
Small batch deep reinforcement learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

In value-based deep reinforcement learning with replay memories, the batch size1

parameter specifies how many transitions to sample for each gradient update.2

Although critical to the learning process, this value is typically not adjusted when3

proposing new algorithms. In this work we present a broad empirical study that4

suggests reducing the batch size can result in a number of significant performance5

gains; this is surprising, as the general tendency when training neural networks6

is towards larger batch sizes for improved performance. We complement our7

experimental findings with a set of empirical analyses towards better understanding8

this phenomenon.9

1 Introduction10

One of the central concerns for deep reinforcement learning (RL) is how to efficiently make the most11

use of the collected data for policy improvement. This is particularly important in online settings,12

where RL agents learn while interacting with an environment, as interactions can be expensive. Since13

the introduction of DQN [Mnih et al., 2015], one of the core components of most modern deep RL14

algorithms is the use of a finite replay memory where experienced transitions are stored. During15

learning, the agent samples mini-batches from this memory to update its network parameters.16

Since the policy used to collect transitions is changing throughout learning, the replay memory17

contains data coming from a mixture of policies (that differ from the agent’s current policy), and18

results in what is known as off-policy learning. In contrast with training data for supervised learning19

problems, online RL data is highly non-stationary. Still, at any point during training the replay20

memory exhibits a distribution over transitions, which the agent samples from at each learning step.21

The number of sampled transitions at each learning step is known as the batch size, and is meant to22

produce an unbiased estimator of the underlying data distribution. Thus, in theory, larger batch sizes23

should be more accurate representations of the true distribution.24

Some in the supervised learning community suggest that learning with large batch sizes leads to25

better optimization [Shallue et al., 2019], since smaller batches yield noisier gradient estimations.26

Contrastingly, others have observed that larger batch sizes tend to converge to “sharper” optimization27

landscapes, which can result in worsened generalization [Keskar et al., 2017]; smaller batches, on the28

other hand, seem to result in “flatter” landscapes, resulting in better generalization.29

Learning dynamics in deep RL are drastically different than those observed in supervised learning,30

in large part due to the data non-stationarity mentioned above. Given that the choice of batch size31

will have a direct influence on the agent’s sample efficiency and ultimate performance, developing a32

better understanding of its impact is critical. Surprisingly, to the best of our knowledge there have33

been no studies exploring the impact of the choice of batch size in deep RL. Most recent works have34

focused on related questions, such as the number of gradient updates per environment step [Nikishin35

et al., 2022, D’Oro et al., 2023, Sokar et al., 2023], but have kept the batch size fixed.36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Pr
iv

at
eE

ye
Ice

Ho
ck

ey
Qb

er
t

He
ro

Ja
m

es
bo

nd
Fr

os
tb

ite
Gr

av
ita

r
Up

ND
ow

n
Fis

hi
ng

De
rb

y
Am

id
ar

Ba
ttl

eZ
on

e
Bo

wl
in

g
So

la
ris

En
du

ro
Te

nn
is

Ya
rs

Re
ve

ng
e

M
on

te
zu

m
aR

ev
en

ge
Ca

rn
iv

al
Ri

ve
rra

id
Bo

xi
ng

Fr
ee

wa
y

Ro
ad

Ru
nn

er
Po

ng
At

la
nt

is
Be

am
Ri

de
r

Tu
ta

nk
ha

m
Cr

az
yC

lim
be

r
Ro

bo
ta

nk
Se

aq
ue

st
Kr

ul
l

M
sP

ac
m

an
Ba

nk
He

ist
Al

ie
n

Ku
ng

Fu
M

as
te

r
Ph

oe
ni

x
El

ev
at

or
Ac

tio
n

Jo
ur

ne
yE

sc
ap

e
Ce

nt
ip

ed
e

Do
ub

le
Du

nk
Be

rz
er

k
St

ar
Gu

nn
er

Ai
rR

ai
d

Ti
m

eP
ilo

t
Ch

op
pe

rC
om

m
an

d
Pi

tfa
ll

Sk
iin

g
As

sa
ul

t
Vi

de
oP

in
ba

ll
Ve

nt
ur

e
As

te
ro

id
s

Za
xx

on
Na

m
eT

hi
sG

am
e

Br
ea

ko
ut

Po
oy

an
Ka

ng
ar

oo
De

m
on

At
ta

ck
Go

ph
er

As
te

rix
Sp

ac
eI

nv
ad

er
s

W
iza

rd
Of

W
or

102

0
101

103

[%
] I

m
pr

ov
em

en
t Batch Size 8 improvement over 32 when using QR-DQN

+37%

Figure 1: Evaluating QR-DQN [Dabney et al., 2018a] with varying batch sizes over all 60 Atari 2600
games. (Left) Average improvement obtained when using a batch size of 8 over 32 (default); (Right)
Aggregate Interquantile Mean [Agarwal et al., 2021] of human normalized scores. All games run for
3 seeds, with shaded areas displaying 95% stratified bootstrap confidence intervals.

In this work we conduct a broad empirical study of batch size in online value-based deep reinforcement37

learning. We uncover the surprising finding that reducing the batch size seems to provide substantial38

performance benefits and computational savings. We showcase this finding in a variety of agents and39

training regimes (section 3), and conduct in-depth analyses of the possible causes (section 4). The40

impact of our findings and analyses go beyond the choice of the batch size hyper-parameter, and help41

us develop a better understanding of the learning dynamics in online deep RL.42

2 Background43

A reinforcement learning problem is typically formulated as a Markov decision process (MDP),44

which consists of a 5-tuple 〈S,A,P,R, γ, 〉, where S denotes the state space, A denotes the actions,45

P : S × A → Dist(S) encodes the transition dynamics, R : S × A → R is the reward function,46

and γ ∈ [0, 1) is a discount factor. The aim to learn a policy πθ : S 7→ A parameterized by47

θ such that the sum of discounted returns Eπθ [
∑∞
t=1 γ

trt] is maximized; here, the state-action48

trajectory (s0,a0, s1,a1, . . .) is obtained by sampling an action at ∼ πθ (· | st) and reaching state49

st+1 ∼ P (· | st,at) at each decision step t, and rt ∼ R (· | st,at).50

In value-based methods, the policy is obtained as the argmax of a learned Q-function: πθ(s) ≡51

argmaxa∈AQθ(s, a). This function aims to approximate the optimal state-action values Q∗, defined52

via the well-known Bellman recurrence: Q∗(st,at) = maxa′ E[R(st,at)+ γQ∗ (st+1,at+1)], and53

is typically learned using Q-learning [Watkins and Dayan, 1992, Sutton and Barto, 2018].54

To deal with large state spaces, such as all possible images in an Atari 2600 game, Mnih et al.55

[2015] introduced DQN, which combined Q-learning with deep neural networks to represent Qθ.56

A large replay buffer D is maintained to store experienced transitions, from which mini-batches57

are sampled to perform learning updates [Lin, 1992]. Specifically, temporal difference learning58

is used to update the network parameters with the following loss function: L(θ) =(st,at,r,st+1)∼D59

[((r + γmaxa′∈AQθ̄(st+1, at+1)) − Qθ(st, at))2]. Here Qθ̄ is a target network that is a delayed60

copy of Qθ, with the parameters synced with Qθ less frequently than Qθ is updated.61

Since the introduction of DQN, there have been a number of algorithmic advances in deep RL62

agents, in particular those which make use of distributional RL [Bellemare et al., 2017], introduced63

with the C51 algorithm. The Rainbow agent combined C51 with other advances such as multi-step64

learning and prioritized replay sampling [Hessel et al., 2018]. Different ways of parameterizing return65

distributions were proposed in the form of the IQN [Dabney et al., 2018b] and QR-DQN [Dabney66

et al., 2018a] algorithms. For reasons which will be clarified below, most of our evaluations and67

analyses were conducted with the QR-DQN agent.68

3 The small batch effect on agent performance69

In this section we showcase the performance gains that arise when training with smaller batch sizes.70

We do so first with four standard value-based agents (§3.1), with varying architectures (§3.2), agents71

2

0 20 40 60 80 100
Number of Frames (in millions)

0.0

0.2

0.4

0.6

0.8

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e DQN

0 20 40 60 80 100
Number of Frames (in millions)

0.0

0.5

1.0

1.5 Rainbow

Batch Size:
8
16
32 (default)
64

0 20 40 60 80 100
Number of Frames (in millions)

0.00

0.25

0.50

0.75

1.00

1.25
QR-DQN

0 20 40 60 80 100
Number of Frames (in millions)

0.0

0.5

1.0

1.5 IQN

Figure 3: IQM for human normalized scores for DQN, Rainbow, QR-DQN, and IQN. All games run
with 3 independent seeds, shaded areas representing 95% confidence intervals.

optimized for sample efficiency (§3.3), and with extended training (§3.4). Additionally, we explore72

the impact of reduced batch sizes on exploration (§3.5) and computational cost (§3.6).73

Experimental setup: We use the Jax implementations of RL agents, with their default hyper-74

parameter values, provided by the Dopamine library [Castro et al., 2018]1 and applied to the Arcade75

Learning Environment (ALE) [Bellemare et al., 2013].2 It is worth noting that the default batch size is76

32, which we indicate with a black color in all the plots below, for clarity. We evaluate our agents on77

20 games chosen by Fedus et al. [2020] for their analysis of replay ratios, picked to offer a diversity78

of difficulty and dynamics. To reduce the computational burden, we ran most of our experiments for79

100 million frames (as opposed to the standard 200 million). For evaluation, we follow the guidelines80

of Agarwal et al. [2021]. Specifically, we run 3 independent seeds for each experiment and report81

the human-normalized interquantile mean (IQM), aggregated over the 20 games, configurations, and82

seeds, with the 95% stratified bootstrap confidence intervals. Note that this means that for most of the83

aggregate results presented here, we are reporting mean and confidence intervals over 60 independent84

seeds. All experiments were run on NVIDIA Tesla P100 GPUs.85

3.1 Standard agents86

0 50 100
0.0

0.5

1.0

1.5

2.0

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Default CNN

Default CNN

QR-DQN (CNNx4)

0 50 100
Number of Frames (in millions)

0.0

0.5

1.0

1.5

2.0

Default CNN

Default CNN

QR-DQN (Resnet)
Batch Size

8
32

Figure 2: IQM for human normalized scores
with varying neural network architectures over
20 games, with 3 seeds per experiment. Shaded
areas represent 95% stratified bootstrap confi-
dence intervals.

We begin by investigating the impact reducing the87

batch size can have on four popular value-based88

agents, which were initially benchmarked on the89

ALE suite: DQN [Mnih et al., 2015], Rainbow90

[Hessel et al., 2018] (Note that Dopamine uses a91

“compact” version of the original Rainbow agent,92

including only multi-step updates, prioritized re-93

play, and C51), QR-DQN [Dabney et al., 2018a],94

and IQN [Dabney et al., 2018b]. In Figure 3 we can95

observe that, in general, reduced batch size results96

in improved performance. The notable exception97

is DQN, for which we provide an analysis and ex-98

planation for why this is the case below. To verify99

that our results are not a consequence of the set of100

20 games used in our analyses, we ran QR-DQN101

(where the effect is most observed) over the full102

60 games in the suite and report the results in Fig-103

ure 15. Remarkably, a batch size of 8 results in104

significant gains on 38 out of the full 60 games, for an average performance improvement of 98.25%.105

3.2 Varying architectures106

Although the CNN architecture originally introduced by DQN [Mnih et al., 2015] has been the107

backbone for most deep RL networks, there have been some recent works exploring the effects108

of varying architectures [Espeholt et al., 2018, Agarwal et al., 2022, Sokar et al., 2023]. We109

investigate the small batch effect by varying the QR-DQN architecture in two ways: (1) expanding110

the convolutional widths by 4 times (resulting in a substantial increase in the number of parameters),111

1Dopamine code available at https://github.com/google/dopamine.
2Dopamine uses sticky actions by default [Machado et al., 2018].

3

+49%
+16% +12%

Figure 4: Measured IQM of human-normalized scores on the 26 100k benchmark games, with
varying batch sizes, of DER, SPR, and DrQ(ε). We evaluate performance at 100k agent steps (or
400k environment frames), and at 30 million environment frames, run with 6 independent seeds for
each experiment, and shaded areas display 95% confidence intervals.

and (2) using the Resnet architecture proposed by Espeholt et al. [2018] (which results in a similar112

number of parameters to the original CNN architecture, but is a deeper network). In Figure 2 we can113

observe that not only do reduced batch sizes yield improved performance, but they are better able to114

leverage the increased number of parameters (CNNx4) and the increased depth (Resnet).115

3.3 Atari 100k agents116

There has been an increased interest in evaluating Atari agents on very few environment interactions,117

for which Kaiser et al. [2020] proposed the 100k benchmark3. We evaluate the effect of reduced118

batch size on three of the most widely used agents for this regime: Data-efficient Rainbow (DER), a119

version of the Rainbow algorithm with hyper-parameters tuned for faster early learning [van Hasselt120

et al., 2019]; DrQ(ε), which is a variant of DQN that uses data augmentation [Agarwal et al., 2021];121

and SPR, which incorporates self-supervised learning to improve sample efficiency [Schwarzer et al.,122

2020]. For this evaluation we evaluate on the standard 26 games for this benchmark [Kaiser et al.,123

2020], aggregated over 6 independent trials.124

In Figure 4 we include results both at the 100k benchmark (left side of plots), and when trained125

for 30 million frames. Our intent is to evaluate the batch size effect on agents that were optimized126

for a different training regime. We can see that although there is little difference in 100k, there is a127

much more pronounced effect when trained for longer. This finding suggests that reduced batch sizes128

enables continued performance improvements when trained for longer.129

3.4 Training Stability130

+93%

Figure 5: Measuring IQM for human-
normalized scores when training for 200 mil-
lion frames. Results aggregated over 20 games,
where each experiment was run with 3 inde-
pendent seeds and we report 95% confidence
intervals.

To further investigate whether reduced batch sizes131

enables continual improvements with longer train-132

ing, we extend the training of QR-DQN up to the133

standard 200 million frames. In Figure 5 we can134

see that training performance tends to plateau for135

the higher batch sizes. In contrast, the smaller batch136

sizes seem to be able to continuously improve their137

performance.138

3.5 Impact on exploration139

The simplest and most widely used approach for140

exploration is to select actions randomly with a141

probability ε, as opposed to selecting them greedily142

from the current Qθ estimate. The increased vari-143

ance resulting from reduced batch sizes (as we will144

explore in more depth below) may also result in a145

natural form of exploration. To investigate this, we146

3Here, 100k refers to agent steps, or 400k environment frames, due to skipping frames in the standard
training setup.

4

0 50 100
0

1000

2000

Re
tu

rn
s

MontezumaRevenge

0 50 100
0.0

0.5

1.0

1.5
×103 Venture

0 50 100

10

20

30

Freeway

Batch Size:
8
16
32 (default)
64

0 50 100
Number of Frames (in millions)

0.0

0.5

1.0

×103 Gravitar

0 50 100
Number of Frames (in millions)

0.25

0.75

1.25

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

QR-DQN(= 0)
Batch Size

8
16
32
64

Figure 6: Left: Performance of QR-DQN on four hard exploration games with a target ε value of 0.0,
and with varying batch sizes. Right: Aggregate IQM of human-normalized scores over 20 games
with a target ε value of 0.0. In all the plots 3 independent seeds were used for each game/batch-size
configuration, with shaded areas representing 95% confidence intervals.

set the target ε value to 0.0 for QR-DQN4. In Figure 6 we compare performance across four known147

hard exploration games [Bellemare et al., 2016, Taiga et al., 2020] and observe that reduced batch148

sizes tends to result in improved performance for these games.149

3.6 Computational impact150

Empirical advances in deep reinforcement learning are generally measured with respect to sample151

efficiency; that is, the number of environment interactions required before achieving a certain level of152

performance. It fails to capture computational differences between algorithms. If two algorithms153

have the same performance with respect to environment interactions, but one takes twice as long to154

perform each training step, one would clearly opt for the faster of the two. This important distinction,155

however, is largely overlooked in the standard evaluation methodologies used by the DRL community.156

0 20 40 60
Time (hours)

0.0

0.5

1.0

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e DQN(n-step=3)

0 20 40 60
Time (hours)

0.0

0.5

1.0

1.5 Rainbow

Batch Size:
8
16
32 (default)
64

0 20 40 60
Time (hours)

0.0

0.6

1.2
QR-DQN

0 25 50 75
Time (hours)

0.0

0.5

1.0

1.5 IQN

Figure 7: Measuring wall-time versus IQM of human-normalized scores when varying batch sizes in
DQN (with n-step set to 3), Rainbow, QR-DQN, and IQN. Each experiment had 3 independent runs,
and the confidence intervals show 95% confidence intervals.

We have already demonstrated the performance benefits obtained when reducing batch size, but an157

additional important consequence is the reduction in computation wall-time. Figure 7 demonstrates158

that not only can we obtain better performance with a reduced batch size, but we can do so at a159

fraction of the runtime. As a concrete example, when changing the batch size of QR-DQN from160

the default value of 32 to 8, we achieve both a 50% performance increase and a 29% speedup in161

wall-time.162

It may seem surprising that smaller batch sizes have a faster runtime, since larger batches presumably163

make better use of GPU parallelism. However, as pointed out by Masters and Luschi [2018], the164

speedups may be a result of a smaller memory footprint, enabling better machine throughput.165

4Note that we follow the training schedule of Mnih et al. [2015] where the ε value begins at 1.0 and is
linearly decayed to its target value over the first million environment frames.

5

Key observations on reduced batch sizes:
• They generally improve performance, as evaluated across a variety of agents and

network architectures.
• When trained for longer, the performance gains continue, rather than plateauing.
• They seem to have a beneficial effect on exploration.
• They result in faster training, as measured by wall-time.

166

4 Understanding the small batch effect167

Having demonstrated the performance benefits arising from a reduced batch size across a wide168

range of tasks, in this section we seek to gain some insight into possible causes. We will focus on169

QR-DQN, as this is the agent where the small batch effect is most pronounced (Figure 3). We begin170

by investigating possible confounding factors for the small batch effect, and then provide analyses on171

the effect of reduced batch sizes on network dynamics.172

4.1 Relation to other hyperparameters173

5e-06 5e-05 5e-04
Learning rate paramater

0.0

0.4

0.8

1.2

IQ
M

 N
or

m
al

ize
d

Sc
or

e

Batch Size
8
16
32(default)
64

Figure 8: Varying batch sizes for different learn-
ing values.

Learning rates It is natural to wonder whether174

an improved learning rate could produce the same175

effect as simply reducing the batch size. In Figure 8176

we explored a variety of different learning rates and177

observe that, although performance is relatively178

stable with a batch size of 32, it is unable to reach179

the performance gains obtained with a batch size180

of 8 or 16.181

Second order optimizer effects All our experi-182

ments, like most modern RL agents, use the Adam183

optimizer [Kingma and Ba, 2015], a variant of184

stochastic gradient descent (SGD) that adapts its185

learning rate based on the first- and second-order186

moments of the gradients, as estimated from mini-batches used for training. It is thus possible that187

smaller batch sizes have a second-order effect on the learning-rate adaptation that benefits agent188

performance. To investigate this we evaluated, for each training step, performing multiple gradient189

updates on subsets of the original sampled batch; we define the parameter BatchDivisor as the190

number of gradient updates and dividing factor (where a value of 1 is the default setting). Thus,191

for a BatchDivisor of 4, we would perform 4 gradient updates with subsets of size 8 instead of a192

single gradient update with a mini-batch of size 32. With an optimizer like SGD this has no effect (as193

they are mathematically equivalent), but we may see differing performance due to Adam’s adaptive194

learning rates. Figure 9 demonstrates that, while there are differences, these are not consistent nor195

significant enough to explain the performance boost observed.196

0 25 50 75 100
600

800

1000

1200

1400

Re
tu

rn
s

Asteroids

0 25 50 75 100
Number of frames (in millions)

0

2000

4000

6000

DemonAttack

Batch Divisor
1
4

0 25 50 75 100
250

500

750

1000

SpaceInvaders

0 25 50 75 100
Number of Frames (in millions)

0.0

0.2

0.4

0.6

0.8

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

MiniBatchSplits
1
4

Figure 9: Varying the number of gradient updates per training step, for a fixed batch size of 32.

Relationship with multi-step learning In Figure 3 we observed that DQN was the only agent197

where reducing batch size did not improve performance. Recalling that the Dopamine version of198

Rainbow used is simply adding three components to the base DQN agent, we follow the analyses199

6

8 16 32 64
Batch size

0.5

1.0

1.5

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e DQN: Adding components

Default
Multi-step

Prioritized
Distributional

8 16 32 64
Batch size

0.5

1.0

1.5 Rainbow: Removing components

0 20 40 60 80 100
Number of Frames (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e DQN

Batch Size:
8
16
32 (default)
64

1 3 5 7 9 11 13 150.0

0.5

1.0

1.5

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e DQN

1 3 5 7 9 11 13 15
NStep

0.0

0.5

1.0

1.5 Rainbow

Batch Size
8
16
32
64

1 3 5 7 9 11 13 150.0

0.5

1.0

1.5 QR-DQN

Figure 10: Measured IQM human normalized scores over 20 games with 3 independent seeds for
each configuration, displaying 95% stratified bootstrap confidence intervals. Top left: Adding
components to DQN; Top center: Removing components from Rainbow. Top right: Aggregate
DQN performance with n-step of 3. Bottom: Varying batch sizes and n-steps in DQN (left), Rainbow
(center), and QR-DQN (right).

of Hessel et al. [2018] and Ceron and Castro [2021]. Specifically, in Figure 10 (top row) we200

simultaneously add these components to DQN (top left plot) and remove these components from201

Rainbow (top center plot). Remarkably, batch size is inversely correlated with performance only when202

multi-step returns are used. Given that DQN is the only agent considered here without multi-step203

learning, this finding explains the anomalous findings in Figure 3. Indeed, as the right panel of204

Figure 10 (top row) shows, adding multi-step learning to DQN results in improved performance with205

smaller batch sizes. To further investigate the relationship between batch size and multi-step returns,206

in Figure 10 (bottom row) we evaluate varying both batch sizes and n-step values for DQN, Rainbow,207

and QR-DQN. We can observe that smaller batch sizes suffer less from degrading performance as the208

n-step value is increased.209

Key insights:
• The small batch effect does not seem to be a consequence of a sub-optimal choice

of learning rate for the default value of 32.
• The small batch effect does not arise due to beneficial interactions with the Adam

optimizer.
• The small batch effect appears to be more pronounced with multi-step learning.
• When increasing the update horizon in multi-step learning, smaller batches produce

better results.
210

4.2 Analysis of network optimization dynamics211

In this section we will focus on three representative games (Asteroids, DemonAttack, and SpaceIn-212

vaders), and include results for more games in the supplemental material. In Figure 11 we present the213

training returns as well as a variety of metrics we collected for our analyses. We will discuss each in214

more detail below. The first column in this figure displays the training returns for each game, where215

we can observe the inverse correlation between batch size and performance.216

Variance of updates Intuition suggests that as we decrease the batch size, we will observe an217

increase in the variance of our updates as our gradient estimates will be noisier. This is confirmed in218

the second column of Figure 11, where we see an increased variance with reduced batch size.219

A natural question is whether directly increasing variance results in improved performance, thereby220

(partially) explaining the results with reduced batch size. To investigate, we added Gaussian noise (at221

7

0 50 100

0.5

1.0

1.5

2.0

As
te

ro
id

s

×103 Returns

0 50 100
0

10

20

LossVariance

0 50 100
0

20

40

60
GradientNorm

Batch Size: 8 16 32 64

0 50 100
0

5

10

RepresentationNorm

0 50 100

3

4

5
×102 Srank

0 50
0

20

40

[%] DormantNeurons

0 50 100
0

1

2

D
em

on
At

ta
ck

×104

0 50 100
0

10

20

0 50 100
0.0

0.5

1.0

×102

0 50 100
0

5

10

15

0 50 100

2

3

4

5
×102

0 50
0

20

40

0 50 100
0

2

4

6

Sp
ac

eI
nv

ad
er

s

×103

0 50 100
0

10

20

0 50 100
0

20

40

60

0 50 100
0

5

10

0 50 100

2

4

×102

0 50
Number of Frames (in millions)

0

10

20

30

Figure 11: Empirical analyses for three representative games with varying batch sizes. From left to
right: training returns, aggregate loss variance, average gradient norm, average representation norm,
srank [Kumar et al., 2021a], and dormant neurons [Sokar et al., 2023]. All results averaged over 3
seeds, shaded areas represent 95% confidence intervals.

varying scales) to the learning target Qθ̄ (see section 2 for definition). As Figure 12 demonstrates,222

simply adding noise to the target does provide benefits, albeit with some variation across games.

0 25 50 75 100

500

1000

1500

Re
tu

rn
s

Asteroids

0 25 50 75 100
Number of frames (in millions)

0

5000

10000

DemonAttack
Target Noise Scale

None
1.0
5.0

0 25 50 75 100

1000

2000

3000
SpaceInvaders

0 25 50 75 100
Number of Frames (in millions)

0.0

0.2

0.4

0.6

0.8

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

TargetNoiseScale
None
1.0
5.0

Figure 12: Adding noise of varying scales to the learning target with the default batch size of 32.
223

Gradient and representation norms Keskar et al. [2017] and Zhao et al. [2022] both argue that224

smaller gradient norms can lead to improved generalization and performance, in part due to less225

“sharp” optimization landscapes. In Figure 11 (third column) we can see that batch size is, in fact,226

correlated with gradient norms, which may be an important factor in the improved performance.227

There have been a number of recent works suggesting RL representations, taken to be the output228

of the convolutional layers in our networks5, yield better agent performance when their norms229

are smaller. Gogianu et al. [2021] demonstrated that normalizing representations yields improved230

agent performance as a result of a change to optimization dynamics; Kumar et al. [2021b] further231

observed that smaller representation norms can help mitigate feature co-adaptation, which can degrade232

agent performance in the offline setting. As Figure 11 (fourth column) shows, the norms of the233

representations are correlated with batch size, which aligns well with the works just mentioned.234

Effect on network expressivity and plasticity Kumar et al. [2021a] introduced the notion of the235

effective rank of the representation srankδ(φ)6, and argued that it is correlated with a network’s236

expressivity: a reduction in effective rank results in an implicit under-parameterization. The authors237

provide evidence that bootstrapping is the likeliest cause for effective rank collapse (and reduced238

5This is a common interpretation used recently, for example, by Castro et al. [2021], Gogianu et al. [2021],
and Farebrother et al. [2023]

6δ is a threshold parameter. We used the same value of 0.01 as used by Kumar et al. [2021a].

8

performance). Interestingly, in Figure 11 (fifth column) we see that with smaller batch sizes srank239

collapse occurs earlier in training than with larger batch sizes. Given that there is mounting evidence240

that deep RL networks tend to overfit during training [Dabney et al., 2021, Nikishin et al., 2022,241

Sokar et al., 2023], it is possible that the network is better able to adapt to an earlier rank collapse242

than to a later one.243

To further investigate the effects on network expressivity, we measured the fraction of dormant244

neurons (neurons with near-zero activations). Sokar et al. [2023] demonstrated that deep RL agents245

suffer from an increase in the number of dormant neurons in their network; further, the higher the246

level of dormant neurons, the worse the performance. In Figure 11 (rightmost column) we can see247

that, although the relationship with batch size is not as clear as with some of the other metrics, smaller248

batch sizes appear to have a much milder increase in their frequency. Further, there does appear to be249

a close relationship with the measured srank findings above.250

Key insights:
• Reduced batch sizes result in increased variance of losses and gradients. This

increased variance can have a beneficial effect during training.
• Smaller batch sizes result in smaller gradient and representation norms, which tend

to result in improved performance.
• Smaller batch sizes seem to result in networks that are both more expressive and

with greater plasticity.
251

5 Conclusions252

In online deep RL, the amount of data sampled during each training step is crucial to an agent’s253

learning effectiveness. Common intuition would lead one to believe that larger batches yield better254

estimates of the data distribution and yield computational savings due to data parallelism on GPUs.255

Our findings here suggest the opposite: the batch size parameter generally alters the agent’s learning256

curves in surprising ways, and reducing the batch size below its standard value is often beneficial.257

From a practical perspective, our experimental results make it clear that the effect of batch size258

on performance is substantially more complex than in supervised learning. Beyond the obvious259

performance and wall-time gains we observe, changing the batch size appears to have knock-on effects260

on exploration as well as asymptotic behaviour. Figure 8 hints at a complex relationship between261

learning rate and batch size, suggesting the potential usefulness of “scaling laws” for adjusting these262

parameters appropriately.263

Conversely, our results also highlight a number of theoretically-unexplained effects in deep rein-264

forcement learning. For example, one would naturally expect that increasing the batch size should265

increase variance, and eventually affect prediction accuracy. That its effect on performance, both266

transient and asymptotic, should so critically depend on the degree to which bootstrapping occurs267

(as in n-step returns; Figure 10) suggest that gradient-based temporal-difference learning algorithms268

need a fundamentally different analysis from supervised learning methods.269

5.1 Future Work270

Our focus in this paper has been on value-based online methods. This raises the question of whether271

our findings carry over to actor-critic methods, and different training scenarios such as offline RL272

[Levine et al., 2020] and distributed training [Stooke and Abbeel, 2018]. While similar findings are273

likely for actor-critic methods, the dynamics are sufficiently different in offline RL and in distributed274

training that it would likely require a different investigative and analytical approach.275

Our work has broader implications than just the choice of the batch size hyper-parameter. For276

instance, our findings on the impact of variance on performance suggest a promising avenue for277

new algorithmic innovations via the explicit injection of variance. Most exploration algorithms278

are designed for tabular settings and then adapted for deep networks; our results in section 3.5279

suggest there may be opportunities for exploratory algorithms designed specifically for use with280

neural networks. We hope our analyses can prove useful for further advances in the development and281

understanding of deep networks for reinforcement learning.282

9

References283

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.284

Deep reinforcement learning at the edge of the statistical precipice. In Thirty-Fifth Conference on285

Neural Information Processing Systems, 2021.286

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.287

Beyond tabula rasa: Reincarnating reinforcement learning. In Thirty-Sixth Conference on Neural288

Information Processing Systems, 2022.289

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An290

evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,291

jun 2013. doi: 10.1613/jair.3912.292

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.293

Unifying count-based exploration and intrinsic motivation. In D. Lee, M. Sugiyama, U. Luxburg,294

I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-295

ume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_296

files/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf.297

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement298

learning. In Proceedings of the 34th International Conference on Machine Learning - Volume 70,299

ICML’17, page 449–458, 2017.300

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.301

Dopamine: A Research Framework for Deep Reinforcement Learning. 2018. URL http:302

//arxiv.org/abs/1812.06110.303

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. MICo: Learning304

improved representations via sampling-based state similarity for Markov decision processes. In305

Advances in Neural Information Processing Systems, 2021.306

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more in-307

sightful and inclusive deep reinforcement learning research. In Marina Meila and Tong Zhang,308

editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of309

Proceedings of Machine Learning Research, pages 1373–1383. PMLR, 18–24 Jul 2021. URL310

https://proceedings.mlr.press/v139/ceron21a.html.311

W. Dabney, M. Rowland, Marc G. Bellemare, and R. Munos. Distributional reinforcement learning312

with quantile regression. In AAAI, 2018a.313

Will Dabney, Georg Ostrovski, David Silver, and Remi Munos. Implicit quantile networks for314

distributional reinforcement learning. In Proceedings of the 35th International Conference on315

Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 1096–1105.316

PMLR, 2018b.317

Will Dabney, Andre Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G. Bellemare, and318

David Silver. The value-improvement path: Towards better representations for reinforcement319

learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.320

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and321

Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.322

In The Eleventh International Conference on Learning Representations, 2023. URL https:323

//openreview.net/forum?id=OpC-9aBBVJe.324

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam325

Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:326

scalable distributed deep-rl with importance weighted actor-learner architectures. In Proceedings327

of the 35th International Conference on Machine Learning), ICML’18, 2018.328

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin, Pablo Samuel329

Castro, and Marc G Bellemare. Proto-value networks: Scaling representation learning with330

auxiliary tasks. In The Eleventh International Conference on Learning Representations, 2023.331

URL https://openreview.net/forum?id=oGDKSt9JrZi.332

10

https://proceedings.neurips.cc/paper_files/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
https://proceedings.mlr.press/v139/ceron21a.html
https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=oGDKSt9JrZi

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark333

Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International334

Conference on Machine Learning, pages 3061–3071. PMLR, 2020.335

Florin Gogianu, Tudor Berariu, Mihaela C Rosca, Claudia Clopath, Lucian Busoniu, and Razvan336

Pascanu. Spectral normalisation for deep reinforcement learning: An optimisation perspective.337

In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on338

Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 3734–3744.339

PMLR, 18–24 Jul 2021.340

Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami, Kai Rothauge,341

Michael W Mahoney, and Joseph Gonzalez. On the computational inefficiency of large batch sizes342

for stochastic gradient descent. arXiv preprint arXiv:1811.12941, 2018.343

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan344

Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining Improvements in345

Deep Reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,346

2018.347

Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Campbell, Konrad348

Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,349

Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning350

for atari. In International Conference on Learning Representations, 2020. URL https://351

openreview.net/forum?id=S1xCPJHtDB.352

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter353

Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv354

preprint arXiv:1609.04836, 2016.355

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter356

Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In357

International Conference on Learning Representations, 2017. URL https://openreview.net/358

forum?id=H1oyRlYgg.359

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua360

Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,361

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL362

http://arxiv.org/abs/1412.6980.363

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization364

inhibits data-efficient deep reinforcement learning. In International Conference on Learning365

Representations, 2021a. URL https://openreview.net/forum?id=O9bnihsFfXU.366

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine.367

Dr3: Value-based deep reinforcement learning requires explicit regularization. In International368

Conference on Learning Representations, 2021b.369

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,370

review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.371

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.372

Mach. Learn., 8(3–4):293–321, May 1992.373

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and374

Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open375

problems for general agents. J. Artif. Int. Res., 61(1):523–562, jan 2018. ISSN 1076-9757.376

Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural networks. ArXiv,377

abs/1804.07612, 2018.378

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-379

mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,380

Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,381

Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.382

Nature, 518(7540):529–533, February 2015.383

11

https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=H1oyRlYgg
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=O9bnihsFfXU

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The384

primacy bias in deep reinforcement learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,385

Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International386

Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,387

pages 16828–16847. PMLR, 17–23 Jul 2022.388

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-389

man. Data-efficient reinforcement learning with self-predictive representations. In International390

Conference on Learning Representations, 2020.391

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and392

George E. Dahl. Measuring the effects of data parallelism on neural network training. Journal393

of Machine Learning Research, 20(112):1–49, 2019. URL http://jmlr.org/papers/v20/394

18-789.html.395

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-396

nomenon in deep reinforcement learning. In ICML, 2023.397

Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement learning. CoRR,398

abs/1803.02811, 2018. URL http://arxiv.org/abs/1803.02811.399

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.400

Adrien Ali Taiga, William Fedus, Marlos C. Machado, Aaron Courville, and Marc G. Bellemare. On401

bonus based exploration methods in the arcade learning environment. In International Conference402

on Learning Representations, 2020. URL https://openreview.net/forum?id=BJewlyStDr.403

Hado P van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in re-404

inforcement learning? In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox,405

and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-406

ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/407

1b742ae215adf18b75449c6e272fd92d-Paper.pdf.408

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292, 1992.409

Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving410

generalization in deep learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba411

Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference412

on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 26982–413

26992. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/zhao22i.414

html.415

12

http://jmlr.org/papers/v20/18-789.html
http://jmlr.org/papers/v20/18-789.html
http://jmlr.org/papers/v20/18-789.html
http://arxiv.org/abs/1803.02811
https://openreview.net/forum?id=BJewlyStDr
https://proceedings.neurips.cc/paper/2019/file/1b742ae215adf18b75449c6e272fd92d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1b742ae215adf18b75449c6e272fd92d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1b742ae215adf18b75449c6e272fd92d-Paper.pdf
https://proceedings.mlr.press/v162/zhao22i.html
https://proceedings.mlr.press/v162/zhao22i.html
https://proceedings.mlr.press/v162/zhao22i.html

Broader impact Although the work presented here is mostly of an academic nature, it aids in the416

development of more capable autonomous agents. While our contributions do not directly contribute417

to any negative societal impacts, we urge the community to consider these when building on our418

research419

A Related work420

There is a considerable amount of literature on understanding the effect of batch size in supervised421

learning settings. Keskar et al. [2016] presented quantitative experiments that support the view that422

large-batch methods tend to converge to sharp minimizers of the training and testing functions, and as423

has been shown in the optimization community, sharp minima tends to lead to poorer generalization.424

Masters and Luschi [2018] support the previous finding, presenting an empirical study of stochastic425

gradient descent’s performance, and reviewing the underlying theoretical assumptions surrounding426

smaller batches. They conclude that using smaller batch sizes achieves the best training stability427

and generalization performance. Additionally, Golmant et al. [2018] reported that across a wide428

range of network architectures and problem domains, increasing the batch size yields no decrease in429

wall-clock time to convergence for either train or test loss.430

Although batch size is central to deep reinforcement learning algorithms, it has not been extensively431

studied. One of the few results in this space is the work byStooke and Abbeel [2018], where they432

argued that larger batch sizes can lead to improved performance when training in distributed settings.433

Our work finds the opposite effect: smaller batch sizes tends to improve performance; this suggests434

that empirical findings may not directly carry over between single-agent and distributed training435

scenarios.436

Fedus et al. [2020] presented a systematic and extensive analysis of experience replay in Q-learning437

methods, focusing on two fundamental properties: the replay capacity and the ratio of learning438

updates to experience collected (e.g. the replay ratio). Although their findings are complementary to439

ours, further investigation into the interplay of batch size and replay ratio is an interesting avenue440

for future work. Finally, there have been a number of recent works investigating network plasticity441

[Nikishin et al., 2022, D’Oro et al., 2023, Sokar et al., 2023], but all have kept the batch size fixed.442

B Code availability443

Our experiments were built on open source code, mostly from the Dopamine repository. The root444

directory for these is https://github.com/google/dopamine/tree/master/dopamine/, and we specify the445

subdirectories below (with clickable links):446

• DQN, Rainbow, QR-DQN and IQN agents from /jax/agents/447

• Atari-100k agents from /labs/atari-100k/448

• Batch size from /jax/agents/quantile/configs/quantile.gin (line 36)449

• Exploration ε = 0 from /jax/agents/quantile/configs/quantile.gin (line 16)450

• Resnet from /labs/offline-rl/jax/networks.py (line 108)451

• Dormant neurons metric from /labs/redo/452

For the srank metric experiments we used code from:453

https://github.com/google-research/google-research/blob/master/454

generalization_representations_rl_aistats22/coherence/coherence_compute.py455

C Atari 2600 games used456

Most of our experiments were run with 20 games from the ALE suite [Bellemare et al., 2013], as457

suggested by Fedus et al. [2020]. However, for the Atari 100k agents (subsection 3.3), we used the458

standard set of 26 games [Kaiser et al., 2020] to be consistent with the benchmark. Finally, we also459

ran some experiments with the full set of 60 games. The specific games are detailed below.460

13

https://github.com/google/dopamine/tree/master/dopamine/
https://github.com/google/dopamine/tree/master/dopamine/jax/agents
https://github.com/google/dopamine/tree/master/dopamine/labs/atari_100k
https://github.com/google/dopamine/blob/master/dopamine/jax/agents/quantile/configs/quantile.gin#L36
https://github.com/google/dopamine/blob/master/dopamine/jax/agents/quantile/configs/quantile.gin#L16
https://github.com/google/dopamine/blob/master/dopamine/labs/offline_rl/jax/networks.py#L108
https://github.com/google/dopamine/tree/master/dopamine/labs/redo
https://github.com/google-research/google-research/blob/master/generalization_representations_rl_aistats22/coherence/coherence_compute.py
https://github.com/google-research/google-research/blob/master/generalization_representations_rl_aistats22/coherence/coherence_compute.py
https://github.com/google-research/google-research/blob/master/generalization_representations_rl_aistats22/coherence/coherence_compute.py

20 game subset: AirRaid, Asterix, Asteroids, Bowling, Breakout, DemonAttack, Freeway, Gravitar,461

Jamesbond, MontezumaRevenge, MsPacman, Pong, PrivateEye, Qbert, Seaquest, SpaceInvaders,462

Venture, WizardOfWor, YarsRevenge, Zaxxon.463

26 game subset: Alien, Amidar, Assault, Asterix, BankHeist, BattleZone, Boxing, Breakout, Chop-464

perCommand, CrazyClimber, DemonAttack, Freeway, Frostbite, Gopher, Hero, Jamesbond, Kanga-465

roo, Krull, KungFuMaster, MsPacman, Pong, PrivateEye, Qbert, RoadRunner, Seaquest, UpNDown.466

60 game set: The 26 games above in addition to: AirRaid, Asteroids, Atlantis, BeamRider, Berzerk,467

Bowling, Carnival, Centipede, DoubleDunk, ElevatorAction, Enduro, FishingDerby, Gravitar, Ice-468

Hockey, JourneyEscape, MontezumaRevenge, NameThisGame, Phoenix, Pitfall, Pooyan, Riverraid,469

Robotank, Skiing, Solaris, SpaceInvaders, StarGunner, Tennis, TimePilot, Tutankham, Venture,470

VideoPinball, WizardOfWor, YarsRevenge, Zaxxon.471

14

D Second order optimizer effects.472

0 50 100
0

5000

10000

15000

Re
tu

rn
s

AirRaid

0 50 100
0

2000

4000

6000

Asterix

0 50 100

750

1000

1250

1500
Asteroids

0 50 100
20

40

60

Bowling

0 50 100

20

40

Re
tu

rn
s

Breakout

0 50 100
0

2000

4000

6000
DemonAttack

0 50 100

10

20

30
Freeway

0 50 100

1000

2000
Gravitar

0 50 100
0

500

1000

Re
tu

rn
s

Jamesbond

0 50 100
0

1000

2000

MontezumaRevenge

Batch Divisor
1
4

0 50 100

2000

4000
MsPacman

0 50 100
20

0

20
Pong

0 50 100
0

1000

2000

Re
tu

rn
s

PrivateEye

0 50 100
0

5000

10000

15000
Qbert

0 50 100
0

2000

4000

6000
Seaquest

0 50 100

500

1000

SpaceInvaders

0 50 100
0

500

1000

Re
tu

rn
s

Venture

0 50 100
0

2500

5000

7500

WizardOfWor

0 50 100
Number of frames (in millions)

25000

50000

75000

YarsRevenge

0 50 100
0

2500

5000

7500
Zaxxon

Figure 13: Evaluating multiple gradient updates per training step on QR-DQN, training curves for all
games.

E Variance of updates.473

0 50 100
0

5000

10000

15000

Re
tu

rn
s

AirRaid

0 50 100
0

10000

Asterix

0 50 100

500

1000

1500

Asteroids

0 50 100
20

40

60

Bowling

0 50 100
0

25

50

75

Re
tu

rn
s

Breakout

0 50 100
0

5000

10000

DemonAttack

0 50 100
0

10

20

30
Freeway

0 50 100
0

1000

2000
Gravitar

0 50 100
0

500

1000

Re
tu

rn
s

Jamesbond

0 50 100
0.0

2.5

5.0

7.5
MontezumaRevenge

Target Noise Scale
None
1.0
5.0

0 50 100

2000

4000

MsPacman

0 50 100
20

0

20
Pong

0 50 100
0

1000

2000

Re
tu

rn
s

PrivateEye

0 50 100
0

10000

Qbert

0 50 100
0

2500

5000

7500

Seaquest

0 50 100

1000

2000

3000
SpaceInvaders

0 50 100
0

500

1000

Re
tu

rn
s

Venture

0 50 100
0

2500

5000

7500
WizardOfWor

0 50 100
Number of frames (in millions)

0

25000

50000

75000

YarsRevenge

0 50 100
0

2500
5000
7500

Zaxxon

Figure 14: Evaluating the effect of adding target noise to QR-DQN, learning curves for all games.

15

F Results on the full ALE suite474

We additionally provide complete results for all games using QR-DQN agent in Figure 15.475

0 20 40 60 80 100
0

5000

10000

15000

20000

25000
Re

tu
rn

s
AirRaid

0 20 40 60 80 100

500

1000

1500

2000

2500

3000

3500

4000

4500
Alien

0 20 40 60 80 100
0

250

500

750

1000

1250

1500

Amidar

0 20 40 60 80 100

1000

2000

3000

4000

5000

6000
Assault

0 20 40 60 80 100

0

5000

10000

15000

20000

25000

30000
Asterix

0 20 40 60 80 100

250

500

750

1000

1250

1500

1750

2000
Asteroids

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
s

1e6 Atlantis

0 20 40 60 80 100

0

200

400

600

800

1000

1200

BankHeist

Batch Size:
8
16
32 (default)

0 20 40 60 80 100

5000

10000

15000

20000

25000

30000

35000

BattleZone

0 20 40 60 80 100
0

2000

4000

6000

8000

10000
BeamRider

0 20 40 60 80 100

200

300

400

500

600

700

800

Berzerk

0 20 40 60 80 100

20

30

40

50

60

70
Bowling

0 20 40 60 80 100
20

0

20

40

60

80

100

Re
tu

rn
s

Boxing

0 20 40 60 80 100
0

20

40

60

80

100

120
Breakout

0 20 40 60 80 100

1000

2000

3000

4000

5000

6000

Carnival

0 20 40 60 80 100
1500

2000

2500

3000

3500

4000

4500

5000
Centipede

0 20 40 60 80 100

500

750

1000

1250

1500

1750

2000

2250

2500
ChopperCommand

0 20 40 60 80 100

20000

40000

60000

80000

100000

120000

CrazyClimber

0 20 40 60 80 100

0

5000

10000

15000

20000

25000

30000

Re
tu

rn
s

DemonAttack

0 20 40 60 80 100

20

15

10

5

0

5

10

15

20
DoubleDunk

Batch Size:
8
16
32 (default)

0 20 40 60 80 100

0

10000

20000

30000

40000

50000

60000

70000

ElevatorAction

0 20 40 60 80 100

0

500

1000

1500

2000

Enduro

0 20 40 60 80 100

80

60

40

20

0

20

40

60
FishingDerby

0 20 40 60 80 100

0

5

10

15

20

25

30

35
Freeway

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

Re
tu

rn
s

Frostbite

0 20 40 60 80 100
0

5000

10000

15000

20000

Gopher

0 20 40 60 80 100
0

250

500

750

1000

1250

1500

1750

2000
Gravitar

0 20 40 60 80 100

0

5000

10000

15000

20000

25000

Hero

0 20 40 60 80 100

15

10

5

0

5

IceHockey

0 20 40 60 80 100
0

500

1000

1500

2000

Jamesbond

0 20 40 60 80 100

14000

12000

10000

8000

6000

4000

2000

0

Re
tu

rn
s

JourneyEscape

0 20 40 60 80 100

0

2000

4000

6000

8000

10000

12000

Kangaroo
Batch Size:

8
16
32 (default)

0 20 40 60 80 100

2000

4000

6000

8000

10000
Krull

0 20 40 60 80 100
0

5000

10000

15000

20000

25000

30000

35000
KungFuMaster

0 20 40 60 80 100

0

500

1000

1500

2000

2500

MontezumaRevenge

0 20 40 60 80 100

500

1000

1500

2000

2500

3000

3500

4000

4500
MsPacman

0 20 40 60 80 100

2000

4000

6000

8000

10000

12000

14000

Re
tu

rn
s

NameThisGame

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

Phoenix

0 20 40 60 80 100
200

175

150

125

100

75

50

25

0
Pitfall

0 20 40 60 80 100

20

15

10

5

0

5

10

15

20

Pong

0 20 40 60 80 100

1000

2000

3000

4000

5000

6000

7000

8000

Pooyan

0 20 40 60 80 100

0

500

1000

1500

2000

2500
PrivateEye

0 20 40 60 80 100

0

10000

20000

30000

40000

50000

Re
tu

rn
s

Qbert

0 20 40 60 80 100

2000

4000

6000

8000

10000

12000

14000

Riverraid

Batch Size:
8
16
32 (default)

0 20 40 60 80 100

0

10000

20000

30000

40000

50000
RoadRunner

0 20 40 60 80 100

10

20

30

40

50

60

Robotank

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Seaquest

0 20 40 60 80 100
32500

30000

27500

25000

22500

20000

17500

15000

12500

Skiing

0 20 40 60 80 100

500

1000

1500

2000

2500

3000

3500

Re
tu

rn
s

Solaris

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000
SpaceInvaders

0 20 40 60 80 100

0

10000

20000

30000

40000

50000

60000

70000
StarGunner

0 20 40 60 80 100

20

10

0

10

20

Tennis

0 20 40 60 80 100

1000

2000

3000

4000

5000

6000

7000

8000

TimePilot

0 20 40 60 80 100
25

50

75

100

125

150

175

200

225
Tutankham

0 20 40 60 80 100
Number of Frames (in millions)

0

10000

20000

30000

40000

50000

60000

70000

80000

Re
tu

rn
s

UpNDown

0 20 40 60 80 100
Number of Frames (in millions)

0

200

400

600

800

1000

1200

Venture

Batch Size:
8
16
32 (default)

0 20 40 60 80 100
Number of Frames (in millions)

0

100000

200000

300000

400000

500000

600000
VideoPinball

0 20 40 60 80 100
Number of Frames (in millions)

0

2000

4000

6000

8000

10000

12000

WizardOfWor

0 20 40 60 80 100
Number of Frames (in millions)

0

20000

40000

60000

80000

100000

YarsRevenge

0 20 40 60 80 100
Number of Frames (in millions)

0

2500

5000

7500

10000

12500

15000

Zaxxon

Figure 15: Training curves for QR-DQN agent. The results for all games are over 3 independent runs.

16

G Varying architectures476

0 20 40 60 80 100
0

10000

20000

Re
tu

rn
s

AirRaid

0 20 40 60 80 100
0

20000

40000

Asterix

0 20 40 60 80 100

2000

4000

MsPacman

0 20 40 60 80 100
0

50

100

150

Breakout

0 20 40 60 80 100

10

20

30

Re
tu

rn
s

Freeway

0 20 40 60 80 100
0

1000

2000

Gravitar

0 20 40 60 80 100
0

1000

2000

3000

Jamesbond

0 20 40 60 80 100
0

100

200

300

400
MontezumaRevenge

0 20 40 60 80 100

0

2000

4000

Re
tu

rn
s

PrivateEye

0 20 40 60 80 100
0

5000

10000

15000

20000
Qbert

0 20 40 60 80 100
0

2000

4000

6000

Seaquest

0 20 40 60 80 100
0

5000

10000

SpaceInvaders

0 20 40 60 80 100
0

500

1000

1500

Re
tu

rn
s

Venture

0 20 40 60 80 100
0

5000

10000

Zaxxon

0 20 40 60 80 100

500

1000

1500

2000

Asteroids

0 20 40 60 80 100
20

40

60

80
Bowling

0 20 40 60 80 100
0

20000

40000

60000

Re
tu

rn
s

DemonAttack

0 20 40 60 80 100
20

10

0

10

20
Pong

0 20 40 60 80 100
Number of frames (in millions)

0

25000

50000

75000

100000

YarsRevenge

Batch Size
8
16
32

0 20 40 60 80 100
0

2500

5000

7500

10000

WizardOfWor

Figure 16: Evaluating the effect of CNNx4 to QR-DQN, learning curves for all games.

0 20 40 60 80 100
0

10000

20000

30000

Re
tu

rn
s

AirRaid

0 20 40 60 80 100
0

200000

400000

Asterix

0 20 40 60 80 100

2000

4000

MsPacman

0 20 40 60 80 100
0

100

200

300
Breakout

0 20 40 60 80 100
0

10

20

30

Re
tu

rn
s

Freeway

0 20 40 60 80 100

250

500

750

1000
Gravitar

0 20 40 60 80 100
0

1000

2000

3000
Jamesbond

0 20 40 60 80 100
0

1000

2000

MontezumaRevenge

0 20 40 60 80 100
0

2000

4000

Re
tu

rn
s

PrivateEye

0 20 40 60 80 100
0

5000

10000

15000

20000
Qbert

Batch Size
8
16
32

0 20 40 60 80 100
0

20000

40000

Seaquest

0 20 40 60 80 100
0

10000

20000

SpaceInvaders

0 20 40 60 80 100
0

500

1000

1500

Re
tu

rn
s

Venture

0 20 40 60 80 100
0

10000

20000

Zaxxon

0 20 40 60 80 100
Number of frames (in millions)

0

2500

5000

7500

10000
Asteroids

0 20 40 60 80 100
20

40

60

80
Bowling

0 20 40 60 80 100
0

50000

100000

Re
tu

rn
s

DemonAttack

0 20 40 60 80 100
20

10

0

10

20
Pong

0 20 40 60 80 100
0

50000

100000

YarsRevenge

0 20 40 60 80 100
0

5000

10000

WizardOfWor

Figure 17: Evaluating the effect of Resnet to QR-DQN, learning curves for all games.

17

H Training Stability477

0 50 100 150 200
Number of Frames (in millions)

0.0

0.5

1.0

1.5

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

10
0M

IQN

Batch Size
8
16
32
64

Figure 18: Measuring IQM for human-normalized scores when training for 200 million frames using
IQN [Dabney et al., 2018b]. Results aggregated over 20 games, where each experiment was run with
3 independent seeds and we report 95% confidence intervals.

0 50 100 150 200
0

5000

10000

15000

20000

Re
tu

rn
s

AirRaid

0 50 100 150 200
0

10000

20000

30000

Asterix

0 50 100 150 200

2000

4000

6000

MsPacman

0 50 100 150 200
0

100

200

Breakout

0 50 100 150 200
0

10

20

30

Re
tu

rn
s

Freeway

0 50 100 150 200
0

1000

2000

3000
Gravitar

0 50 100 150 200
0

2000

4000

6000 Jamesbond

0 50 100 150 200
0

1

2

3
MontezumaRevenge

0 50 100 150 200
0

5000

10000

15000

Re
tu

rn
s

PrivateEye

0 50 100 150 200
0

20000

40000

Qbert
Batch Size

8
16
32
64

0 50 100 150 200
0

10000

20000

30000

40000
Seaquest

0 50 100 150 200
0

5000

10000

15000

20000
SpaceInvaders

0 50 100 150 200
0

500

1000

1500

Re
tu

rn
s

Venture

0 50 100 150 200
0

5000

10000

15000
Zaxxon

0 50 100 150 200

1000

2000

Asteroids

0 50 100 150 200

20

40

60

Bowling

0 50 100 150 200
0

25000

50000

75000

Re
tu

rn
s

DemonAttack

0 50 100 150 200
20

10

0

10

20
Pong

0 50 100 150 200
Number of frames (in millions)

0

50000

100000

YarsRevenge

0 50 100 150 200
0

5000

10000

15000

20000 WizardOfWor

Figure 19: Learning curves for individual games, when trained for 200 million frames using IQN
[Dabney et al., 2018b]. Results aggregated over 3 seeds, reporting 95% confidence intervals.

18

0 50 100 150 200
0

10000

20000

30000

Re
tu

rn
s

AirRaid

0 50 100 150 200
0

20000

40000

Asterix

0 50 100 150 200

1000

2000

3000

4000

5000
MsPacman

0 50 100 150 200
0

50

100

150
Breakout

0 50 100 150 200
0

10

20

30

Re
tu

rn
s

Freeway

0 50 100 150 200
0

500

1000

1500

2000
Gravitar

0 50 100 150 200
0

1000

2000

Jamesbond

0 50 100 150 200
0

1000

2000

MontezumaRevenge

0 50 100 150 200

0

2000

4000

Re
tu

rn
s

PrivateEye

0 50 100 150 200
0

20000

40000

60000

Qbert
Batch Size

8
16
32
64

0 50 100 150 200
0

2000

4000

6000

8000
Seaquest

0 50 100 150 200
0

2500

5000

7500

10000

SpaceInvaders

0 50 100 150 200
0

500

1000

1500

Re
tu

rn
s

Venture

0 50 100 150 200
0

5000

10000

15000

Zaxxon

0 50 100 150 200

1000

2000

Asteroids

0 50 100 150 200

20

40

60

80
Bowling

0 50 100 150 200
0

20000

40000

60000

Re
tu

rn
s

DemonAttack

0 50 100 150 200
20

10

0

10

20
Pong

0 50 100 150 200
Number of frames (in millions)

0

25000

50000

75000

100000
YarsRevenge

0 50 100 150 200
0

5000

10000

15000

WizardOfWor

Figure 20: Learning curves for individual games, when trained for 200 million frames using QR-DQN
[Dabney et al., 2018a]. Results aggregated over 3 seeds, reporting 95% confidence intervals.

19

	Introduction
	Background
	The small batch effect on agent performance
	Standard agents
	Varying architectures
	Atari 100k agents
	Training Stability
	Impact on exploration
	Computational impact

	Understanding the small batch effect
	Relation to other hyperparameters
	Analysis of network optimization dynamics

	Conclusions
	Future Work

	Related work
	Code availability
	Atari 2600 games used
	Second order optimizer effects.
	Variance of updates.
	Results on the full ALE suite
	Varying architectures
	Training Stability

