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A DETAILED FOR LATENT SPACE CONSTRAINT (LSC) AND
REPRESENTATION SHIFT CORRECTION(RSC)

Latent Space Constraint (LSC) As we can see in Fig. 3(a), the latent action representations inside
the boundary can be well decoded and estimated the values, while the outliers cannot. Therefore, the
most critical problem for latent space constraint (LSC) is to find a reasonable latent space boundary.
Simply re-scale policy’s outputs in a fixed bounded area [−b, b] could lose some important infor-
mation and make the latent space unstable (Zhou et al., 2020; Notin et al., 2021) . We propose a
mechanism to constrain the action representation space of the latent policy inside a reasonable area
adaptively. In specific, we re-scale the output of latent policy (i.e., [−1, 1]d1+d2 by tanh activation)
to a bounded range [blower, bupper]. At intervals (actually concurrent with the updates of the hybrid
action representation models), we first sample M transitions s, k, xk from buffer, then we obtain the
corresponding latent action representations with current representation models. In this way, we will
get M different latent variable values in each dimension. We sort the latent variable of each dimen-
sion, calculate the c-percentage central range and let the lower bound and upper bound of the range
to be [blower] and [bupper] of the current latent variable. Note that n control the c-percentage central
range where c ∈ [0, 100], we called latent select range. With the decrease of c , the constained latent
action representation space becomes smaller. The experiment on the value of n and latent select
range is in Appendix C.3.

Representation Shift Correction (RSC) Since the hybrid action representation space is continu-
ously optimized along with the RL learning, the representation distribution of original hybrid actions
in the latent space can shift after a certain learning interval (Igl et al., 2020). Fig. 3(b) visualizes
the shifting (denoted by different shapes). This negatively influences the value function learning
since the outdated latent action representation no longer reflects the same transition at present. To
handle this, we propose a representation relabeling mechanism. In specific, we feed the batch of
stored original hybrid actions to our representation models to obtain the latest latent representations,
for each mini-batch training in Eq.7. For latent discrete action ẑk, if it can not be mapped to the
corresponding original action k in the latest embedding table, we will relabel ẑk through looking
up the table with stored original discrete action k̂, i.e., ẑk ← eζ,k̂ + N (0, 0.1). The purpose of
adding noise N (0, 0.1) is to ensure the diversity of the relabeled action representations, For latent
continuous action ẑx, we first obtain δ̃s,s′ through the latest decoder pψ(ẑx, s, eζ,k̂). Then we verify

if ‖δ̃s,s′ − δs,s′‖22 > δ0 (threshold value δ0 = is set to be 4 ∗ L̂Dyn, where L̂Dyn is the moving empir-
ical loss), i.e., the case that indicates that the historical representations has no longer semantically
consistent (with respect to environmental dynamics) under current representation models. Then ẑx
will be relabeled by the latest latent representations zk ∼ qφ(· | x̂k, s, eζ,k). In this way, the policy
learning is always performed on latest representations, so that the issue of representation distribution
shift can be effectively alleviated. The experiment on relabeling techniques is in Appendix C.3.

B EXPERIMENTAL DETAILS

B.1 SETUPS

Our codes are implemented with Python 3.7.9 and Torch 1.7.1. All experiments were run on a
single NVIDIA GeForce GTX 2080Ti GPU. Each single training trial ranges from 4 hours to 10
hours, depending on the algorithms and environments. For more details of our code can refer to the
HyAR.zip in the supplementary results.

Benchmark Environments We conduct our experiments on several hybrid action environments and
detailed experiment description is below.

• Platform (Masson et al., 2016): The agent need to reach the final goal while avoiding the
enemy or falling into the gap. The agent need to select the discrete action (run, hop, leap)
and determine the corresponding continuous action (horizontal displacement) simultane-
ously to complete the task. The horizon of an episode is 20.

• Goal (Masson et al., 2016): The agent shoots the ball into the gate to win. Three types
of hybrid actions are available to the agent including kick-to(x,y), shoot-goal-left(h), shoot-
goal-right(h). The continuous action parameters position (x, y) and position (h) along the
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Layer Actor Network (π(s)) Critic Network (Q(s, a) or V (s))

Fully Connected (state dim, 256) (state dim + RK+
∑

k |Xk|, 256) or
(state dim + R

∑
k |Xk| , 256) or (state dim, 256)

Activation ReLU ReLU

Fully Connected (256, 256) (256, 256)
Activation ReLU ReLU

Fully Connected (256, RK ) and (256, R
∑

k |Xk| ) (256, 1)
or (256, R

∑
k |Xk|) or (256, RK )

Activation tanh None

Table 3: Network structures for the actor network and the critic network (Q-network or V -network).

goal line are quit different. Furthermore, We built a complex version of the goal environ-
ment, called Hard Goal. We redefined the shot-goal action and split it into ten parameter-
ized actions by dividing the goal line equidistantly. The continuous action parameters of
each shot action will be mapped to a region in the goal line. The horizon of an episode is
50.

• Catch Point (Fan et al., 2019): The agent should catch the target point (orange) in limited
opportunity (10 chances). There are two hybrid actions move and catch. Move is param-
eterized by a continuous action value which is a directional variable and catch is to try to
catch the target point. The horizon of an episode is 20.

• Hard Move (designed by us): The agent needs to control n equally spaced actuators to
reach target area (orange). Agent can choose whether each actuator should be on or off.
Thus, the size of the action set is exponential in the number of actuators that is 2n. Each
actuator controls the moving distance in its own direction. n controls the scale of the action
space. As n increases, the dimension of the action will increase. The horizon of an episode
is 25.

B.2 NETWORK STRUCTURE

Our PATD3 is implemented with reference to github.com/sfujim/TD3
(TD3 source-code). PADDPG and PDQN are implemented with reference to
https://github.com/cycraig/MP-DQN. For a fair comparison, all the baseline methods
have the same network structure (except for the specific components to each algorithm) as our
HyAR-TD3 implementation. For PDQN, PADDPG, we introduce a Passthrough Layer (Masson
et al., 2016) to the actor networks to initialise their action-parameter policies to the same linear
combination of state variables. HPPO paper does not provide open source-code and thus we
implemented it by ourselves according to the guidance provided in their paper. For HPPO, the
discrete actor and continuous actor do not share parameters (better than share parameters in our
experiments).

As shown in Tab.3, we use a two-layer feed-forward neural network of 256 and 256 hidden units
with ReLU activation (except for the output layer) for the actor network for all algorithms. For
PADDPG, PDQN and HHQN, the critic denotes the Q-network. For HPPO, the critic denotes the
V -network. Some algorithms (PATD3, PADDPG, HHQN) output two heads at the last layer of the
actor network, one for discrete action and another for continuous action parameters.

The structure of HyAR is shown in Tab.4. We introduced element-wise product operation (Tang
et al., 2021) and cascaded head structure (Azabou et al., 2021) to our HyAR model. More details
about their effects are in Appendix C.3.

B.3 HYPERPARAMETER

For all our experiments, we use the raw state and reward from the environment and no normalization
or scaling are used. No regularization is used for the actor and the critic in all algorithms. An
exploration noise sampled from N(0, 0.1) (Fujimoto et al., 2018) is added to all baseline methods
when select action. The discounted factor is 0.99 and we use Adam Optimizer (Kingma & Ba,
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Model Component Layer (Name) Structure

Discrete Action Embedding Table Eζ Parameterized Table (Rd1 , RK)

Conditional Encoder Network Fully Connected (encoding) (RXk , 256)
qφ (z | xk, s, eζ,k) Fully Connected (condition) (state dim + Rd1 , 256)

Element-wise Product ReLU (encoding) · ReLU(condition)
Fully Connected (256, 256)

Activation ReLU
Fully Connected (mean) (256, Rd2 )

Activation None
Fully Connected (log std) (256, Rd2 )

Activation None

Conditional Decoder Network Fully Connected (latent) (Rd2 , 256)
pψ(xk | z, s, eζ,k) Fully Connected (condition) (state dim + Rd1 , 256)

Element-wise Product ReLU(decoding) · ReLU(condition)
Fully Connected (256, 256)

Activation ReLU
Fully Connected (reconstruction) (256, RXk )

Activation None
Fully Connected (256, 256)

Activation ReLU
Fully Connected (prediction) (256, state dim)

Activation None

Table 4: Network structures for the hybrid action representation (HyAR) including, the discrete
action embedding table and the conditional VAE.

2015) for all algorithms. Tab. 5 shows the common hyperparamters of algorithms used in all our
experiments.

Hyperparameter HPPO PADDPG PDQN HHQN PATD3 PDQN-TD3 HHQN-TD3 HyAR-DDPG HyAR-TD3

Actor Learning Rate 1·10−4 1·10−4 1·10−4 1·10−4 3·10−4 3·10−4 3·10−4 1·10−4 3·10−4

Critic Learning Rate 1·10−3 1·10−3 1·10−3 1·10−3 3·10−4 3·10−4 3·10−4 1·10−3 3·10−4

Representation Model Learning Rate - - - - - - - 1·10−4 1·10−4

Discount Factor 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam Adam

Target Update Rate - 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

Tau Actor - 1·10−3 1·10−3 1·10−3 5·10−3 5·10−3 5·10−3 1·10−3 5·10−3

Tau Critic - 1·10−2 1·10−2 1·10−2 5·10−3 5·10−3 5·10−3 5·10−3 5·10−3

Exploration Policy N (0, 0.1) N (0, 0.1) N (0, 0.1) N (0, 0.1) N (0, 0.1) N (0, 0.1) N (0, 0.1) N (0, 0.1) N (0, 0.1)
Batch Size 128 128 128 128 128 128 128 128 128
Buffer Size 105 105 105 105 105 105 105 105 105

Actor Epoch 2 - - - - - - - -
Critic Epoch 10 - - - - - - - -

Table 5: A comparison of common hyperparameter choices of algorithms.We use ‘-’ to denote the
‘not applicable’ situation.

B.4 ADDITIONAL IMPLEMENTATION DETAILS

Training setup: For PPO, the actor network and the critic network are updated every 2 and 10
episodes respectively for all environment. The clip range of PPO algorithm is set to 0.2 and we use
GAE (Schulman et al., 2016) for stable policy gradient. For DDPG-based, the actor network and
the critic network is updated every 1 time step. For TD3-based, the critic network is updated every
1 time step and the actor network is updated every 2 time step.

For th the warm-up stage, we run 5000 episodes (empirically about 50k time steps depending on dif-
ferent environments) for experience collection and then pre-train the representation model (discrete
action embedding table and conditional VAE) for 5000 iterations with batch size 64, after which
we start the training of the latent policy. Note that the discrete action embedding table is initialized
randomly before representation pre-training. The representation models (the embedding table and
conditional VAE) are trained every 10 episodes for the rest of RL training. The latent action dim
(discrete or continuous latent action) default value is 6. We set the KL weight in representation loss
LVAE as 0.5 and dynamics predictive representation loss weight β as 10 (default). More details about
dynamics predictive representation loss weight are in C.2.
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Algorithm 2: HyAR-DDPG
1 Initialize actor πω and critic networks Qθ with random parameters ω, θ, and the corresponding target

network parameters ω̄, θ̄
2 Initialize discrete action embedding table Eζ and conditional VAE qφ, pψ with random parameters ζ, φ, ψ
3 Prepare replay buffer D repeat Stage 1
4 Update ζ and φ, ψ using samples in D . see Eq. 6
5 until reaching maximum warm-up steps;
6 repeat Stage 2
7 for t← 1 to T do
8 // select latent actions in representation space
9 ẑk, ẑx = πω(s) + εe, with εe ∼ N (0, σ)

10 // decode into original hybrid actions
11 k̂ = gE(ẑk), x̂k = pψ(ẑx, s, eζ,k̂) . see Eq. 3
12 Execute (k̂, x̂k), observe rt and new state s′

13 Store {s, k̂, x̂k, ẑk, ẑx, r, s′} in D
14 Sample a mini-batch B of N experience from D
15 Update critic by minimizing empirical loss L̂Q(θ) = N−1∑

B (y −Qθ(s, ẑk, ẑx))2, where
y = r + γQθ̄ (s′, πω̄(s′))

16 Update actor by the deterministic policy gradient
17 ∇ωJ(ω) = N−1∑

s∈B
[
∇πω(s)Qθ(s, πω(s))∇ωπω(s)

]
.

18 repeat
19 Update ζ and φ, ψ using samples in D . see Eq. 6
20 until reaching maximum representation training steps;
21 until reaching maximum training steps;
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(e) Hard Move (n = 4)
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(f) Hard Move (n = 6)
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(g) Hard Move (n = 8)
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(h) Hard Move (n = 10)

Figure 7: DDPG-based comparisons of related baselines on different environments. The x- and y-
axis denote the learning steps (×105) and averaged reward over the recent 100 episodes. The results
are averaged using 5 runs, while the solid line and shaded represent the mean value and a standard
deviation, respectively.

B.5 DDPG-BASED HYAR ALGORITHM

Additionally, we implemented HyAR with DDPG (Lillicrap et al., 2015), called HyAR-DDPG. The
pseudo-code of complete algorithm is shown in Algorithm 2. Results of DDPG-based experimental
comparisons can be found in Appendix C.1.
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(b) Hard Move (n = 8)
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Figure 8: Learning curves of dynamics predictive representation for HyAR. The results are averaged
using 5 runs, while the solid line and shaded represent the mean value and a standard deviation,
respectively.

C COMPLETE LEARNING CURVES AND ADDITIONAL EXPERIMENTS

C.1 LEARNING CURVES FOR DDPG-BASED COMPARISONS

Fig. 7 visualizes the learning curves of DDPG-based comparisons, where HyAR-DDPG outperforms
other baselines in both the final performance and learning speed in most environments. Besides the
learning speed, HyAR-DDPG also achieves the best generalization as HyAR-TD3 across different
environments. When the environments become complex (shown in Fig. 7(e-h)), HyAR-DDPG still
achieves steady and better performance than the others, particularly demonstrating the effectiveness
and generalization of HyAR in high-dimensional hybrid action spaces.

C.2 LEARNING CURVES FOR THE DYNAMICS PREDICTIVE REPRESENTATION

Fig. 8 shows the learning curves of HyAR-TD3 with dynamics predictive representation loss
(Fig. 8(a-b)) and the influence of dynamics predictive representation loss weight β on algorithm
performance (Fig. 8(c)). We can easily find that the representation learned by dynamics predictive
representation loss is better than without dynamics predictive representation loss. For the weight
β of dynamics predictive representation loss, the performance of the algorithm will gradually im-
prove with the increase of weight β, until a certain threshold is reached. We can conclude that the
dynamics predictive representation loss is helpful for deriving an environment-awareness represen-
tation for further improving the learning performance, efficacy, and stability. More experiments on
representation visualization are in Appendix C.4.

C.3 LEARNING CURVES AND TABLE FOR THE RESULTS IN ABLATION STUDY

As briefly discussed in Sec. 5.3, we conduct detailed ablation experiments on the key components
of the algorithm, including:

• element-wise product (Tang et al., 2021) (v.s. concat) operation;
• cascaded head (Azabou et al., 2021) (v.s. parallel head) structure;
• latent select range(from 80% to 100%), corresponding to latent space constraint (LSC);
• action representation relabeling, corresponding to representation shift correction (RSC);
• latent action dim (from 3 to 12);

Fig. 9 shows the learning curves of HyAR-TD3 and its variants for ablation studies, corresponding
to the results in Tab. 6.

First, we can observe that element-wise product achieves better performance than concatenation
(Fig. 9(a,e)). As similarly discovered in (Tang et al., 2021), we hypothesize that the explicit relation
between the condition and representation imposed by element wise product forces the conditional
VAE to learn more effective hidden features. Second, the significance of cascaded head is demon-
strated by its superior performance over parallel head (Fig. 9(a,e)) which means cascaded head can
better output two different features. Third, representation relabeling shows an apparent improve-
ment (Fig. 9(b,f)) which show that representation shift leads to data invalidation in the experience
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Operation Structure Result

Elem.-Wise Prod. Concat. Cascaded Parallel Latent Select Range c Latent Action Dim Relabeling Dynamics Predictive Results (Goal) Results (Hard Move)

X X 96% (n = 2) 6 X X 0.78 ± 0.03 0.89 ± 0.03

X X 96% (n = 2) 6 X X 0.66± 0.10 0.83± 0.04

X X 96% (n = 2) 6 X X 0.71 ± 0.04 0.80± 0.13

X X 96% (n = 2) 6 X 0.66 ± 0.07 0.83± 0.08

X X 100% (n = 0) 6 X X 0.62 ± 0.11 0.78± 0.13
X X 90% (n = 5) 6 X X 0.61 ± 0.04 0.78± 0.08
X X 80% (n = 10) 6 X X 0.08 ± 0.17 0.56± 0.12

X X 96% (n = 2) 3 X X 0.59 ± 0.09 0.58± 0.16
X X 96% (n = 2) 12 X X 0.65 ± 0.09 0.90 ± 0.04
X X 96% (n = 2) 6 X 0.55 ± 0.15 0.84 ± 0.05

Table 6: Ablation of our method across each contribution in Goal and Hard Move (n = 8) envi-
ronment.Results are max Average Episode performance over 5 trials. ± corresponds to a standard
deviation.

buffer which will affect RL training. Fourth, a reasonable latent select range plays an important role
in algorithm learning (Fig. 9(c,g)). Only constrain the action representation space of the latent pol-
icy inside a reasonable area (both large and small will fail), can the algorithm learn effectively and
reliably. These experimental results supports our analysis above. We also analyse the influence of
latent action dim for RL (Fig. 9(d,h)). In the low-dimensional hybrid action environment, we should
choose a moderate value (e.g., 6). While for high-dimensional environment, larger value may be
better (e.g., 12).
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Figure 9: Learning curves of ablation studies for HyAR (i.e., element-wise + cascaded head +
representation relabeling + latent select range = 96% + latent action dim = 6). From top to bottom is
Goal and Hard move (n = 8) environment. The shaded region denotes standard deviation of average
evaluation over 5 trials.

C.4 REPRESENTATION VISUAL ANALYSIS

In order to further analyze the hybrid action representation, we visualize the learned hybrid action
representations. Fig. 10 and Fig. 11 shows the t-SNE visualization for HyAR in Goal and Hard
Move (n = 8) environment.

As we can see from Fig. 10, we adopt t-SNE to cluster the latent continuous actions, i.e., (zx),
outputted by the latent policy, and color each action based on latent discrete actions i.e., (zk). We
can conclude that latent continuous actions can be clustered by latent discrete actions, but there are
multiple modes in the global range. Our dependence-aware representation model makes good use
of this relationship that the choice of continuous action parameters is depend on discrete actions.

For the dynamics predictive representation loss, we adopt t-SNE to cluster the latent actions, i.e.,
(zk, zx), outputted by the latent policy, and color each action based on its impact on the environment
(i.e., δs,s′ ). As shown in Fig. 11, we observe that actions with a similar impact on the environment
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are relatively closer in the latent space. This demonstrates the dynamics predictive representation
loss is helpful for deriving an environment-awareness representation for further improving the learn-
ing performance, efficacy, and stability.
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Figure 10: t-SNE visualization diagram of continuous action embedding zx, color coded by discrete
action embedding zk. The continuous actions related to the same discrete actions are mapped to the
similar regions of the representation space.
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Figure 11: t-SNE visualization diagram of hybrid action embedding pair (zk, zx), color coded by
δs,s′ . The hybrid actions with a similar impact on the environment are relatively closer in the latent
space.
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