0.557 0.653 0.648 0.624
weighted_1 -0.035 | -0.04 | -0.044 0.867 -0.037 0.692
weighted_2 0.112 | 0.093 | 0.065 0.784 0.845 0.807
weighted_inf | 0.077 | 0.051 | 0.024 0.722 0.073 0.735

Table 7: Correlation to regret for the VALPotential canonicalisation for each normalization and
distance metric. Each row corresponds to a normalisation function, and each column corresponds to
a metric function.

1 2 inf weighted_1 | weighted_2 | weighted_inf

0 0.149 | 0.146 | 0.14 0.149 0.146 0.171

1 0.873 | 0.87 | 0.749 0.873 0.87 0.741

2 0.804 | 0.856 | 0.858 0.804 0.856 0.783

inf 0.708 | 0.723 | 0.756 0.708 0.723 0.707
weighted_1 0.873 | 0.87 | 0.749 0.873 0.87 0.741
weighted_2 | 0.804 | 0.856 | 0.858 0.804 0.856 0.783
weighted_inf | 0.707 | 0.766 | 0.816 0.707 0.766 0.734

Table 8: Correlation to regret for the VAL canonicalisation for each normalization and distance metric.
Each row corresponds to a normalisation function, and each column corresponds to a metric function.

I EXPERIMENTAL SETUP OF REACHER ENVIRONMENT

In this appendix, we elaborate on the details of our Reacher experiments. The discount rate for this
experiment was v = 0.99, following the original MuJoCo environment.

I.1 REWARD FUNCTIONS

As mentioned in the main text, we used 7 different reward functions.

The GroundTruth is simply copied from the original Reacher environment. It computes the
Euclidean distance between the fingertip and target, denoted d. It also computes a penalty for taking
large actions, which is computed by squaring the values of the action and summing them, p = a3 + a?.
It then returns —(d + p).

The PotentialShaped reward applies randomly generated (but deterministic) potential shap-
ing on top of GroundTruth. When the experiment starts, 11 weights (one for each dimension
in observation space) and 1 bias are randomly sampled from a normal Gaussian. The potential
function is then simply ®(s) = w - x + b, so the full reward is PotentialShaped(s,a,s’) =
GroundTruth(s,a,s’) + y®(s") — &(s).

SPrime returns the same value as GroundTruth if s’ = 7(s, a), and the same value as Random
otherwise. At the start of the experiment, a new instance of Random is initialised (see below for
details). We consider s’ to follow from 7 (s, a) if the two quantities are either less than 1% apart, or
less than 0.01 apart (even if they aren’t perfectly equal).

SecondPeak creates a second, smaller "peak" (corresponding to a second, less important target) in
the environment, alongside the original "peak" from GroundTruth. When initialised at the start
of the experiment, it picks a random position on the same 2D plane where the fingertip and target
are, such that the Euclidean distance between the second peak and the original peak is at least 0.5
(note that the size of the whole plane is 1 x 1). The reward is then determined by first computing the
Euclidean distance between the fingertip and the second peak, denoted d, and then simply adding
—0.2d on top of GroundTruth, ie. SecondPeak = GroundTruth — 0.2d.
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SemanticallyIdentical creates areward peak around the target, similarly to GroundTruth,
but this peak has a different shape. It is a 2D Gaussian with a standard deviation of 0.1 along both
axes. The values of the Gaussian are then rounded to the nearest 0.01.

NegativeGroundReward simply returns —1 % GroundTruth.

Random returns random (but deterministic) values. When the experiment starts, 11 s-weights, 2
a-weights, 11 s’-weights, and 1 bias are generated by sampling a normal Gaussian. The reward
function then simply returns s - wy + a - wy + 8" - wy + b.

1.2 CANONICALISING AND NORMALISING IN CONTINUOUS SETTINGS

The state value function in VAL is based on a uniformly random policy 7. We implemented V'™ using
SARSA (Rummery & Niranjan, [1994) updates with AdamW (Loshchilov & Hutter, |2019) and a
reply buffer on a 4-layer MLP (which maps observations onto real values).

For the norm, we effectively need to compute the norm of a function, which means taking the norm of
an infinite-dimensional vector. This can be written precisely as ({ | f(z)|? dx)'/?, and approximated
using Monte Carlo sampling as (- >, | f(z)[F dz)'/P. When taking a sample of the reward function,
we sample s, a uniformly, and then set s’ = 7(s,a) — this removes impossible transitions from
the sample space, while also reducing the dimensionality of the space we need to cover from 22
dimensions down to 12. As a special case, when taking the L., norm, we simply look for the
maximum value of | f(z)|. This could be approximated using optimisation algorithms by assuming
| f(x)] is convex, but we chose not to make this assumption and instead simply choose the maximum
among the samples.
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