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ABSTRACT

Discrete diffusion models, like continuous diffusion models, generate high-quality
sequence data by gradually undoing noise applied to datapoints via a Markov pro-
cess. Gradual generation in theory comes with many conceptual benefits; for
example, inductive biases can be incorporated into the noising Markov process.
In practice however, the best performing discrete diffusion model is consistently
masking, which does not denoise gradually. Here we explain the performance of
masking diffusion by noting that it makes use of a fundamental difference between
continuous and discrete Markov processes: discrete Markov processes evolve by
discontinuous jumps at a fixed rate and, unlike other discrete diffusion models,
masking diffusion builds in the known distribution of jump times and only learns
where to jump to. We show that we can similarly bake in the known distribution
of jump times into any discrete diffusion model; despite their simplicity, our new
models — schedule-conditioned diffusion (SCUD) — generalize classical discrete
diffusion and masking diffusion. By applying SCUD to models with noising pro-
cesses that incorporate inductive biases on images, text, and protein data, we build
diffusion models that outperform masking.

1 INTRODUCTION

Discrete diffusion models are state of the art models for conditional generation of discrete sequences.
In biological sequence design, for example, they allow one to generate sequence flexibly conditioned
on protein structure (Luo et al., 2022), DNA function (Sarkar et al., 2024), protein family (Alamdari
et al., 2023), and other properties (Gruver et al., 2023; Nisonoff et al., 2024). They are also nearing
state-of-the-art generation on language data (Sahoo et al., 2024). To define a diffusion model, one
proposes a “forward” process by which data is gradually transformed token-by-token into noise and
then learns a “backward” transformation that turns noise into data by optimizing an ELBO. In prin-
ciple, the quality of the learned model should benefit from a forward process that captures structure
in the data distribution. For example, works have suggested forward processes that are more likely to
transform tokens into similar tokens — therefore the noising process is more “gradual” (Austin et al.,
2021; Alamdari et al., 2023) ; as well as “state-dependent” processes that transform certain tokens
more quickly than others (Shi et al., 2024). Surprisingly, these methods are all outperformed by
“masking diffusion” which has the simplest possible forward process — one transforms each token
into a masking token at a uniform rate (Austin et al., 2021; Alamdari et al., 2023; Shi et al., 2024).

Here we propose that this is because masking diffusion benefits from a parameterization that forces
the distribution of corruption / transition events, the “transition schedule”, in the backward process
to match the distribution in the forward process. We use this insight to build models that unlock the
benefits of structured and state-dependent processes in practice. First in Sec. 3 we provide a new
decomposition of the ELBO that includes a term describing the mismatch in the distribution of the
schedules of the forward and backward processes. Then in Sec. 4 we describe how to efficiently train
models that build in the transition schedule (Fig. 1) to set this term to 0. We call our models schedule
conditioned diffusion (SCUD). In Sec. 5 we show that when SCUD is applied to discrete diffusion
with a uniform forward process, the result is masking diffusion, explaining its superior performance.
Finally in Sec. 7 we unlock the potential of structured and state-dependent discrete diffusion by
building SCUD versions of these methods and see that they finally beat masking diffusion (Fig 2).
We release our code at https://anonymous. 4open.science/r/SCUD-3844/.

2 BACKGROUND

Our goal is to model data from a distribution p(z() where x is a sequence of discrete elements that
belong to a set of size B. First we consider the one-dimension case and consider sequences later.
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Figure 1: SCUD builds in when to transition CIFARI10 with B = 128 states. We show mean
from the forward process, and only learns and standard deviation over 3 replicates. Details
where to transition. are in App. D.

Discrete diffusion In diffusion, we start with a distribution that is easy to sample from, g(z1); we
then learn a parameterized Markov process from time 1 to time O that evolves samples from g(x)
to a distribution gy () that is approximately p(z(). To learn a Markov process that evolves (1)
to p(xg), we first pick a simple Markov process that approximately evolves samples from p(zg) to
q(z1) from time O to 1; then we try to match the trajectories from the parameterized Markov process
q0((t)¢e[o,17) that evolves “backward” from time 1 to 0 to those of the simple process p((¢)¢e0,1])
that evolve “forward” from time O to 1 (Campbell et al., 2022). We do so by maximizing the evidence
lower bound (ELBO)
%((xt)te[o,u)
P((%)te[O,l] |z0)
(Je((ﬂvt)te[o 1] |$1) q(r)
= ), lo : + Ey (2, z0) log —————.
p((z¢)teo,1)) 108 p((xt)te[o,l] |0, 71) p(z1,20) 108 p(21|70)

This ELBO is maximized when the distribution of forward and backward trajectories match. The
second term of the right hand side measures if the forward process indeed evolves samples zy ~
p(zo) to g(x1). The first term measures how well the forward and backward trajectories match.

Ep(2) 108 40(70) = Ep(20) Ep((20),c(0.1)|w0) 108
(N

Discrete Markov processes and infinitesimal generators To define a diffusion model, we need
to define a simple Markov process to generate p((¢):c[o,1]) and we need to parameterize the back-
ward Markov process Fortunately, discrete Markov processes are much easier to define than their
continuous counterparts. Every time-homogeneous discrete Markov process is fully described by a
B x B matrix that describes the “flow” of a particle at each instant in time known as the infinitesimal
generator £. In particular, £y, ;y describes the rate at which state b transitions to state b'; the diagonal
of £ describes the rate of transitions out of b: L, = — Zb, £b Ly v . Therefore, to simulate from a
Markov process described by L, starting at x;, one simulates the time at which x; would transition
to each other state At, ~ Exp(L;, ) for b # x,; then one transitions z; according to the first transi-
tion sampled: it take At = min; At time to transition and x; transitions to x4 A = argming Aty
By a property of exponential distributions, the transition time is distributed according to the value
on the diagonal of £: At ~ Exp(3_;_, Lao,b) = ExXp(—Lasq,z,). This procedure is known as the
Gillespie algorithm (Gillespie, 1977).

Picking the forward process Two popular choices for the forward process are the uniform and
masking processes. The uniform process has a constant rate of transitioning to any state (Lp =
1/(B—1)if b # V' and L, = —1) and the masking distribution has a constant rate of transition
to a masking state () (for b # 0, Ly py = 0if b AV # 0, Lyg = 1, Ly, = —1, and Ly g = 0).
Both of these processes are simple to simulate — simply sample At ~ Exp(1) and then transition
to a uniformly random state or to (). There are also other processes that bake in inductive biases for
text, images, and proteins (Austin et al., 2021; Alamdari et al., 2023).
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(a) D3PM (uniform forward process) on UniRef50. (b) TLDR (Gaussian forward process) on CIFAR10.

Figure 3: State of the art discrete diffusion models have backwards processes which do not
match the forward process in when they transition. We plot the transition rate of the backward
process minus that of the forward process. We discuss details in App. D.

For typical Markov processes, information about the starting state £y becomes lost as ¢ gets larger
and p(x;) gets closer to a stationary distribution p(z,). This distribution is a natural choice for
q(z1) as long as p(z1|zg) is close to converging to the stationary distribution.

In practice, p(x1|xo) is usually not near p(z, ), so we modulate the speed of the process by a rate (3,
at time ¢ — at the instant ¢ we simulate from the process ;L. Simulating this modulated process for

time ¢ is equivalent to simulating the original process for time f(f Bsds. By choosing f3; to become
large as ¢t — 1, we can be sure p(z1|zo) = p(2s) = q(21).

Parameterizing the backward distribution The backward Markov process is usually defined in
terms of a parameterized, time-dependent, infinitesimal generator Ly ;. The first term of Eqn. 1 is
usually written as an integral in time E;unif(0,1)L(Lo.¢,t), for some L which intuitively measures
how well the Ly, describes the “flow” of the reversal of p((x;),) at instant ¢ (Campbell et al., 2022;
Luo et al., 2022).

3 LEARNING WHEN AND WHERE TO TRANSITION

To fit a discrete diffusion model, the backward process should match the forward in both when it
transitions and where it transitions to. One should expect that learning where to transition is hard;
on the other hand, since the distribution of when to transition is simple and known a priori in many
cases, one should expect learning when to transition should be trivial. We see however in Fig. 3 that
this is not necessarily true — state of the art published diffusion models have detectable differences
in the transition rates of their forward and backward processes.

Unlike previously derived forms of the ELBO which are written as an integral of the discrepancy of
the flow at each moment ¢, with some algebra, we break up the ELBO into discrepancy of when and
where to transition. Define the “transition schedule”, S = {t¢1,t2,...,ta}, as the set of times at
which z; transitions.

Proposition 3.1. (Proof in Prop A.l in the Appendix) The expression in Eqn. I is equal to the
expression in Eqn 2 for some constant C.

qgo((we)t]z1,5)
p(($t)t|$07 T1, S)

Ep((x0)) l0g —KL(p(9)a6(S)) = Ep(s.20) KL(p(21]S, w0) |90 (21]5)) +C. (2)

The first term represents the difference in log likelihoods between gy and p when the transitions are
known — it measures if the forward and backward processes match where they transition to. The
second term measures if the forward and backward processes match when they transition. The third
term, like the second term of Eqn. 1 intuitively measures if p(x1|x) has converged to p(z).

To build diffusion models that better fit their objective, we therefore would like to incorporate knowl-
edge of p(S) into the model. Eqn 2 is suggestive of how to do this: set ¢(S) = p(S) so that the
second term becomes 0 and then learn where to transition by optimizing the first term. We call this
procedure “schedule conditioning” (Fig. 1) and in Sec. 4 we describe how to perform it in practice.

Unlike diffusion models with the uniform forward process, diffusion models with the masking for-
ward process are parameterized so that the distribution of times at which tokens are masked matches
the distribution of times at which they are unmasked — these models know when to transition. In
practice they have been observed to outperform uniform diffusion models. In Sec. 5 we will prove
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that applying our methods in Sec. 4 gives exactly masking distribution, explaining their superior
performance. By schedule conditioning other processes with more appropriate inductive biases, we
also improve on masking diffusion (Fig 2).

4 SCHEDULED CONDITIONED DIFFUSION (SCUD)

In this section, motivated by Eqn. 2, we describe how to incorporate information about when to
transition into a discrete diffusion model. Ideally we could set ¢(.S) = p(.S); however, in general, £
may not have constant transition rates at each state, in which case S may be correlated with ¢ and
p(S) may be a complex distribution. Instead of looking directly at transitions then, we introduce
latent “events” which will act as transitions did above — they occur with constant rate and often result
in transitions; in some cases we discuss below, they will coincide exactly with transitions. S will
describe the schedule of these events and this is what we’ll condition on.

In Sec. 4.1 we will describe models that condition on these event schedules, SCUD. Next in Sec. 4.2
we will write the loss in a form that is easy to train on high dimensional data. Finally in Sec. 4.3 we
will describe how to parameterize and sample from SCUD.

4.1 CONDITIONING ON EVENT SCHEDULES

Markov processes with event schedules To sample from a uniform forward process starting at
x¢, we sampled a transition time according to a rate that was independent of the current state, At ~
Exp(1), and then sampled x;; o; with uniform probability. Consider more generally the discrete
Markov process on x; such that we sample an “event” At ~ Exp(r), and then sample z;ya; ~
Categorical(K,, .) where K, . is a matrix whose rows are normalized distributions; note in this
case x; may be equal to x4 A;. By appealing to the formal definition of £, the next proposition tells
us that this process has infinitesimal generator that flows according to the rate » x K, with a —1I to
describe the flow out of z.

Proposition 4.1. (Proof in Prop A.2 in the Appendix) The infinitesimal generator of this process is
L = r(K — I) where I is the identity matrix. In particular, any Markov process with L can be
simulated in the above way by picking an r > maxy — Ly, and setting K = L/r + 1.

We note there are many choices of r that allow one to write the same Markov process in this way
and we will evaluate different choices in Sec. 5.

Reversing the process conditioned on the event schedule Call p((z;);) the distribution of paths
that start at p(xo) and evolve according to the above Markov process. The next proposition uses a
bit of algebra to suggest that we can simulate from p((x):) “backwards” by 1) sampling the ending
point 1 ~ p(x1), 2) sampling the event schedule {¢1,to,...,tx} ~ p(S), and then 3) going
backwards, sampling where the particle came from at the m-th event.

Proposition 4.2. (Proof in Prop A.3 in the Appendix) Call the event schedule S = {t1,ta,...,tr}
and ty = 0. Call s the number of events up to time t, so s¢,, = M.

M

p((x)i,8) = p(S)p(1) [ pee, |0, s0,.)- 3)
m=1

We now aim to model this backwards process.

SCUD: schedule conditioned discrete diffusion models As suggested in Sec 3, we wish to build

a discrete diffusion model gy by setting g(x1) = p(r~) and ¢(S) = p(S). Prop. 4.2 suggests

parameterizing ¢ so that, at each event, it predicts the previous state x;,__, given 1) the current

state z; , and 2) the number of events that have occurred so far s;. We call such a model a SCUD

(schedule conditioned diffusion) model. With some algebra, in analogy with Eqn. 2 we get a closed

form objective.

Proposition 4.3. (Proof in Prop A.4 in the Appendix) Calling the event schedule S =
{tl,tg, e ,t]u} andto == 0,
M
Ep(a0) 108 96(20) > Ep((z,),.5.20) P KL(p(@t,, |20, 20, 51,0)| |90 (20,0, |71, 50,0))

m=1
= Ep(s,00) KL(p(21]51, 20) |[P(70))-

This objective is minimized when qo(xy,,_, |x+,,, St,,) = p(x+,,_,|Tt,, s St )-

“4)
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The first term is from the first term of Eqn 2 and teaches gg where to go at each event. The second
term of Eqn 2 vanishes and the third term becomes the third term of Eqn 4, which should be small
if p(x1) converges to p(z ). By Prop. 4.2 then, as the objective in Eqn. 4 is minimized, gg((x¢))
approaches p((x¢)).

Computing the objective The ELBO in Eqn. 4 is straightforward to compute. To calculate the
first term, we note, writing each state as a one-hot vector,

(T4, [0, 5¢)p(2t,, |24, 5 St) o xgﬂKStilItm_lxtTm_lectm

. @y, T, 85) = = NG
p( tfn—1| t1n 0 f) p( "L $07S) ngStmtm ( )

To calculate the second, we note p(z) can be derived as the left eigenvector of £ that corresponds
to the eigenvalue 0 (as it does not change under flow from £) and p(z1|s1, o) = xd K%12;.

4.2 HIGH DIMENSIONAL DATA

For high dimensional discrete data such as images, language, and biological sequences, it is common
to choose processes L that act on each dimension independently. Say our data is D dimensional with
dimensions x}, ..., x¥ with each ¢ a discrete object in a set of size B. We extend SCUD to this
case by simulating D parallel schedules for each dimension S, ..., S? ~ p(S); here s; becomes a
D-dimensional vector.

Parameterizing qp For atime t, if sf > (, define pr(:cf) as the state at the last event in dimen-
sion d and pr :EJ the previous state at each dimension; i.e. if the event schedule at dimension d is
S ={t{,...,tdYand t € [td td . ), then pr(zf) = xfgnil. Our formula for reversing p((z))
in Prop. 4.2 remains the same, but in App. B.2 we show p(pr(x¢ )|z, s¢) factorizes. Thus we param-
eterize our predictor gy (pr(z;)|x¢, s¢) so it also factorizes as HdD:1 qo(pr(zd)|z¢, s¢). Thus we get
an objective as in Eqn 4 but with a sum over D in front.

Efficient loss We could technically use our objective in Eqn. 4 by taking empirical estimates of
the expectation and the sum over events. In this case however, each empirical sample corresponds
to one event which effects a single dimension d, so it only checks the prediction qg(pr(zf)|zs, s¢).

The loss of other diffusion models, written as ;. unit(0,1) Bz, ~p(z:|a0) ZdD:1 L (Lg, x4, t|70, L),

allow one to sample ¢ and then check the predictions of gg(pr(z¢)|x;, s;) at that time for every d in
parallel. To write our objective in a similar form, we sample ¢ ~ Unif (0, 1) and then add a weight

st x B/ fot Bsds representing how likely an event is to occur at the instant ¢:
Proposition 4.4. (SCUD loss) (Proof in Prop. A.6 in the Appendix) The first term of Eqn. 4 is

B
f() ﬂs

We can approximate this objective by empirical estimates of all of the expectations and optimize
with minibatch gradient descent. For a single evaluation of gy we can predict pr(z¢) for each
dimension d in parallel and check whether it matches the forward process along every dimension.
The algorithm for calculating an estimate of the ELBO for a z( is summarized in App. B.1.

_Et~Unif(0,1)E p(z¢,20,9 ZS?KL (pr(xt)\wtvstwo)l\t}e(pr(xt)lxmf‘t)) (6)

4.3 SCHEDULE CONDITIONING IN PRACTICE

Parameterization gy must predict, for each dimension, p(pr(z¢)|x;, s;), which is an expectation
over the posterior of ¢ given x;and S:

d\(..d .d ..d N dp($g|$t75t)
ZP(PT(%)W,%,%) JUo|33t’ ZP |Pf ﬂft (pr(l‘t)\staﬂfo)w~
p(xt\st,xo)

d
%o

In App. B.2 we show that the fraction on the right hand side is proportional to p(z&|z; d Sy d) where

Ty 4 and s; % are x; and s, without dimension d. Other discrete diffusion methods parameterize their
o to predict analogues of this quantity — Austin et al. (2021) predicted a similar quantity rather than
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directly predicting p(x&|z, S), and predicting p(x@|z; @, s, %) is identical to predicting p(z¢|z¢, S)
when z¢ is masked. Predicting this quantity has the benefit that we do not need to learn what ¢

tells us about xd; it is rather baked into our prediction. We parameterize our gg similarly.

Thus, to predict go (pr(z¢)|z¢, S) we input x; and s; into a neural network that outputs a vector of
probabilities Z ¢ and set

~ d7 ~
o (pr(zd)|zy, s¢) Zp dpr(zd))p(pr(zd)|sd, xd = b)Fgep = Kado K5t 1T304, (7)

Note we do not explicitly forbid Zg ¢ from using z¢, s¢ to predict z¢.

Sampling To sample, in principle we could take 1 ~ p(z~), S ~ p(S), and then iteratively
reverse each event in S in order using our predictions of g (pr(z¢)|z¢,s;). For data with many
dimensions however, S could contain tens of thousands of events, requiring many evaluations of
Zo,9. Instead, like Campbell et al. (2022) and Zhao et al. (2024), we reverse many events at once.
In particular we use an analogue of a k-Gillespie procedure (Zhao et al., 2024) — we pick k events
to reverse and reverse them with a single evaluation of Zy 9. We describe the particulars of which
transitions to reverse and how to many transitions at once in App. B.3.

Choosing the rate 3; Our choice of 3; describes how we compress the forward process running
. 1 . . . ..
from time O to fo Bsds into the interval [0, 1]. It controls what times we sample when training the

objective Eqn. 6 and fol Bsds controls the convergence of p(x1) to p(xso). Austin et al. (2021)
suggest picking /3; so that the mutual information between xq and x; decreases linearly to € on the
interval [0,1]. For SCUD models, we pick f; so that the same is true when conditioning on the
schedule: FEg, MI(xq, x¢|s;) decreases linearly on the interval [0, 1]. We discuss details in App. B.4.

5 SCHEDULE CONDITIONING TO CONDITION ON TRANSITIONS

To incorporate information about transitions into gy, we wish to condition on the schedule. We
described how conditioning on “events” in the previous section allow us to incorporate this structure.
However not every event corresponds to a transition. The amount of information about the transitions
that we bake into our model depends on the diagonal of K — the probabilities of no transition at an
event. In turn the diagonal of K will depend on our choice of the rate of events r. For a fixed £, we
can choose any rate r > r* = max;, —Ly ;. Let’s parameterize our choices of rate with a parameter
~: let r = v~ 1r*. When ~ is 1, the rate of events is as slow as possible; when v — 0, the rate of
events goes to oo.

~ controls the diagonal of K and therefore how much we condition on the schedule. We can write
K = ~vL/r* + I, the larger v is, the smaller the diagonal of K. When £ is “normalized” so that
every entry on the diagonal is the same, v = 1 coincides with K with zero diagonal; in this case,
every event is a transition and we’ve fully conditioned on the transition schedule. On the other hand,
as 7 — 0, the diagonals of K get closer to 1, so that almost no events result in a transition.

We now show that when £ is uniform and v = 1 — 1/D, that is, we nearly fully condition on the
schedule, our process is equivalent to masking diffusion. On the other hand, as v — 0, we learn a
backwards process while baking in no information about transitions; we show this recovers classical
discrete diffusion exactly.

5.1 CONNECTION TO MASKING DIFFUSION

Say v = 1 — 1/B and £ is uniform: L} is 1/B when b # b'. For this choice, K is a matrix
which has 1/B at every position. If a token is corrupted at least once by K then it is distributed
uniformly; it tell us nothing about xq so it is as if that token is “masked”. When we condition on the
event schedule, s; will tell us exactly which positions are masked when s¢ > 0. By integrating out
s¢ conditioned on the mask, we get exactly the masking diffusion objective (Shi et al., 2024).

Proposition 5.1. (Proof in Prop. A.7 in the Appendix) Call the masking indicator m$ = s} > 0.
Z0,0(2¢, s¢) only depends on s, through my. Defining oy = exp(— fot Bsds), the objective Eqn. 6 is

Bra
Ethnif(O,l)Ep(mt)E (z¢|To,me) T 1— Z Zy log Zo, O(ltv mt)d~
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The mask my is distributed according to m$ ~ Bern(1 — o).

In App. B.4 we also show that our choice for rate /3; discussed in Sec. 4.3 for this SCUD process is
linear (in the sense oy = 1 — ), just as for the masking process as discussed in (Austin et al., 2021).

5.2 CONNECTION TO CLASSICAL DISCRETE DIFFUSION

As v — 0, each event represents an infinitesimal change in ;. As well, the number of events up
to time ¢, s, grows larger but fluctuates less and less; inputting s; into gg(pr(z¢)|z;, s;) becomes
approximately identical to inputting the time ¢ into go. Therefore, as v — 0, gg predicts the infinites-
imal change at time ¢: the infinitesimal generator. This is exactly the objective of classical discrete
diffusion. The next proposition shows that when we take the limit v — 0 we recover exactly the loss
from SEDD (Luo et al., 2022) which is also equivalent to that from 7LDR (Campbell et al., 2022).

Proposition 5.2. (Proof in Prop. A.8 in the Appendix) Define the score function estimator as in
SEDD (Luo et al., 2022)"

~ d _ qe(xg = b|xt_d) L Eio.e(ﬂct,st)p(xg = b|$g)
S(xt7t>9,b - dl.—d = E dld
qo(wf|zy ) i’o,e(xt,st)p(xt |z§)

Suppressing the dependence of S¢9 on xy,t, as v — 0 the objective in Eqn. 6 converges to

d d d d
. p(xf = blx - p(xd = blx
—Eiunit(0,1) Ep(zo,20) Pt Z Z Eb,zf (sg,b - M log Sg,b -9 ((t|0)>)

- | 2 pledled) plafled)

where g(z) = z(logz — 1).

In App. B.4 we also show that our choice for rate 3; discussed in Sec. 4.3 approaches the rate
function for classical discrete diffusion as v — 0.

6 RELATED WORK

Diffusion generative models are state of the art for images and other continuous data (Ho et al.,
2020; Dhariwal & Nichol, 2021; Peebles & Xie, 2022), but have so far lagged behind autoregressive
models on discrete sequence data like text. Inspired by its success on continuous modalities, a
number of works have attempted to extend diffusion to discrete domains. D3PM (Austin et al.,
2021), for example, adapts Ho et al. (2020)’s continuous framework and extends early work by
Hoogeboom et al. (2021) by introducing a family of categorical noise processes based on structured
discrete transition matrices. Our method takes inspiration from the diverse noise processes explored
in D3PM but is ultimately more flexible, as our formalism can use any £ which converges to a
stationary distribution and does not require doubly stochastic matrices.

To allow for more flexible sampling and principled model development, a number of methods
have extended diffusion from discrete time to continuous time. For example, TLDR (Campbell
et al., 2022) intro a continuous-time Markov chain formulation and a corresponding continuous-
time ELBO. In related work, SEDD (Lou et al., 2023) introduced score-matching loss for discrete
spaces, intended to parallel score-matching for continuous spaces (Song & Ermon, 2019), which
allows flexible continuous time sampling. These models differ primarily in how they are parame-
terized and how they estimate the ELBO objective. SCUD on the other hand is more flexible as it
only requires that one can calculate matrix vector products with K, or equivalently £. Recently,
many works have chosen to focus purely on masking state diffusion, proposed weighted losses that
have pushed compression metrics closer and closer to numbers obtained from autoregressive models
(Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024). While SCUD is closely related to recent work
in continuous-time discrete diffusion, we find that schedule conditioning allows structured noise
processes to improve performance and thereby leads to non-masking diffusion with state-of-the-art
performance.

In the realm of sampling, Chen et al. (2023) also considered an accelerated procedure for simple
diffusion models in which the transition schedule is sample sampled first followed by the transi-
tions conditioned on the schedule, which shares similar motivations with SCUD. SCUD, however,
describes how to build in this information into training a model.

"recall ZJ 4 (z+, s¢) is trained to fit p(xd|z; 4, 57 ).
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Lastly, inspired by flow-matching developments in image modeling, many authors have begun to
propose flow-matching frameworks for discrete data. Campbell et al. (2024b) for instance propose a
flow-matching framework that accommodates joint modeling of discrete and continuous modalities,
enabling applications in protein design. Similarly, Gat et al. (2024) presents a general framework
for learning probability paths on discrete sequences and trains large-scale models on text datasets.
Unlike papers on discrete flow matching, we still employ a diffusion framework and use an ELBO
loss, but it’s possible that our investigation of schedule conditioning or structured forward processes
could yield insights that are also useful for score matching, as many of the underlying modeling
methods are shared.

7 RESULTS

We show that by incorporating information about transitions, SCUD better fits the forward process.
We first demonstrate the results of Sec. 5 that SCUD with a uniform forward process interpolates
between uniform and masking discrete diffusion. We next show that applying SCUD to state of
the art classical discrete diffusion models without schedule conditioning improves their likelihoods
on images, text, and protein data. Finally, by building SCUD with forward processes that build in
inductive biases, we also show scale that we can improve over SCUD uniform which is similar to
masking (Sec. 5.1), thereby unlocking the potential of structured discrete diffusion. Throughout this
section, SCUD refers to v = 1.

The structured forward processes we build for each modality will be inspired by those from Austin
etal. (2021). However Austin et al. (2021) used processes in discretized time that are not equivalent
to and continuous time Markov process; thus we describe new structured processes for continuous
time in terms of £ or K.

In all cases we try to make only minor modifications to the architecture and training parameters
from previous models so that differences in scores are due to schedule conditioning. We employed
a few strategies so that moving from classical discrete diffusion to SCUD did not add substantial
computational overhead, summarized in App. D.5. Other experimental details are in App. D.

7.1 CONNECTION TO OTHER MODELS

Here we show that by incorporating information about the distribution of transitions into a discrete
diffusion model, one gets better fits to the forward process.

We fit models to CIFAR10 where each pixel takes a value from 1 to B = 128. In Fig. 2 we see
that on this dataset discrete diffusion with a uniform forward process is outperformed by masking
diffusion. We see that sweeping  between 0.1 and 1, SCUD with the uniform forward process
interpolates the performance of the two models as predicted above.

Next we build a structured forward process that builds in the inductive bias that similar pixel values

describe similar colors — we set £; ; = exp(—200 (%)2), similar to the discrete-time Gaussian
forward process in Austin et al. (2021). We see that a discrete diffusion model with this forward
process slightly outperforms masking distribution. We next build SCUD models with this forward
process; we see that these models better fit their objective as we incorporate more information about
transitions — v — 1. These models outperform models that have structured forward processes
(Gaussian) or those that just condition on the transition schedule (masking) without doing the other.

7.2 IMAGES

Here we build models on CIFAR10 with B = 256 and compare to state of the art diffusion mod-
els. We use the architecture from (Kingma et al., 2021) as in discrete diffusion models MD4 (Shi
et al., 2024) and similar to that in D3PM (Austin et al., 2021) and 7TLDR Campbell et al. (2022). To
incorporate s; into our function, we replace additive layers that inject ¢ into every layer with FiILM
(Perez et al., 2017) layers that incorporate s; into every layer. We also use the logistic parameteri-
zation from Salimans et al. (2017) also used in D3PM, which interprets the output of the model as
the parameters of a discretized logistic distribution over pixel values, so that similar pixel intensities
have similar probabilities.
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Method  Forward process Training samples BPD

D3PM Uniform 1.9 x 108 5.08
D3PM Gaussian 1.9 x 108 3.44
7LDR Gaussian 2.6 x 108 3.59
MD4 Masking 2.6 x 108 2.78
Classical Gaussian 6.4 x 107 2.94
Masking Masking 6.4 x 107 2.90
SCUD Gaussian 6.4 x 107 2.86

Table 1: Schedule conditioning improves model fit on images. We compare to other discrete dif-
fusion models and report model fit in bits per dimension on CIFAR10. Models labelled “Gaussian”
implement numerically different forward processes that are united in a Gaussianity assumption.
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Figure 4: Samples from SCUD Gaussian trained on CIFAR10.

In Table 1 we compare SCUD with discrete diffusion models D3PM (Austin et al., 2021),
TLDR (Campbell et al., 2022), and MD4 (Shi et al., 2024) as well as our implementations of classi-
cal discrete diffusion models. We see that applying SCUD to model the Gaussian forward processes
substantially improves likelihood with a fraction of the compute. Among previous discrete diffu-
sion models, masking diffusion is the most performant despite not incorporating inductive biases.
When controlled for compute in our baselines, SCUD beats masking. This suggests that masking
beats Gaussian diffusion in classical models because the benefit of schedule conditioning outweighs
the benefit of incorporating inductive biases. By both incorporating inductive biases and schedule
condition, SCUD unlocks the potential of Gaussian discrete diffusion on images.

Fig. 4 shows samples from SCUD Gaussian. The samples from SCUD resemble real objects much
more than those from autoregressive models PixelCNN++ (Salimans et al., 2017) and Pixel SNAIL
(Chen et al., 2017) which have state of the art likelihoods. However they do not contain clear
objects like those from D3PM (Austin et al., 2021) or TLDR (Campbell et al., 2022); MD4 did not
show or evaluate images. The quality of samples from those models are known to depend heavily
on modelling choices, such as modifications of the objective, choice of 3, and training time; and
sampling procedure, such as the inclusion of corrector steps or how to denoise many dimensions at
once. Here we focus on achieving low likelihoods and leave the task of translating a better fit into
higher quality images to future work.

7.3 LANGUAGE

Here we build models on the one billion words dataset with a B = 30522 vocabulary size. To
improve over masking diffusion, we want to build in inductive biases about which vocabulary tokens
are more similar. However, it is not trivial to efficiently simulate a process over 30 thousand states.
To do so, we define a sparse 10-nearest neighbour graph over the most frequent 2000 states, which
make up 95% of tokens in the data. Our forward process diffuses along this graph with some
probability or transitions approximately uniformly with some small probability; the less frequently
used 25 thousand states always transition uniformly. We discuss the details in App C.
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Method  Forward process  Training tokens Perplexity

SEDD Uniform 3.3 x 1010 40.25
SEDD Masking 3.3 x 1010 32.79
MDLM Masking 3.3 x 1010 27.04
SCUD Uniform 1.1 x 1010 37.82
SCUD  Nearest Neighbour 1.1 x 1010 37.63

Table 2: Schedule conditioning improves model fit on language. We compare to other discrete
diffusion models on LM1B.

Method  Forward process Training tokens Perplexity

D3PM Uniform >3 x 10 18.82
D3PM BLOSUM >3 x 101! 17.16
D3PM Masking >3 x 101! 14.61
Classical BLOSUM 8 x 107 15.39
Masking Masking 8 x 10° 15.56
SCUD BLOSUM 8 x 109 15.29

Table 3: Schedule conditioning improves model fit on proteins. We implement and compare to
the small architecture from (Alamdari et al., 2023) on UniRef50.

SCUD allows one to flexibly incorporate a forward process by only requiring one to define K and
take powers to evaluate likelihoods. Classical discrete diffusion models such as SEDD on the other
hand require closed form p(x;|xo) which requires a matrix exponential to evaluate. While in some
cases the matrix exponential is easy to evaluate, that is not the case for our forward process. This
also means that we could not compare to classical diffusion on this structured classical diffusion.

In Tab. 2 we compare SEDD (Luo et al., 2022) and MDLM (Sahoo et al., 2024) to SCUD and an
ablation without structure, SCUD uniform. As expected, among previous models, masking beats
uniform; in (Austin et al., 2021) it was noted that masking also beats discrete diffusion with a
nearest neighbour structure on this dataset?. We see again that applying SCUD to uniform diffusion
improves its fit to the data with a fraction of the compute. We also again see that unlike previous
discrete diffusion models, when we add structure to the forward process, we improve our fit.

7.4 PROTEINS

Here we train models on the UniRef50 protein dataset with architectures from (Alamdari et al.,
2023). As in (Alamdari et al., 2023) we build a forward process using the BLOSUM matrix; this
matrix describes the rates of mutations between amino acids seen in nature. We describe the details
of our process in App C; we note B = 31 = 20 canonical amino acids + 11 special tokens.

In Tab. 3 we compare SCUD BLOSUM with the small D3PM models from (Alamdari et al., 2023)
as well as our implementations of classical discrete diffusion models. We see again that applying
SCUD to uniform and BLOSUM diffusion substantially improves the model fit given a fraction
of the compute budget. In classical discrete diffusion, masking strongly outperforms BLOSUM
diffusion. We see the opposite for SCUD, where by both schedule conditioning and incorporat-
ing inductive biases, SCUD BLOSUM outperforms masking, and thereby unlocks the potential of
BLOSUM diffusion.

8 CONCLUSION

The choice of forward process is critical to the definition of a discrete diffusion model. Yet previ-
ous results have shown very strong performance from the simplest forward process — the masking
process. SCUD offers an explanation for the superior performance of masking diffusion — it incor-
porates information about the transition schedule. By incorporating this information into models
with other forward processes, SCUD allows us to build models that build in inductive biases and
outperform masking.

>These models achieved much worse perplexity values than the models in Tab. 2 but are not directly com-
parable due to a different choice of tokenizer

10
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9 REPRODUCIBILITY

We include code to train, evaluate, and sample from SCUD models in our code release. We include
implementations for the exact architectures used in our experiments. The training and evaluation
details for experiments we ran on images, language and proteins were described by previous papers
and again in our appendix.
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A PROOFS OF RESULTS

Proposition A.1. (Proof of Prop 3.1) The expression in Egn. 1 is equal to the expression in Eqn 2
for some constant C.

Proof. S is a deterministic function of (z;); so we can write the first term of Eqn. 1 as
qo((z1)tefo,|71) _ log q0((xt)tef0,17, Sl21)
p((xt)te[o,1]|$o,x1) p((zt)tejo,1]1T0) p((wt)te[o,1],s|$o,l‘1)
q0((xt)tepo,11]71,5)
p((®¢)eecio]]T0, 21,5)

q0(S]x1)
E log ———.
*Eatslen 18, )

EP((It)te[o,l]\ﬂio) 0

®)

) log

= P((ﬂﬂt)te[o,lﬂwo

12
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We can combine the second term of this equation with the second term of Eqn. 1 to get

q0(Slz1) q(1)
Eps o lony log 02170 g Jog
p(S,z1]w0) gp(5|x0,x1) p(z1]zo0) gp(l‘ﬂxo)
q0(S) g0 (21]5)
—E, gpylog 202 g o og J0ATL2)
S0 08 p(Slwg) TSR 8 Ty, S)
q0(S) p(S5)
= log—= + F log ——— —F KL S 9)).
b(sion) 108 gy Episian) 108 gy = Bptsian KL(p(1 w0, S)lao (1] ))(9)
The first term is —KL(p(S5)||ge(S)) and the second does not depend on ¢. This completes the
proof. O

Proposition A.2. (Proof of Prop 4.1) The infinitesimal generator of this process is L = r(K — I)
where I is the identity matrix. In particular, any Markov process with L can be simulated in the
above way by picking an r > maxy, —Ly ; and setting K = L/r + I.

Proof. The process is described is clearly Markov. By the formal definition of £, for &’ # b,
1
Loy ZP_I,% ;p(aﬁt =blzg=b)

1
= }irr(l) ;(p(an event occurs before ¢) x p(the event transitions to b’) + o(t)) (10)
—

1
= lim E(l — eiTt)KbJ,/ = TKb,b’-
Then, since the rows of KX sum to 1,

£b,b = — Z L:b’b/ = -7 Z Kb,b’ = —T(l — Kb,b)'
b £b b b

The second statement follows from rearranging the first. The requirement that r > maxy —Lpp
comes from the fact that all entries in & must be non-negative and K;, ;, = Ly /r + 1. O

Proposition A.3. (Proof of Prop 4.2 in the Appendix) Call the event schedule S = {t1,ta,...,ta}
and to = 0. Call s; the number of events up to time t, so s¢,, = M.

M
p((e)r, 8) = p(S)p(z1) [] pa,,_ |2t 51,,)- (1D

m=1

Proof.
p((t)e, S) =p(9)p(21)p(T14,5 |71, )

M
:p(S)p(xl) H p(xtmfl ‘xtm:]v[ ) S)
m=1

By the Markov property, p(z:,, |2t ., S) = plas,,_, |z, ,S). Finally, p(z:, |z, ,S)
p(zt,,|zt,, ., S)p(2t,,,1S) = p(2t,,|2t,, . )p(2t,, |5t,,,) only depends on S through s¢,, ,,
or equivalently, s;, =1+ s O

m—1"°

Proposition A.4. (Proof of Prop. 4.3) Calling the event schedule S = {t1,ta,...,tp} andtg = 0.

M
Ey(a0) 108 96(20) = = Ep((a)1,8,00) O, KL(D(@1,,_, |21, 70, 51,100 (21, [T, 50,,)

m=1

— Ep(s,20) KL(p(z1]51, 20)||P(20))-

(12)

This objective is minimized when qo(xy,,_, |x+,,, St,,) = p(x+,,_, |t s St )-

13
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Proof. Just as with the classical ELBO, we can write

QG((xt)te[O,l]v S)

E 1 >E E 1 . 1
P(@o) qu(xO) =5p(0,8) Bpl(@)ecioa) Sleo) 108 P((xt)te[o,lhs\xo) (13
Then we can break it up as in Prop. A.1 to get
go((ze)e|z1, S
Ep 2y l0g q(20) > Ep((2,),) log (@e)elas, 5) — KL(p(9)[q(5))
p((x1)elzo, 1, S) (14)

p(5)
Ep(s|20) l0g S Eps.20)KL(p(71]S; z0)||ge (21]5))-

By our definition of the event schedule and ¢(S), the second and third term on the right are 0. For
the fourth term, clearly p(z1|xo,.S) = p(z1]z0, $1)-

By our definition of gy,

=

ao((e)eler, S) = || a(@e, [, 56,)-

m=1
As in teh proof of Prop. A.3, we can write
M
p((zt)¢|wo, 1, 5) = H (@t 1 |20, 21,8, Ttpny) = H p(@t,, |70, 5,5 Tt,,)
m=1 m=1

where the last equality follows by the Markov property. Thus the first term is

M
4@t |Tt,0s St)
Z log - 7= > KL(p(ar,, |0, st we,)|lq(@r, |2, 50,))-

p(@t,, s |T0, 8¢, 71

m m=1

O

Proposition A.5. (Proof of Prop B.1) p(xt|z¢, xo, $t) factorizes as HdD:1 p(pr(zd)|zd, 28, s¢) and,
when marginalizing over xq, each dimension of x; is independent:

m—1

D
plor(zo)las, s0) = [ plor@)|z, 0).-
d=1
Proof.
d D d d
p\prix Zo, S LEpI‘J) prx Lo, St )P\ T |PIr(T
o(oran)er. 0. 1) — P s0prelor(as it Dlad, stp(adlpr(at)

p(x¢|To, st) ($t|$0a5t)

which equals [T a1 p(pr(zd)|zd, xd, s§). The second claim follows from integrating the later ex-
pression. O

Proposition A.6. (Proof of Prop. 4.4) Define, if s¢ > 0, pr(x}) as the state at the last event in
dimension d. Then the first term of Eqn. 4 is

B
EtNUnlf(O 1)E (z¢,20,S) 7t 5 . f 6 ZS?KL (pI‘ ‘rt |xt ) St,ZCO)HQQ(pT(Iﬂt”CB“ St)) (15)
0 S
Proof. Call S = {t{,...,t4 ,}. The first term of Eqn. 4 can be written as
D M?
P((It )t,S,T0) Z Z KL pI‘ xtd )|xtd ’x075td )||qe(pr(xtd )‘xtd ) tdl))'
d=1m=1

The term in the sum can be written as L(s;, 2, Zo, d) so we can write

D D
Epwoesan) O, O Llst,xe,20,d) = Eysay Y Eylag)p(S-a)p(as wo,s) L5t 1, o, d).

d=1teSd d=1 tesd
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Call the function after Y°,_ ¢a equal to C(t, s{) so we can write the loss as Ey,(gay >_,cqa C(t, s7).

We now il?vestigaFe the ‘measure Ep g4y > 4cga- First note that E,(gay Zte ga 1 clearly abso-

lutely continuous in ¢ with respect to the Lebesgue measure so this expression can be written as

By Unit(0,1) 2oge f(t, 58)C(t, s¢) for some function f. By the Lebesgue differentiation theorem,
: d t

almost everywhere,

f(t',s) = lim B g Z 1t e[t —et]sh=s)/e
tesd (16)
=p(s% = s) lim E [# eventsin [t' — €, t][sf = s] /e.
e—

The distribution of events on an interval [0, ¢] is a Poisson process with density u(s) = rfs;we can
simulate this by drawing s; ~ Pois( fg Bsds) and then distributing the s events with probability

according to p/u([0,¢]). Therefore, conditioned on s events occurring on [0,t'], the density of
events occurring at [t' — €,t'] is u(t')/ ([0, t']), that is, the expectation in Eqn. 16 is

tl !
s events x L)/ mass = st,ﬁit
w([0,2]) [y Bsds
Subbing this into the previous equation completes the proof. O

Proposition A.7. (Proof of Prop. 5.1) Defining a; = exp(— f(f Bsds), the objective in Eqn. 6 is

Brou -
Ethnif(O,l)Ep(mt)Ep(xt|xu,7rtt) 1_70% Z ffoT log xO,H(‘rtv mt)d'
d

Proof. If s§ > 1 then pr(z) is corrupted so p(pr(z)|x¢, s, xd) is a uniform categorical and

doesn’t depend on xq; therefore, by our parameterization of gy, we have that the KL term in the loss
Eqn 6 is non-zero if and only if s§ = 1. As well, when s = 1, p(pr(z)|z¢, s¢ = 1,2d) = 6,,. In
this case we can write the loss as

ﬂ s
EtNUmf 0,1) 7 42 7. f Ep(S)Ep(zt\S,mo) Z ]]-(S;&i = ].)(Eg log 1’079(1}, st)d'

5<t d

Finally note that when g g(x:, s¢) predicts xo, s; is only useful in telling the model which tokens
are corrupted. If we call my = s; > 0 an indicator of which tokens have been corrupted, then we
can parameterize our prediction as Zg g (x¢, my).

Note p(xt|xo, S) = p(at|xo, mt), sO

Ey($) Ep(ar|s.00) 9 1(sf = 1)af log o 0 (s, me)? =
d

(17)
Eym) Bp(asmsoo) P (st = 1mi)x log o 6 (ze,my)".
d
s ~ Pois( [ Bsds) so p(s¢ = 1jm{) = 0if m{ = 0 and
ds a
p(sf = 1mi) = p(sf = 1]s{ > 1) = o Buds
1-— Qg
O

Proposition A.8. (Proof of Prop. 5.2) As v — 0 the objective in Egn. 6 converges to

xd = blz P xd = plad
— By Unit(0,1) Ep(ao,z) Bt Z Z Ly pa (39 b (td|)0) log s 39 b— 9 (W))

4 | brad p(xf|af i |zh)

where g(x) = z(logx — 1).
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Proof. Note s; ~ Pois(r* fot Bsds/7), so, as v — 0, s;7y converges to r* fot Bsds.
Asy — 0,

t
Kot = (I 4+~L/r*) = exp(yseL/1%) + o(y) — exp </ ﬁsds£> =Qy,
0

where @ is the matrix where Q  »» = p(z; = b'|zg = D).
Kozl o K33 4
d T 1-s
zy " Ky'Top
d ~1. ~
Kyxg o K- QuToe
= 4T A ~ +
z;" Qiloe

=1, + Kzl 058 — 280 K58 + o()

a0 (pr(af)|ae, s¢) =

o(7) (18)

=z +7 (Laf 0 5 — zi 0 L3]) + o(7).
The expression for p(pr(z{)|zd, xd, s¢) is identical replacing g g with zg. Thus

—KL(p (pr(xt)lwmst,wo)\lqtc)( r(2f)|ze, 5t)

= blzd) 55
= Z VL bzf *~ log d d

o dl §) p(af = blaf)/p(2f|xg)
+ (1= 0(y))log E — d) —— +o(7)
17 (Lo ag — 2t Lt = blad) /p(af]od))s)
plaf =blzg) 4 <p(fr? = blﬂﬂﬁ)))
=y Ly p <s P =000 0g 58, — g [ L2 ) |+ o).
2 vt P == gy 850 =9 el
Multiplying this by s¢, we get vs¢ — fot Bsds. O

B DETAILS OF METHOD
Here we describe how we sample and pick 3; for SCUD as described in Sec. 4.3.

B.1 ALGORITHM FOR ESTIMATING ELBO

We calculate p(xo,) from an spectral decomposition of K, or, if K is very large, using power
iteration.

B.2 PARAMETERIZATION

First we show that p(pr(z¢)|zo, s¢, ;) factorizes across its dimensions.
Proposition B.1. (Proof in Prop A5 in the Appendix) p(xi|xy,x0,8¢) factorizes as

Hd L p(pr(zd)|zd, 2, s¢) and, when marginalizing over xo, each dimension of x,, , is indepen-

dent:
D

p(pr(@e)|ae, s¢) = HP(Pf(fﬂgﬂxt»St)-
d=1

Recall this allows us to parameterize g¢o(pr(z:)|z:,s;) so it also factorizes as
D
[Taz1 go(pr(@f)|ze, s¢).

We parameterize qg(pr(z¢)|z¢, 5¢) to predict

d _—d —d
($g|xtast) 7p(xt78t‘x07xt y St ) ($d|$ .S d) (mtd‘xgal't St)p(sg) ($d|$ .S d)
- 0l+t t - 0l*t t .
p(xf |$035t) (t|w0,sf)p(xf,s‘z) (xﬂmg,sf)p(xf,sf)
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Algorithm 1 Unbiased estimate of the SCUD ELBO (Eqn. 4) using Prop. 4.4

Input: x,
S~ p(S)
t ~ Unif(0, 1)
/I Sample x;
ford=1,...,Ddo
xd ~ Categorical(stxg)
end for
// Denoise one event of each dimension of x;
Predict Z ¢ (¢, S¢)
ford=1,...,Ddo
Calculate gg (pr(z)|x¢, s¢) > use Eqn. 7

Calculate p(pr(;vt Nad, sd, xd) > use Eqn. 5

Calculate p(z¢|s{, zd) = Categorlcal(Kslx ).
end for
Return:

D 548,
- (fttﬂ SKL(p(pr(%‘t)\%Stwo)l\%(pr(xt)lwt,St)) + KL(p(z ?8?»%3)@(%))) :

d=1

Now note p(z&|zd, z;%,s,) = p(z|xd, s;) and p(s )/p(xd|s¢) does not depend on xd. Thus we
aim to predict a quantity proportional to p(zd|z; %, s;%); we call our prediction &g g(z:, 5;), which
we plug into Eqn. 7 and then normalize.

B.3 SAMPLING

To sample a point 2y ~ ¢(zg) we first sample the noised sample z1 ~ ¢(z1) = p(zs) and the
number of events in each dimension S ~ ¢(S) = p(S). We now sample given a budget of C
evaluations of Zg ¢. Every step we denoise the last [s1/C'] events that have yet to be denoised. To
denoise we can use Eqn. 7. In the case that we denoise k£ > 1 events for a dimension d at once, we
can use the fact that

p(pr* ()]s, 51) ZP pr¥(af)|af, sf, af)p(xf|ze, S)
d) k(. .d k(. .dy.d .d p(xg\xt,st)
ZZP(% lpr (z%))p(pr ($t)|8t,$o)ﬁ-
- plalsf. zf)
0
We can write
p(af[pr*(zf)) = pr* (xf)TK Faf
p(pr () s, 2d) = 23T K Fprt (a)
And we can approximate the fraction with Z ¢ just as in Eqn. 7. Thus we define
qe(prk(xf)mt, st) = kad Y xo 9. (20)
The total procedure is summarized in Alg. 2.
B.4 CHOOSING THE RATE
Mutual information rate functions To choose the rate function ;, Austin et al. (2021) calculated

the frequency of tokens in the training data po(b) and then calculated the joint distribution of zy and
a particle which has evolved according to £ for time 7 along one dimension —

plzo = bz, =) = po(b)(e™ )1
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Algorithm 2 Efficient sampling from SCUD

Input: function evaluation budget C.
/I Sample 1, s1
ford=1,...,Ddo
zt ~ p(xoo)
s~ p(sy) = Pois(fo1 Bsds)
end for
L+ (25:1 s?/C > Number of events to denoise per step
forc=1,...,Cdo
/I Decide which positions to denoise in this step

k+0
for(=1,...,Ldo
it Y (54— k%) > 0 then > If there are remaining events to reverse...
d ~ Categorical (7Z v S(’j - d)) > ...sample uniformly from remaining events in s.
a=1{5"—
k4 kT +1
end if
end for

// Denoise k% steps at each dimension d
Predict Zo ¢(x, s)
ford=1,...,Ddo

zt ~ L]e(prkd(fﬂdﬂx’ s) > use Eqn. 20
s gt —
end for
end for
Return: x

They calculate the mutual information function MI(7) of this joint distribution; the mutual infor-
mation is normalized so MI(0) = 1. They then pick S; so that evolving in the modulated process

linearly decreases the mutual information from 1 to € on the interval [0,1], i.e. MI( f(f Bsds) =
1 — (1 — €)t. For clarity, we’ll set MI(fot Bsds) =1 — t and look at the interval [0, 1 — €] below.

Implementation in continuous time The process in (Austin et al., 2021) has discrete time, so
the integral over [ is a sum and each (; can be pre-calculated before training begins. When we

implement continuous time discrete diffusion, we use a Newton root finder to calculate fg Bsds =
MI ! (1—t) and the implicit function theorem to calculate 8, = 4 fot Bsds =1/ (%Ml(fot Bsds)>.

Schedules for SCUD For SCUD, we instead calculate the joint distribution between x and the
particle after m events, z¢,_ , along one dimension —
plxo = b,x, =b) = po(b) (K™ )b

Calling the mutual information between these variables MI,,, we choose f; so that s, MI;, =1—¢

where s; ~ Pois(r* fot Bsds /7). Again we calculate these values using a Newton root finder and
the implicit function theorem.

Connection to classical discrete diffusion With this choice, note as v — 0, for any 7
MIer /o = MI(po(b) (1 +~L/r*)" /7)) = MI(po(b) (€7 )o,r) = MI(7).

Therefore, E;, MI;, — MI( fg Bsds), so f(f Bsds converges to the same value as in classical discrete
diffusion.

Connection to masking discrete diffusion In this case, x4, is uniform independent of x( for all
m > 1 Therefore, ML,, = 0 for all m > 1 and E,,MI,, = e~ Jo #:9s = o, Therefore, oy = 1 — t.
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C STRUCTURED PROCESSES

In this section we will describe the structured continuous time Markov processes we used in Sec. 7.
Our processes are inspired by those from Austin et al. (2021) and Alamdari et al. (2023); however
those works framed the process in discrete time in such a way that they are not related to any contin-
uous time Markov model, requiring us to design new processes. Note also that those works modified
their processes to ensure that the transition matrix at every time-point was doubly stochastic; this
was so that all transition matrices would have the same stationary distribution — a uniform distribu-
tion. In our case, we are free to pick any £ that converges to a stationary distribution, even if it is
not uniform.

C.1 GAUSSIAN PROCESS FOR IMAGES

To include the bias that two pixel values i # j are similar if (i — j)? is small, we set £; ; =

exp(f200%) the value 200 was chosen as it gave the best results in small scale experiments.
We then set £; ; = — Z#i Li;.

C.2 NEAREST NEIGHBOUR PROCESS FOR LANGUAGE

Our vocabulary in the language result was approximately 30’000 tokens from the Bert-base-uncased
tokenizer (Devlin et al., 2018). It is prohibitively expensive to compute a 30’000 x 30’000 matrix
K to take matrix vector products during training. Instead, we pick a sparse K built using the
embeddings from Devlin et al. (2018); for the most frequent 1000 words (which make up 95%
of tokens seen in the data) i, j we computed their similarity as v} v; where v; is the normalized
embedding of word ¢. For each word we found the 10 nearest neighbours; we noticed restricting to
the top 1000 words resulted in nearest enighbours which were much more semantically similar. We
next set, for nearest neighbours,

Li; = exp(vlv;/0.3).

We next normalized £ so that the diagonal is 1 — this ensures that every word has an identical
transition rate, avoiding the case where a word never transitions because it has no nearby neighbours.

We noticed that it often took a long time for particles to reach a stationary distribution with this
process, so we added occasional transitions across the nearest neighbour graph; we called p the nor-
malized frequencies of the top 1000 words in the data and define the uniform transition infinitesimal
generator

£unif = ]1®p_la
where 1 is the vector of all 1’s; this transitions tokens to a random token based on the final token’s
frequency in the data. We combine our two processes by defining

L=2L+0.4x Lonis

and normalizing so that the smallest value on the diagonal was —1. We do not store this matrix
explicitly, and only perform matrix operations with sparse matrix products and multiplication with
1 or p.

For tokens outside of the most frequent 1000, we transition using Lpnis.
C.3 BLOSUM PROCESS FOR PROTEIN

BLOSUM is a matrix that can be describes how often different amino acids are seen in the same
position in related protein families (Henikoff & Henikoff, 1992). The ¢, 5 entry of the matrix is

P;;

B; ;=21 J

w28 B

where P;; is the probability of two related proteins having amino acids ¢, j at the same position, and
P; is the marginal probability. We build a stochastic process to emulate drawing a related protein,

SO we set
Ki,j = exp(B,'7j/2) X Pj = P]|z
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Figure 5: BLOSUM process K.

There are other letters in our vocabulary for non-canonical amino acids and padding; for ¢ not one
of the canonical 20 amino acids, we set K; ; = P;, so all transitions an only occur to a canonical
amino acid. Finally we set £L = K — I (Fig. 5).

D EXPERIMENTAL DETAILS
In all cases we trained models on 2 A100 GPUs on an academic cluster.

D.1 TRANSITION RATES IN FIG. 3

For TLDR we downloaded the CIFAR10 model from https://github.com/andrew—cr/
tauLDR. We simulated 2000000 forward trajectories using samples from CIFAR10 and 100 back-
ward samples using the 7 leaping code with 2048 steps. For forward samples x we calculated rates
—L, , and for backward samples we calculated rates —Ly . .. We then averaged forward and back-
ward rates at each timestep. We finally average with a sliding window of size 9.

For D3PM we download the 640M uniform model from https://github.com/microsoft/
evodiff. We were able to calculate the forward rates analytically. As above, we simulated 100
backward samples and at each time step we calculated the probability of a transition; we multiplied
this probability by 1/At to get a rate. We averaged as above.

D.2 IMAGES

We use an architecture inspired by Kingma et al. (2021) like in MD4 (Shi et al., 2024) with a slight
modification to incorporate s;. The architecture first embeds x( like in Shi et al. (2024) and then
puts it through a UNet with 32 layers and no up- or down-sampling. At every layer of the UNet, a
feed forward layer is applied to a sinusoidal embedding of the time ¢ and the output is added to the
channels at every pixel — ax position 1, j, activations a®/ at updated

a™ « FFg(emb(t)) + a™.
Instead each activation is updated using a FiLM layer using the number of events up to time ¢.
ahl FFLg(emb(si’j)) + FF279(emb(si’j)) oa*,

The feed forward layers are shared across every position ¢, j. We used the same training parameters
as in Shi et al. (2024); we trained each of our large models for 2 days and each of our models from
Fig. 2 took between 1.5 and 2 hours.

We use K = 2048 function evaluations to generate images. The results of Fig. 2 used a batch size
of 16 and the same architecture but with an 8 layer UNet — masking and classical models used FiLM
layers with ¢ instead of s;.
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D.3 LANGUAGE AND PROTEIN

We use the diffusion transformer architecture (Peebles & Xie, 2022) as in SEDD (Luo et al., 2022).
This architecture has FiLM layers to add ¢ at each layer; as above, we replace ¢ with s;. We use the
training settings as in SEDD (Luo et al., 2022), accumulating to match their batch size of 512. We
trained our models for 2 days each.

D.4 PROTEIN

We use the small CARP architecture from (Alamdari et al., 2023). The original architecture added
as embedding of ¢ at the first layer. We add FiLM layers for s; at every layer as described above.
We train and test on the March 2020 release of Uniprot2020 released by Alamdari et al. (2023). We
use a batch size of 128 protein up to size 1024 as in Alamdari et al. (2023), randomly truncating
proteins over that size. We trained each model for 2 days.

D.5 COMPUTATIONAL COMPLEXITY

In terms of computational complexity, the major differences between SCUD and classical discrete
diffusion are (A) replacing operations of £ with operations of K, and (B) replacing the time ¢ in the
argument of Zy ¢ with the number of transitions S. We discuss how (B) does not result in a large
increase of computational complexity below, and note that (A) does not change the computational
complexity except when the number of tokens B is large, when it actually enables strategies that
reduce complexity.

(A) Matrix computations To calculate our loss, Eqn. 6, in Eqn. 6 we see that we only need to take
matrix vector products with K; the analogous quantity in classical discrete diffusion requires matrix
exponentiation exp(tL£) (Luo et al., 2022). When B is small, both these calculations have negligible
complexity and can be calculated similarly quickly by precomputing an eigen-decomposition of
K or £. But when B is large, as in the language modeling case, these calculations become very
expensive; Luo et al., 2022 settled for very simple £, masking and uniform, such that exp(¢£) can
be easily analytically calculated; SCUD is able to build in a richer forward process by picking a
sparse + low rank K so that matrix vector products are very fast.

In terms of big-O notation, when an eigendecomposition is precomputed, (exp(t£)#d)%_, and
(K sfa?g)dD:l each cost ©(DB?) for two dense matrix multiplies and a scaling by the exponen-

tiation or power of the eigenvalues. When K*t is a sparse matrix with O(rB) entries or has a

rank of r, calculating (K Sfﬁg)g’:l is O(DBrmax,(s{)); in our language case, B is large while

maxg(s?) ~ 30 and we pick r ~ 20 resulting in a large speedup.

(B) Computations with S Indeed, the place that SCUD adds some overhead to calculations is in
replacing the arguments of %o g(z;,-): the time over which z( has been corrupted, ¢, a scalar, is
replaced with the number of corruptions of each token .S, a D-dimensional object. The overhead of
this operation is dependent on the architecture of Zg ¢. We picked Zg ¢ so that no parameters were
added by replacing ¢ with .S, and such that the computational and memory overhead caused by this
replacement were negligible compared to the operations and memory spent on operations on the
D-dimensional x;. Above we used previous architectures modified so that each operation on ¢ was
also applied to each dimension of S. As well, for the architectures we chose, whenever a function of
t was added or multiplied to a set of activations, say at layer £, hy g, the activations had a dimension
D, so we could perform the same operation with element-wise addition or multiplication with ., i.e.

h?ﬂ,& = f1,9(t)h?,9 + fa,6(t) was replaced with h?ﬂ,o = f1,9(slti)h2l,9 + fa0(s).

Thus, adapting Z¢ ¢ for SCUD in this way adds no extra parameters. The overhead of this change
is that every call to fp is replaced by D calls, D-times the activations fy(s¢) must be stored, and
D-times more gradients must be calculated for fg(s¢). fp is however a set of linear functions and
activations. The operations on the corrupted data z; involve convolutions and attention, which have
much larger memory and computational costs. In big-O notation, the cost of calculating Z¢ o (¢, t)
and Z g (2, S) are therefore identical — at worst, the constant in front of the largest term changes.
Therefore, in our experiments, we ran all models for roughly equal time with the same batch sizes
and did not observe any substantial difference in computation.
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E EXTENDING FLOW MATCHING TO SCUD

Here we follow the exposition of Campbell et al. (2024a) to derive flow matching models that are
conditioned on schedule. In App. E.1 we derive schedule conditioned flow matching (SCUM) in
generality. In App. E.2 we describe how SCUD is an instance of SCUM and show how by training
a SCUD model, one can sample from a large class of SCUM models. Finally in App. E.3 we derive
an example class of SCUM models. The conclusion is that schedule conditioning can be extended
to the flow matching case just as classical discrete diffusion can.

E.1 SCHEDULE CONDITIONED FLOW MATCHING (SCUM)

We consider discrete objects in a set of size B and in this quick exposition leave out the multi-
dimensional case as an easy extension of the logic of SCUD or Campbell et al. (2024a). In flow
matching, we wish to approximately sample from a target p(z¢) (this is called 1 in Campbell et al.
(2024a)). In regular flow matching, we define distributions of samples noised for time t: p(z¢|z1)
(Egn. 6 of Campbell et al. (2024a)). To condition on the schedule, we instead define distributions
of samples that have been noised by s events from x1: p(xs|zg). We assume p(x4|xy) is close to
an easy to sample from distribution p(z,) when s has large entries. In particular, for s with large
entries, the marginal p(z,) = p(x); Now we want to denoise events to get p(x_1) and ultimately
p(zo) (Eqn. 5 of Campbell et al. (2024a)).

To do so, we first choose how to denoise elements in p(zs|xo). Say K|, is a stochastic matrix such
that sampling p(s|z) then sy ~ Categorical(K ;. x¢) gives a sample from p(z—1]xo). The
next result is the analogous result of Prop. 3.1 of Campbell et al. (2024a): given a sample from the
marginal, zs ~ p(z,) we can denoise an event in dimension d by averaging over x|z, and using

slzo-

Proposition E.1. Define K..,. = Epz|2,)Ks|eoia.,.- Then sampling x5 ~ p(x,) and 41 ~
Categorical( K., .) gives a sample from p(zs_1).

Proof.
Ey(an) Bp(alen) Ksaoswazes = D 2(20) (Ep(ajoo) Kslrososza )
zo

— Z p(xo)p(l‘s—l |.%‘)

:p(xs—l)-
O]

Given this result, we can define schedule conditioned flow matching models (SCUM). First we
approximate p(zo|zs) with a neural network %o g(zs,s); next we sample from p(x.,) which is
~ p(z,) for some large s, and then iteratively denoise by approximating K., . (Alg. 3).

Algorithm 3 Sampling from SCUM in analogy to Alg. 1 in Campbell et al. (2024a)

s < large number

Ts ~ p(Too) = p(zs)

while s > 0 do
KS;IS,- — Efz'o,g(ms7s)KS‘.'L‘0;ftS,'
xs—1 ~ Categorical(K,s, .)
s+—s—1

end while

Return: z,

To train Z¢ g(xs, s) we can just minimize the cross entropy

T ~
Es~Unif(l,2,...7la.rge number),p(xo),p(zs|z0) L0 IOg Zo,0 (3335 3)-
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We could alternatively use a different distribution for s, such as a Poisson. Note that p(xs|xo) does
not depend on the particular choice of Kj,,, so we can train o (s, 5) once and then decide the
best K|, for sampling at test time.

E.2 SCUD1s SCUM

We now show that for a particular choice of K, , the simulated trajectories of SCUM are that of
SCUD as in Appendix H of Campbell et al. (2024a). Next we discuss how, given a trained SCUD
model we can sample from a wide variety of SCUM models.

Define a Markov process that noises datapoints xy with an infinitesimal generator £ with rate func-
tion ;. Say we have a data point x( that’s been noised s > 0 times and define Kopoiw., =
p(pr(zs)|zs, o, s) as in Eqn. 5. Then
Koo, =Ep(zo|oy) Ks|zoiw,
:Ep(wo\ws,s)p(pr(zs)|$Sa Zo, 5)
=p(pr(zs)|zs, 5)

which is exactly the distribution we approximate to denoise an event in SCUD (Alg. 2). There-
fore SCUD is just SCUM with a particular choice of Kj|,,, with “large number” in Alg. 3 set to

Pois(fot Bsds).

Furthermore, SCUD trains a Zg ¢(zs, s) to predict ¢ given s, s3. Campbell et al. (2024a) suggests
that an advantage of flow matching is that one can train Zg ¢ once and then decide on the best
infinitesimal generator at test time; we can do the same by training Zo ¢ with the SCUD objective
and then changing K, at test time.

E.3 EXAMPLES OF SCUM

Say we have built a SCUD model with transition matrix K. The canonical choice for K, above

is
mOTKS_l:ES,l

T 17
xy K3z

We now describe a family of K, that can be alternatively used to sample from p(xo).

_ T
KS|I0;9657IS—1 - xsflK‘TS

First note that for SCUD, p(x,|lrg) = K*Tzy. Therefore Kz, can be any matrix with
KT K$Tgy = KTz, and positive entries with rows that add to 1. Campbell et al. (2024a)

z|xo
suggested picking the process to minimally move mass from position with too much in K*~ %7z
to those with too little in K*7zq (R* in Prop. 3.2 in Campbell et al. (2024a)); we can do that with
the choice
* ReLU(y" K~V wg — y" K o) T grs,T T prs—1,T
Kslwo;%’y = S ReLUGTR 172y — 2T K" Tag) x ReLU(2x K5 xg — ol K5~ 1T 2)

for x; # y, which moves mass from x; with too much mass to y with too little in proportion to how
much mass they need.

To augment this “most efficient” choice Campbell et al. (2024a) describe a method to add stochastic-
ity to K|4,. They do so by introducing an infinitesimal generator that obeys details balance; we do

the same. Say £DP keeps the distribution p(x|x¢) stationary, say by satisfying detailed balance.

s|lzo
. . n _ 77[}313 * .
Then we can add more noise to K5z, , by defining Ks‘xo =e Ks‘mo since
T s, T _ * nLDB s, T _ * s, T _ s—1,T
Kx\moK ro = K|, € K> xg = S‘IDK g =K Zo.

By varying 1, Campbell et al. (2024a) optimized samples for stochasticity against likelihood.

*In the high dimensional case, unlike our exposition of SCUM, SCUD trains % ¢ (s, 5) to approximate, for
each dimension d, p(zd|z7?, s) rather than p(zf|z., s) (Sec. 4.3). However any prediction of p(zd|z; %, s)
can be transformed into a prediction of p(zd|xzs, s) via the identity p(zg|zs, s) o p(z¢|s?, 2d)p(zd|zs, s)
which doesn’t depend on the specific choice of K|, — the difference is just a matter of parameterization.
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In conclusion, just as one can do with classical discrete diffusion models, after training a SCUD
model, one can optimize a stochasticity parameter 7 to get desirable samples.
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