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Abstract

Though data augmentation has rapidly emerged as a key tool for optimization in
modern machine learning, a clear picture of how augmentation schedules affect
optimization and interact with optimization hyperparameters such as learning rate
is nascent. In the spirit of classical convex optimization and recent work on implicit
bias, the present work analyzes the effect of augmentation on optimization in the
simple convex setting of linear regression with MSE loss.
We find joint schedules for learning rate and data augmentation scheme under which
augmented gradient descent provably converges and characterize the resulting
minimum. Our results apply to arbitrary augmentation schemes, revealing complex
interactions between learning rates and augmentations even in the convex setting.
Our approach interprets augmented (S)GD as a stochastic optimization method
for a time-varying sequence of proxy losses. This gives a unified way to analyze
learning rate, batch size, and augmentations ranging from additive noise to random
projections. From this perspective, our results, which also give rates of convergence,
can be viewed as Monro-Robbins type conditions for augmented (S)GD.

1 Introduction

Data augmentation, a popular set of techniques in which data is augmented (i.e. modified) at every
optimization step, has become increasingly crucial to training models using gradient-based optimiza-
tion. However, in modern overparametrized settings where there are many different minimizers of the
training loss, the specific minimizer selected by training and the quality of the resulting model can be
highly sensitive to choices of augmentation hyperparameters. As a result, practitioners use methods
ranging from simple grid search to Bayesian optimization and reinforcement learning [8, 9, 17] to
select and schedule augmentations by changing hyperparameters over the course of optimization.
Such approaches, while effective, often require extensive compute and lack theoretical grounding.

These empirical practices stand in contrast to theoretical results from the implicit bias and stochastic
optimization literature. The extensive recent literature on implicit bias [15, 29, 32] gives provable
guarantees on which minimizer of the training loss is selected by GD and SGD in simple settings,
but considers cases without complex scheduling. On the other hand, classical theorems in stochastic
optimization, building on the Monro-Robbins theorem in [25], give provably optimal learning rate
schedules for strongly convex objectives. However, neither line of work addresses the myriad
augmentation and hyperparameter choices crucial to gradient-based training effective in practice.

The present work takes a step towards bridging this gap. We consider two main questions for a
learning rate schedule and data augmentation policy:
∗Equal contribution
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1. When and at what rate will optimization converge?
2. Assuming optimization converges, what point does it converge to?

To isolate the effect on optimization of jointly scheduling learning rate and data augmentation schemes,
we consider these questions in the simple convex model of linear regression with MSE loss:

L(W ;D) =
1

N
‖Y −WX‖2F . (1.1)

In this setting, we analyze the effect of the data augmentation policy on the optimization trajectory
Wt of augmented (stochastic) gradient descent2, which follows the update equation

Wt+1 = Wt − ηt∇WL(W ;Dt)
∣∣
W=Wt

. (1.2)

Here, the dataset D = (X,Y ) contains N datapoints arranged into data matrices X ∈ Rn×N and
Y ∈ Rp×N whose columns consist of inputs xi ∈ Rn and outputs yi ∈ Rp. In this context, we
take a flexible definition data augmentation scheme as any procedure that consists, at every step
of optimization, of replacing the dataset D by a randomly augmented variant which we denote by
Dt = (Xt, Yt). This framework is flexible enough to handle SGD and commonly used augmentations
such as additive noise [14], CutOut [12], SpecAugment [23], Mixup [35], and label-preserving
transformations (e.g. color jitter, geometric transformations [26])).

We give a general answer to Questions 1 and 2 for arbitrary data augmentation schemes. Our main
result (Theorem 3.1) gives sufficient conditions for optimization to converge in terms of the learning
rate schedule and simple 2nd and 4th order moment statistics of augmented data matrices. When
convergence occurs, we explicitly characterize the resulting optimum in terms of these statistics. We
then specialize our results to (S)GD with modern augmentations such as additive noise [14] and
random projections (e.g. CutOut [12] and SpecAugment [23]). In these cases, we find learning rate
and augmentation parameters which ensure convergence with rates to the minimum norm optimum
for overparametrized linear regression. To sum up, our main contributions are:

1. We analyze arbitrary data augmentation schemes for linear regression with MSE loss,
obtaining explicit sufficient conditions on the joint schedule of the data augmentation policy
and the learning rate for (stochastic) gradient descent that guarantee convergence with rates
in Theorems 3.1 and 3.2. The resulting augmentation-dependent optimum encodes the
ultimate effect of augmentation on optimization, and we characterize it in Theorem 3.1.
Our results generalize Monro-Robbins theorems [25] to situations where the stochastic
optimization objective may change at each step.

2. We specialize our results to (stochastic) gradient descent with additive input noise (§4) or
random projections of the input (§5), a proxy for the popular CutOut and SpecAugment
augmentations [12, 23]. In each case, we find that jointly scheduling learning rate and
augmentation strength is critical for allowing convergence with rates to the minimum norm
optimizer. We find specific schedule choices which guarantee this convergence with rates
(Theorems 4.1, 4.2, and 5.1) and validate our results empirically (Figure 4.1). This suggests
explicitly adding learning rate schedules to the search space for learned augmentations as in
[8, 9], which we leave to future work.

2 Related Work

In addition to the extensive empirical work on data augmentation cited elsewhere in this article, we
briefly catalog other theoretical work on data augmentation and learning rate schedules. The latter
were first considered in the seminal work [25]. This spawned a vast literature on rates of convergence
for GD, SGD, and their variants. We mention only the relatively recent articles [1, 11, 4, 27, 22] and
the references therein. The last of these, namely [22], finds optimal choices of learning rate and batch
size for SGD in the overparametrized linear setting.

A number of articles have also pointed out in various regimes that data augmentation and more
general transformations such as feature dropout correspond in part to `2-type regularization on model
parameters, features, gradients, and Hessians. The first article of this kind of which we are aware is [3],

2Both GD and SGD fall into our framework. To implement SGD, we take Dt to be a subset of D.
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which treats the case of additive Gaussian noise (see §4). More recent work in this direction includes
[5, 30, 19, 21]. There are also several articles investigating optimal choices of `2-regularization
for linear models (cf e.g. [33, 31, 2]). These articles focus directly on the generalization effects of
ridge-regularized minima but not on the dynamics of optimization. We also point the reader to [20],
which considers optimal choices for the weight decay coefficient empirically in neural networks and
analytically in simple models.

We also refer the reader to a number of recent attempts to characterize the benefits of data augmenta-
tion. In [24], for example, the authors quantify how much augmented data, produced via additive
noise, is needed to learn positive margin classifiers. [6], in contrast, focuses on the case of data
invariant under the action of a group. Using the group action to generate label-preserving augmenta-
tions, the authors prove that the variance of any function depending only on the trained model will
decrease. This applies in particular to estimators for the trainable parameters themselves. [10] shows
augmented k-NN classification reduces to a kernel method for augmentations transforming each
datapoint to a finite orbit of possibilities. It also gives a second order expansion for the proxy loss
of a kernel method under such augmentations and interprets how each term affects generalization.
Finally, the article [34] considers both label preserving and noising augmentations, pointing out the
conceptually distinct roles such augmentations play.

3 Time-varying Monro-Robbins for linear models under augmentation

We seek to isolate the impact of data augmentation on optimization in the simple setting of augmented
(stochastic) gradient descent for linear regression with the MSE loss (1.1). Since the augmented
dataset Dt at time t is a stochastic function of D, we may view the update rule (1.2) as a form of
stochastic optimization for the proxy loss at time t

Lt(W ) := EDt [L(W ;Dt)] (3.1)

which uses an unbiased estimate of the gradient of L(W ;Dt) from a single draw of Dt. The
connection between data augmentation and this proxy loss was introduced in [3, 5], but we now
consider it in the context of stochastic optimization. In particular, we consider scheduling the
augmentation, which allows the distribution of Dt to change with t and thus enables optimization to
converge to points which are not minimizers of the proxy loss Lt(W ) at any fixed time.

Our main results, Theorems 3.1 and 3.2, provide sufficient conditions for jointly scheduling learning
rates and general augmentation schemes to guarantee convergence of augmented gradient descent
in the linear regression model (1.1). Before stating them, we first give examples of augmentations
falling into our framework, which we analyze using our general results in §4 and §5.

• Additive Gaussian noise: For SGD with batch size Bt and noise level σt > 0, this
corresponds to Xt = ct(XAt + σt · Gt) and Yt = ctY At, where Gt is a matrix of i.i.d.
standard Gaussians, At ∈ RN×Bt has i.i.d. columns with a single non-zero entry equal to 1

chosen uniformly at random and ct =
√
N/Bt is a normalizing factor. The proxy loss is

Lt(W ) = L(W ;D) + σ2
t ‖W‖2F , (3.2)

which adds an `2 penalty. We analyze this case in §4.

• Random projection: This corresponds to Xt = ΠtX and Yt = Y , where Πt is an
orthogonal projection onto a random subspace. For γt = tr(Πt)/n, the proxy loss is

Lt(W ) =
1

N
‖Y − γtWX‖2F +

1

N
γt(1− γt)

1

n
‖X‖2F · ‖W‖2F +O(n−1),

adding a data-dependent `2 penalty and applying Stein-type shrinkage on input data. We
analyze this in §5.

In addition to these augmentations, the augmentations below also fit into our framework, and
Theorems 3.1 and 3.2 apply. However, in these cases, explicitly characterizing the learned minimum
beyond the general description given in Theorems 3.1 and 3.2 is more difficult, and we thus leave
interpretion of these specializations to future work.
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(a) The time t proxy loss Lt is non-degenerate on V‖
with minimal norm minimizer W ∗t . The increment
Wt+1 −Wt is in V‖, so only the projection WtQ‖ of
Wt onto V‖ changes.

(b) The proxy losses Lt and Lt+1 at consecutive times
will generally have different minimal norm minimiz-
ers W ∗t , W

∗
t+1. The increment Ξ∗t = W ∗t+1 − W ∗t

measures this change.

Figure 3.1: Schematic diagrams of augmented optimization in the parameter space Rn×p.

• Label-preserving transformations: For a 2-D image viewed as a vector x ∈ Rn, geometric
transforms (with pixel interpolation) or other label-preserving transforms such as color jitter
take the form of linear transforms Rn → Rn. We may implement such augmentations in
our framework by Xt = AtX and Yt = Y for some random transform matrix At.

• Mixup: To implement Mixup, we can take Xt = XAt and Yt = Y At, where At ∈ RN×Bt
has i.i.d. columns containing two random non-zero entries equal to 1−ct and ct with mixing
coefficient ct drawn independently from a Beta(αt, αt) distribution for a parameter αt.

3.1 A general time-varying Monro-Robbins theorem

Given an augmentation scheme for the overparameterized linear model (1.1), the time t gradient
update at learning rate ηt is

Wt+1 := Wt +
2ηt
N
· (Yt −WtXt)X

T
t , (3.3)

where Dt = (Xt, Yt) is the augmented dataset at time t. The minimum norm minimizer of the
corresponding proxy loss Lt (see (3.1)) is

W ∗t := E[YtX
T
t ]E[XtX

T
t ]+, (3.4)

where E[XtX
T
t ]+ denotes the Moore-Penrose pseudo-inverse (see Figure 3.1a). In this section

we state a rigorous result, Theorem 3.1, giving sufficient conditions on the learning rate ηt and
distributions of the augmented matrices Xt, Yt under which augmented gradient descent converges.
To state it, note that (3.3) implies that each row of Wt+1 −Wt is contained in the column span of the
Hessian XtX

T
t of the augmented loss and therefore almost surely belongs to the subspace

V‖ := column span of E[XtX
T
t ] ⊆ Rn, (3.5)

as illustrated in Figure 3.1a. The reason is that, in the orthogonal complement to V‖, the augmented
loss L(W ;Dt) has zero gradient with probability 1. To ease notation, we assume that V‖ is inde-
pendent of t. This assumption holds for additive Gaussian noise, random projection, MixUp, SGD,
and their combinations. It is not necessary in general, however, and we refer the interested reader to
Remark B.2 in the Appendix for how to treat the general case.

Let us denote by Q‖ : Rn → Rn the orthogonal projection onto V‖ (see Figure 3.1a). As we already
pointed out, at time t, gradient descent leaves the matrix of projections Wt(Id−Q‖) of each row of
Wt onto the orthogonal complement of V‖ unchanged. In contrast, ‖WtQ‖ −W ∗t ‖F decreases at a
rate governed by the smallest positive eigenvalue λmin,V‖

(
E
[
XtX

T
t

])
of the Hessian for the proxy
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loss Lt, which is obtained by restricting its full Hessian E
[
XtX

T
t

]
to V‖. Moreover, whether and at

what rate WtQ‖ −W ∗t converges to 0 depends on how quickly the distance

Ξ∗t := W ∗t+1 −W ∗t (3.6)

between proxy loss optima at successive steps tends to zero (see Figure 3.1b).
Theorem 3.1 (Special case of Theorem B.1). Suppose that V‖ is independent of t, that the learning
rate satisfies ηt → 0, that the proxy optima satisfy

∞∑
t=0

‖Ξ∗t ‖F <∞, (3.7)

ensuring the existence of a limit W ∗∞ := limt→∞W ∗t , that
∞∑
t=0

ηtλmin,V‖(E[XtX
T
t ]) =∞ (3.8)

and finally that
∞∑
t=0

η2tE
[
‖XtX

T
t − E[XtX

T
t ]‖2F + ‖YtXT

t − E[YtX
T
t ]‖2F

]
<∞. (3.9)

Then, for any initialization W0, we have that WtQ‖ converges in probability to W ∗∞.

If the same augmentation is applied with different strength parameters at each step t (e.g. the noise
level σ2

t for additive Gaussian noise), we may specialize Theorem 3.1 to this augmentation scheme.
More precisely, translating conditions (3.7), (3.8), (3.9) into conditions on the learning rate and
augmentation strength gives conditions on the schedule for ηt and these strength parameters to ensure
convergence. In §4 and §5, we do this for additive Gaussian noise and random projections.

When the augmentation scheme is static in t, Theorem 3.1 reduces to a standard Monro-Robbins
theorem [25] for the (static) proxy loss Lt(W ). As in that setting, condition (3.8) enforces that the
learning trajectory travels far enough to reach an optimum, and the summand in Condition (3.9)
bounds the variance of the gradient of the augmented loss L(W ;Dt) to ensure the total variance of
the stochastic gradients is summable. Condition (3.7) is new and enforces that the minimizers W ∗t of
the proxy losses Lt(W ) change slowly enough for augmented optimization procedure to keep pace.

3.2 Convergence rates and scheduling for data augmentation

Refining the proof of Theorem 3.1 gives rates of convergence for the projections WtQ‖ of the weights
onto V‖ to the limiting optimum W ∗∞. When the quantities in Theorem 3.1 have power law decay, we
obtain the following result.
Theorem 3.2 (Special case of Theorem B.4). Suppose V‖ is independent of t and the learning rate
satisfies ηt → 0. Moreover assume that for some 0 < α < 1 < β1, β2 and γ > α we have

ηtλmin,V‖(E[XtX
T
t ]) = Ω(t−α), ‖Ξ∗t ‖F = O(t−β1) (3.10)

as well as
η2tE[‖XtX

T
t − E[XtX

T
t ]‖22] = O(t−γ) (3.11)

and
η2tE

[
‖E[Wt](XtX

T
t − E[XtX

T
t ])− (YtX

T
t − E[YtX

T
t ])‖2F

]
= O(t−β2). (3.12)

Then, for any initialization W0, we have for any ε > 0 the following convergence in probability:

tmin{β1−1, β2−α2 }−ε‖WtQ‖ −W ∗∞‖F
p→ 0.

It may be surprising that E[Wt] appears in condition (3.12). Note that E[Wt] is the gradient descent
trajectory for the time-varying sequence of deterministic proxy losses Lt(W ). To apply Theorem 3.2,
one may first study this deterministic problem to show that E[Wt] converges to W ∗∞ at some rate and
then use (3.12) to obtain rates of convergence of the true stochastic trajectory Wt to W ∗∞.

In §4 and §5 below, we specialize Theorems 3.1 and 3.2 to obtain rates of convergence for specific
augmentations. Optimizing the learning rate and augmentation parameter schedules in Theorem 3.2
yields power law schedules with convergence rate guarantees in these settings.
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4 Special Case: Additive Gaussian Noise

We now specialize our main results Theorem 3.1 and 3.2 to the commonly used additive noise
augmentation [14]. Under gradient descent, this corresponds to taking augmented data matrices

Xt = X + σtGt and Yt = Y,

where Gt ∈ Rn×N are independent matrices with i.i.d. standard Gaussian entries, and σt > 0 is a
strength parameter. Under SGD (with replacement), this corresponds to augmented data matrices

Xt = ct(XAt + σt ·Gt) and Yt = ctY At,

where At ∈ RN×Bt has i.i.d. columns with a single non-zero entry equal to 1 chosen uniformly at
random and ct =

√
N/Bt is a normalizing factor. In both cases, the proxy loss is

Lσt(W ) :=
1

N
‖Y −WX‖2F + σ2

t ‖W‖2F , (4.1)

which to our knowledge was first discovered in [3].

Before stating our precise results, we first illustrate how jointly scheduling learning rate and augmen-
tation strength impacts GD for overparameterized linear regression, where

N = #data points < input dimension = n. (4.2)

The inequality (4.2) ensures L(W ;D) has infinitely many minima, of which we consider the minimum
norm minimizer

Wmin := Y XT(XXT)+

most desirable. Notice that steps of vanilla gradient descent

Wt+1 = Wt −
2ηt
N
· (Y −WtX)XT (4.3)

change the rows of the weight matrix Wt only in the column space V‖ = colspan(XXT) ⊆ Rn.
Because V‖ 6= Rn by the overparameterization assumption (4.2), minimizing L(W ;D) without
augmentation cannot change Wt,⊥, the matrix whose rows are the components of the rows of Wt

orthogonal to V‖. This means that GD converges to the minimal norm optimizer Wmin only when
each row of W0 belongs to V‖. As this explicit initialization may not be available for more general
models, we seek to find augmentation schedules which allow GD or SGD to converge to Wmin

without it, in the spirit of recent studies on implicit bias of GD.

4.1 Joint schedules for augmented GD with additive noise to converge to Wmin

We specialize Theorems 3.1 and 3.2 to additive Gaussian noise to show that when the learning rate ηt
and noise strength σt are jointly scheduled to converge to 0 at appropriate rates, augmented gradient
descent can find the minimum norm optimizer Wmin.
Theorem 4.1. Consider any joint schedule of the learning rate ηt and noise variance σ2

t in which
both ηt and σ2

t tend to 0 and σt is non-decreasing. If the joint schedule satisfies
∞∑
t=0

ηtσ
2
t =∞ and

∞∑
t=0

η2t σ
2
t <∞, (4.4)

then the weights Wt converge in probability to the minimal norm optimum Wmin regardless of the
initialization. Moreover, the first condition in (4.4) is necessary for E[Wt] to converge to Wmin.

If we further have ηt = Θ(t−x) and σ2
t = Θ(t−y) with x, y > 0, x+ y < 1, and 2x+ y > 1 so that

ηt and σ2
t satisfy (4.4), then for small ε > 0, we have tmin{y, 12x}−ε‖Wt −Wmin‖F p→ 0.

The conditions of (4.4) require that ηt and σt be jointly scheduled correctly to ensure convergence
to Wmin and are akin to the Monro-Robbins conditions [25] for convergence of stochastic gradient
methods. We now give an heuristic explanation for why the first condition from (4.4) is necessary. In
this setting, the average trajectory of augmented gradient descent

E[Wt+1] = E[Wt]− η∇WLσt(W )
∣∣
W=E[Wt]

(4.5)
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Figure 4.1: MSE and ‖Wt,⊥‖F for optimization trajectories of GD with additive Gaussian noise
augmentation and SGD with additive Gaussian noise augmentation under different augmentation
schedules. For both GD and SGD, jointly scheduling learning rate and noise variance to have polyno-
mial decay is necessary for optimization to converge to the minimal norm solutionWmin. Gauss const,
Gauss exp, and Gauss pow have Gaussian noise augmentation with σ2

t = 2, 2e−0.02t, 2(1 + t
50 )−0.33,

respectively. All other details are given in §4.3.

is given by gradient descent on the ridge regularized losses Lσt(W ). If σt ≡ σ > 0 is constant, then
E[Wt] will converge to the unique minimizer W ∗σ of the ridge regularized loss Lσ. This point W ∗σ
has zero orthogonal component, but does not minimize the original loss L.

To instead minimize L, we must choose a schedule satisfying σt → 0. For the expected optimization
trajectory to converge to Wmin for such a schedule, the matrix E[Wt,⊥] of components of rows of
E [Wt] orthogonal to V‖ must converge to 0. The GD steps for this matrix yield

E[Wt+1,⊥] = (1− ηtσ2
t )E[Wt,⊥] =

t∏
s=0

(1− ηsσ2
s)E[W0,⊥]. (4.6)

Because ηtσ2
t approaches 0, this implies the necessary condition

∑∞
t=0 ηtσ

2
t =∞ for E[Wt,⊥]→ 0.

This argument illustrates a key intuition behind the conditions (4.4). The augmentation strength σt
must decay to 0 to allow convergence to a true minimizer of the training loss, but this convergence
must be carefully tuned to allow the implicit regularization of the noising augmentation to kill the
orthogonal component of Wt in expectation. In a similar manner, the second expression in (4.4)
measures the total variance of the gradients and ensures that only a finite amount of noise is injected
into the optimization.

Although Theorem 4.1 is stated for additive Gaussian noise, an analogous version holds for arbitrary
additive noise with bounded moments. Moreover, optimizing over x, y, the fastest rate of convergence
guaranteed by Theorem 4.1 is obtained by setting ηt = t−2/3+ε, σ2

t = t−1/3 and results in a
O(t−1/3+ε) rate of convergence. It is not evident that this is best possible, however.
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4.2 Joint schedules for augmented SGD with additive noise to converge to Wmin

To conclude our discussion of additive noise augmentations, we present the following result on
convergence to Wmin in the presence of both Gaussian noise and SGD (where datapoints in each
batch are selected with replacement).
Theorem 4.2. Suppose σ2

t → 0 is decreasing, ηt → 0, and we have
∞∑
t=0

ηtσ
2
t =∞ and

∞∑
t=0

η2t <∞. (4.7)

Then the trajectory Wt of SGD with additive noise converges in probability to Wmin for any initializa-
tion. If we further have ηt = Θ(t−x) and σ2

t = Θ(t−y) with x > 1
2 , y > 0 and x+ y < 1, then for

any ε > 0 we have that tmin{y, 12x}−ε‖Wt −Wmin‖F p→ 0.

Theorem 4.2 is the analog of Theorem 4.1 for mini-batch SGD and provides an example where
our framework can handle the composition of two augmentations, namely additive noise and mini-
batching. The difference between conditions (4.7) for SGD and (4.4) for GD accounts for the fact
that the batch selection changes the scale of the gradient variance at each step. Finally, Theorem 4.2
reveals a qualitative difference between SGD with and without additive noise. If ηt has power law
decay, the convergence of noiseless SGD (Theorem F.1) is exponential in t, while Theorem 4.2 gives
power law rates.

4.3 Experimental validation

To validate Theorems 4.1 and 4.2, we ran augmented GD and SGD with additive Gaussian noise
on N = 100 simulated datapoints. Inputs were i.i.d. Gaussian vectors in dimension n = 400,
and outputs in dim p = 1 were generated by a random linear map with i.i.d Gaussian coefficients
drawn from N (1, 1). The learning rate followed a fixed polynomially decaying schedule ηt =
0.005
100 · (batch size) · (1 + t

20 )−0.66, and the batch size used for SGD was 20. Figure 4.1 shows
MSE and ‖Wt,⊥‖F along a single optimization trajectory with different schedules for the variance
σ2
t used in Gaussian noise augmentation. Complete code to generate this figure is provided in

supplement.zip in the supplement. It ran in 30 minutes on a standard laptop CPU.

For both GD and SGD, Figure 4.1 shows that the optimization trajectory reaches Wmin only when
both learning rate and noise variance decay polynomially to zero. Indeed, Figure 4.1 shows that if σ2

t
is zero (blue) or exponentially decaying (green), then while the MSE tends to zero, the orthogonal
component Wt,⊥ does not tend to zero. Thus these choices of augmentation schedule cause Wt to
converge to an optimum which does not have minimal norm.

On the other hand, if σ2
t remains constant (orange), then while Wt,⊥ tends to zero, the MSE is

not minimized. Only by decaying both noise strength and learning rate to 0 at sufficiently slow
polynomial rates (red) prescribed by Theorem 4.1 do we find both MSE and Wt,⊥ tending to 0,
meaning that augmented (S)GD finds the minimum norm optimum Wmin under this choice of
parameter scheduling.

5 Special Case: Augmentation with Random Projections

We further illustrate our results by specializing them to a class of augmentations which replace each
input x in a batch by its orthogonal projection ΠtX onto a random subspace. In practice (e.g. when
using CutOut [12] or SpecAugment [23]), the subspace is chosen based on a prior about correlations
between components of X , but we consider the simplified case of a uniformly random subspace of
Rn of given dimension.

At each time step t we fix a dimension kt and a fixed kt-dimensional subspace S̃t of Rn. Define the
random subspace St by

St := Qt(S̃t) = {Qtx | x ∈ S̃t},
where Qt ∈ O(n) is a Haar random orthogonal matrix. Thus, St is uniformly distributed among all
kt-dimensional subspaces in Rn. At step t, we take the augmentation given by

Xt = ΠtX Yt = Y, Πt := QtΠ̃tQ
T
t ,
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where Π̃t is the orthogonal projection onto S̃t and hence Πt is the orthogonal projection onto St.

Denoting by γt = kt/n the relative dimension of St, a direct computation (see Lemma E.1) reveals
that the proxy loss Lt(W ) equals L(γtW ;D) plus

1

N

γt(1− γt)
n

‖X‖2F · ‖W‖2F +
γt(1− γt)(1/n− 2/n2)

N(1 + 1/n− 2/n2)
(‖WX‖2F +

1

n
‖X‖2F · ‖W‖2F ). (5.1)

Neglecting terms of order O(n−1), this proxy loss applies a Stein-type shrinkage on input data by γt
and adds a data-dependent `2 penalty. For γt < 1, the minimizer of the proxy loss (5.1) is

W ∗γt = Y XT
(γt + 1/n− 2/n2

1 + 1/n− 2/n2
XXT +

1− γt
1 + 1/n− 2/n2

‖X‖2F
n

Id
)−1

.

Again, although W ∗γt does not minimize the original objective for any γt < 1, the sequence of these
proxy optima converges to the minimal norm optimum in the weak regularization limit. Namely,
we have limγt→1−W

∗
γt = Wmin. Specializing our general result Theorem 3.1 to this setting, we

obtain explicit conditions under which joint schedules of the normalized rank of the projection and
the learning rate guarantee convergence to the minimum norm optimizer Wmin.
Theorem 5.1. Suppose that ηt → 0, γt → 1 with γt non-decreasing and

∞∑
t=0

ηt(1− γt) =∞ and
∞∑
t=0

η2t (1− γt) <∞. (5.2)

Then, Wt
p→ Wmin. Further, if ηt = Θ(t−x) and γt = 1 − Θ(t−y) with x, y > 0, x + y < 1, and

2x+ y > 1, then for small ε > 0, we have that tmin{y, 12x}−ε‖Wt −Wmin‖F p→ 0.

Comparing the conditions (5.2) of Theorem 5.1 to the conditions (4.4) of Theorem 4.1, we see that
1− γt is a measure of the strength of the random projection preconditioning. As in that setting, the
fastest rates of convergence guaranteed by Theorem 5.1 are obtained by setting ηt = t−2/3+ε and
γt = 1− t−1/3, yielding a O(t−1/3+ε) rate of convergence.

6 Discussion and Limitations

We have presented a theoretical framework to rigorously analyze the effect of data augmentation. As
can be seen in our main results, our framework applies to completely general augmentations and
relies only on analyzing the first few moments of the augmented dataset. This allows us to handle
augmentations as diverse as additive noise and random projections as well as their composition in a
uniform manner. We have analyzed some representative examples in detail in this work, but many
other commonly used augmentations may be handled similarly: label-preserving transformations
(e.g. color jitter, geometric transformations) and Mixup [35], among many others. Another line of
investigation left to future work is to compare different methods of combining augmentations such as
mixing, alternating, or composing, which often improve performance in the empirical literature [16].

Though our results provide a rigorous baseline to compare to more complex settings, the restriction
of the present work to linear models is a significant constraint. In future work, we hope to extend our
general analysis to models closer to those used in practice. Most importantly, we intend to consider
more complex models such as kernels (including the neural tangent kernel) and neural networks
by making similar connections to stochastic optimization. In an orthogonal direction, our analysis
currently focuses on the mean square loss for regression, and we aim to extend it to other losses such
as cross-entropy. Finally, our study has thus far been restricted to the effect of data augmentation on
optimization, and it would be of interest to derive consequences for generalization with more complex
models. We hope our framework can provide the theoretical underpinnings for a more principled
understanding of the effect and practice of data augmentation.

Broader Impact

Our work provides a new theoretical approach to data augmentation for neural networks. By giving a
better understanding of how this common practice affects optimization, we hope that it can lead to
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more robust and interpretable uses of data augmentation in practice. Because our work is theoretical
and generic, we do not envision negative impacts aside from those arising from improving learning
algorithms in general.
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A Analytic lemmas

In this section, we present several basic lemmas concerning convergence for certain matrix-valued
recursions that will be needed to establish our main results. For clarity, we first collect some matrix
notations used in this section and throughout the paper.

A.1 Matrix notations

LetM ∈ Rm×n be a matrix. We denote its Frobenius norm by ‖M‖F and its spectral norm by ‖M‖2.
If m = n so that M is square, we denote by diag(M) the diagonal matrix with diag(M)ii = Mii.
For matrices A,B,C of the appropriate shapes, define

A ◦ (B ⊗ C) := BAC (A.1)

and
Var(A) := E[AT ⊗A]− E[AT]⊗ E[A]. (A.2)

Notice in particular that
tr[Id ◦Var(A)] = E[‖A− E[A]‖2F ].

A.2 One- and two-sided decay

Definition A.1. LetAt ∈ Rn×n be a sequence of independent random non-negative definite matrices
with

sup
t
‖At‖ ≤ 2 almost surely,

letBt ∈ Rp×n be a sequence of arbitrary matrices, and letCt ∈ Rn×n be a sequence of non-negative
definite matrices. We say that the sequence of matrices Xt ∈ Rp×n has one-sided decay of type
({At}, {Bt}) if it satisfies

Xt+1 = Xt(Id−E[At]) +Bt. (A.3)

We say that a sequence of non-negative definite matrices Zt ∈ Rn×n has two-sided decay of type
({At}, {Ct}) if it satisfies

Zt+1 = E[(Id−At)Zt(Id−At)] + Ct. (A.4)

Intuitively, if a sequence of matrices Xt (resp. Zt) satisfies one decay of type ({At}, {Bt}) (resp.
two-sided decay of type ({At}, {Ct})), then in those directions u ∈ Rn for which ‖Atu‖ does not
decay too quickly in t we expect that Xt (resp. Zt) will converge to 0 provided Bt (resp. Ct) are not
too large. More formally, let us define

V‖ :=

∞⋂
t=0

ker

[ ∞∏
s=t

(Id−E[As])

]
=

{
u ∈ Rn

∣∣∣∣ lim
T→∞

T∏
s=t

(Id−E[As])u = 0, ∀t ≥ 1

}
,

and let Q‖ be the orthogonal projection onto V‖. It is on the space V‖ that that we expect Xt, Zt to
tend to zero if they satisfy one or two-side decay, and the precise results follows.

A.3 Lemmas on Convergence for Matrices with One and Two-Sided Decay

We state here several results that underpin the proofs of our main results. We begin by giving in
Lemmas A.2 and A.3 two slight variations of the same simple argument that matrices with one or
two-sided decay converge to zero.

Lemma A.2. If a sequence {Xt} has one-sided decay of type ({At}, {Bt}) with

∞∑
t=0

‖Bt‖F <∞, (A.5)

then limt→∞XtQ‖ = 0.
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Proof. For any ε > 0, choose T1 so that
∑∞
t=T1
‖Bt‖F < ε

2 and T2 so that for t > T2 we have∥∥∥∥∥(
t∏

s=T1

(Id−E[As])
)
Q‖

∥∥∥∥∥
2

<
ε

2

1

‖X0‖F +
∑T1−1
s=0 ‖Bs‖F

.

By (A.3), we find that

Xt+1 = X0

t∏
s=0

(Id−E[As]) +

t∑
s=0

Bs

t∏
r=s+1

(Id−E[Ar]),

which implies for t > T2 that

‖Xt+1Q‖‖F ≤ ‖X0‖F
∥∥∥∥∥(

t∏
s=0

(Id−E[As])
)
Q‖

∥∥∥∥∥
2

+

t∑
s=0

‖Bs‖F
∥∥∥∥∥(

t∏
r=s+1

(Id−E[Ar])
)
Q‖

∥∥∥∥∥
2

.

(A.6)
Our assumption that ‖At‖ ≤ 2 almost surely implies that for any T ≤ t∥∥∥∥∥(

t∏
s=0

(Id−E[As])
)
Q‖

∥∥∥∥∥
2

≤
∥∥∥∥∥(

T∏
s=0

(Id−E[As])
)
Q‖

∥∥∥∥∥
2

since each term in the product is non-negative-definite. Thus, we find

‖Xt+1Q‖‖F ≤
[
‖X0‖F +

T1−1∑
s=0

‖Bs‖F
]∥∥∥∥∥(

t∏
s=T1

(Id−E[As])
)
Q‖

∥∥∥∥∥
2

+

t∑
s=T1

‖Bs‖F < ε.

Taking t→∞ and then ε→ 0 implies that limt→∞XtQ‖ = 0, as desired.

Lemma A.3. If a sequence {Zt} has two-sided decay of type ({At}, {Ct}) with

lim
T→∞

E

∥∥∥∥∥(
T∏
s=t

(Id−As)
)
Q‖

∥∥∥∥∥
2

2

 = 0 for all t ≥ 0 (A.7)

and
∞∑
t=0

tr(Ct) <∞, (A.8)

then limt→∞QT
‖ZtQ‖ = 0.

Proof. The proof is essentially identical to that of Lemma A.2. That is, for ε > 0, choose T1 so that∑∞
t=T1

tr(Ct) < ε
2 and choose T2 by (A.7) so that for t > T2 we have

E

∥∥∥∥∥(
t∏

s=T1

(Id−As)
)
Q‖

∥∥∥∥∥
2

2

 < ε

2

1

tr(Z0) +
∑T1−1
s=0 tr(Cs)

.

Conjugating (A.4) by Q‖, we have that

QT
‖Zt+1Q‖ = E

[
QT
‖

( t∏
s=0

(Id−As)
)T
Z0

( t∏
s=0

(Id−As)
)
Q‖

]

+

t∑
s=0

E

[
QT
‖

( t∏
r=s+1

(Id−Ar)
)T
Cs

( t∏
r=s+1

(Id−Ar)
)
Q‖

]
.

Our assumption that ‖At‖ ≤ 2 almost surely implies that for any T ≤ t∥∥∥∥∥(
t∏

s=0

(Id−As)
)
Q

∥∥∥∥∥
2

≤
∥∥∥∥∥(

T∏
s=0

(Id−As)
)
Q

∥∥∥∥∥
2

.
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For t > T2, this implies by taking trace of both sides that

tr(QT
‖Zt+1Q‖) ≤ tr(Z0)E

∥∥∥∥∥(
t∏

s=0

(Id−As)
)
Q‖

∥∥∥∥∥
2

2

+

t∑
s=0

tr(Cs)E

∥∥∥∥∥(
t∏

r=s+1

(Id−Ar)
)
Q‖

∥∥∥∥∥
2

2


(A.9)

≤
[

tr(Z0) +

T1−1∑
s=0

tr(Cs)

]
E

∥∥∥∥∥(
t∏

s=T1

(Id−As)
)
Q‖

∥∥∥∥∥
2

2

+

t∑
s=T1

tr(Cs)

< ε,

which implies that limt→∞QT
‖ZtQ‖ = 0.

The preceding Lemmas will be used to provide sufficient conditions for augmented gradient descent
to converge as in Theorem B.1 below. Since we are also interested in obtaining rates of convergence,
we record here two quantitative refinements of the Lemmas above that will be used in the proof of
Theorem B.4.
Lemma A.4. Suppose {Xt} has one-sided decay of type ({At}, {Bt}). Assume also that for some
X ≥ 0 and C > 0, we have

log

∥∥∥∥∥(
t∏

r=s

(Id−E[Ar])
)
Q‖

∥∥∥∥∥
2

< X − C
∫ t+1

s

r−αdr

and ‖Bt‖F = O(t−β) for some 0 < α < 1 < β. Then, ‖XtQ‖‖F = O(tα−β).

Proof. Denote γs,t :=
∫ t
s
r−αdr. By (A.6), we have for some constants C1, C2 > 0 that

‖Xt+1Q‖‖F < C1e
−Cγ1,t+1 + C2e

X
t∑

s=1

(1 + s)−βe−Cγs+1,t+1 . (A.10)

The first term on the right hand side is exponentially decaying in t since γ1,t+1 grows polynomially
in t. To bound the second term, observe that the function

f(s) := Cγs+1,t+1 − β log(s+ 1)

satisfies

f ′(s) ≥ 0 ⇔ C(s+ 1)−α − β

1 + s
≥ 0 ⇔ s ≥

(
β

C

)1/(1−α)

=: K.

Hence, the summands are monotonically increasing for s greater than a fixed constant K depending
only on α, β, C. Note that

K∑
s=1

(1 + s)−βe−Cγs+1,t+1 ≤ Ke−CγK+1,t+1 ≤ Ke−C′t1−α

for some C ′ depending only on α and K, and hence sum is exponentially decaying in t. Further,
using an integral comparison, we find

t∑
s=K+1

(1 + s)−βe−Cγs+1,t+1 ≤
∫ t

K

(1 + s)−βe−
C

1−α ((t+1)1−α−(s+1)1−α)ds. (A.11)

Changing variables using u = (1 + s)1−α/(1− α), the last integral has the form

e−Cgt(1− α)−ξ
∫ gt

gK

u−ξeCudu, gx :=
(1 + x)1−α

1− α , ξ :=
β − α
1− α . (A.12)

Integrating by parts, we have∫ gt

gK

u−ξeudu = C−1ξ

∫ gt

gK

u−ξ−1eCudu+ (u−ξeCu)|gtgK

14



Further, since on the range gK ≤ u ≤ gt the integrand is increasing, we have

e−Cgtξ

∫ gt

gK

u−ξ−1eCudu ≤ ξg−ξt .

Hence, e−Cgt times the integral in (A.12) is bounded above by

O(g−ξt ) + e−Cgt(u−ξeCu)|gtgK = O(g−ξt ).

Using (A.11) and substituting the previous line into (A.12) yields the estimate
t∑

s=K+1

(1 + s)−βe−Cγs+1,t+1 ≤ (1 + t)−β+α,

which completes the proof.

Lemma A.5. Suppose {Zt} has two-sided decay of type ({At}, {Ct}). Assume also that for some
X ≥ 0 and C > 0, we have

logE

∥∥∥∥∥(
t∏

r=s

(Id−Ar)
)
Q‖

∥∥∥∥∥
2

2

 < X − C
∫ t+1

s

r−αdr

as well as tr(Ct) = O(t−β) for some 0 < α < 1 < β. Then tr(QT‖ ZtQ‖) = O(tα−β).

Proof. This argument is identical to the proof of Lemma A.4. Indeed, using (A.9) we have that

tr
(
QT‖ ZtQ‖

)
≤ C1e

−Cγ1,t+1 + C2e
X

t∑
s=1

(1 + s)−βe−Cγs+1,t+1 .

The right hand side of this inequality coincides with the expression on the right hand side of (A.10),
which we already bounded by O(tβ−α) in the proof of Lemma A.4.

In what follows, we will use a concentration result for products of matrices from [18]. Let
Y1, . . . , Yn ∈ RN×N be independent random matrices. Suppose that

‖E[Yi]‖2 ≤ ai and E
[
‖Yi − E[Yi]‖22

]
≤ b2i a2i

for some a1, . . . , an and b1, . . . , bn. We will use the following result, which is a specialization of
Theorem 5.1 in [18] for p = q = 2.
Theorem A.6 (Theorem 5.1 in [18]). For Z0 ∈ RN×n, the product Zn = YnYn−1 · · ·Y1Z0 satisfies

E
[
‖Zn‖22

]
≤ e

∑n
i=1 b

2
i

n∏
i=1

a2i · ‖Z0‖22

E
[
‖Zn − E[Zn]‖22

]
≤
(
e
∑n
i=1 b

2
i − 1

)
a2i · ‖Z0‖22.

Finally, we collect two simple analytic lemmas for later use.
Lemma A.7. For any matrix M ∈ Rm×n, we have that

E[‖M‖22] ≥ ‖E[M ]‖22.

Proof. We find by Cauchy-Schwartz and the convexity of the spectral norm that
E[‖M‖22] ≥ E[‖M‖2]2 ≥ ‖E[M ]‖22.

Lemma A.8. For bounded at ≥ 0, if we have
∑∞
t=0 at =∞, then for any C > 0 we have

∞∑
t=0

ate
−C

∑t
s=0 as <∞.

Proof. Define bt :=
∑t
s=0 as so that

S :=

∞∑
t=0

ate
−C

∑t
s=0 as =

∞∑
t=0

(bt − bt−1)e−Cbt ≤
∫ ∞
0

e−Cxdx <∞,

where we use
∫∞
0
e−Cxdx to upper bound its right Riemann sum.
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B Analysis of data augmentation as stochastic optimization

In this section, we prove generalizations of our main theoretical results Theorems 3.1 and 3.2 giving
Monro-Robbins type conditions for convergence and rates for augmented gradient descent in the
linear setting.

B.1 Monro-Robbins type results

To state our general Monro-Robbins type convergence results, let us briefly recall the notation. We
consider overparameterized linear regression with loss

L(W ;D) =
1

N
‖WX − Y ‖2F ,

where the dataset D of size N consists of data matrices X,Y that each have N columns xi ∈
Rn, yi ∈ Rp with n > N. We optimize L(W ;D) by augmented gradient descent, which means that
at each time t we replace D = (X,Y ) by a random dataset Dt = (Xt, Yt). We then take a step

Wt+1 = Wt − ηt∇WL(Wt;Dt)
of gradient descent on the resulting randomly augmented loss L(W ;Dt) with learning rate ηt. Recall
that we set

V‖ := column span of E[XtX
T
t ]

and denoted by Q‖ the orthogonal projection onto V‖. As noted in §3, on V‖ the proxy loss

Lt = E [L(W ;Dt)]
is strictly convex and has a unique minimum, which is

W ∗t = E
[
YtX

T
t

]
(Q||E

[
XtX

T
t

]
Q||)

−1.

The change from one step of augmented GD to the next in these proxy optima is captured by

Ξ∗t := W ∗t+1 −W ∗t .
With this notation, we are ready to state Theorems B.1, which gives two different sets of time-varying
Monro-Robbins type conditions under which the optimization trajectory Wt converges for large t. In
Theorem B.4, we refine the analysis to additionally give rates of convergence. Note that Theorem B.1
is a generalization of Theorem 3.1 and that Theorem B.4 is a generalization of Theorem 3.2.

Theorem B.1. Suppose that V‖ is independent of t, that the learning rate satisfies ηt → 0, that the
proxy optima satisfy

∞∑
t=0

‖Ξ∗t ‖F <∞, (B.1)

ensuring the existence of a limit W ∗∞ := limt→∞W ∗t and that

∞∑
t=0

ηtλmin,V‖(E[XtX
T
t ]) =∞. (B.2)

Then if either

∞∑
t=0

η2tE
[
‖XtX

T
t − E[XtX

T
t ]‖2F + ‖YtXT

t − E[YtX
T
t ]‖2F

]
<∞ (B.3)

or
∞∑
t=0

η2tE
[
‖XtX

T
t − E[XtX

T
t ]‖2F +

∥∥∥E[Wt](XtX
T
t − E[XtX

T
t ])− (YtX

T
t − E[YtX

T
t ])
∥∥∥2
F

]
<∞

(B.4)
hold, then for any initialization W0, we have WtQ‖

p→W ∗∞.
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Remark B.2. In the general case, the column span V|| of E[XtX
T
t ] may vary with t. This means that

some directions in Rn may only have non-zero overlap with colspan(E[XtX
T
t ]) for some positive

but finite collection of values of t. In this case, only finitely many steps of the optimization would
move Wt in this direction, meaning that we must define a smaller space for convergence. The correct
definition of this subspace turns out to be the following

V‖ :=

∞⋂
t=0

ker

[ ∞∏
s=t

(
Id−2ηs

N
E[XsX

T
s ]
)]

(B.5)

=

∞⋂
t=0

{
u ∈ Rn

∣∣∣∣ lim
T→∞

T∏
s=t

(
Id−2ηs

N
E[XsX

T
s ]
)
u = 0

}
.

With this re-definition of V|| and with Q‖ still denoting the orthogonal projection to V‖, Theorem B.1
holds verbatim and with the same proof. Note that if ηt → 0, V|| = colspan(E[XtX

T
t ]) is fixed in t,

and (B.2) holds, this definition of V‖ reduces to that defined in (3.5).
Remark B.3. The condition (B.4) can be written in a more conceptual way as

∞∑
t=0

[
‖XtX

T
t − E[XtX

T
t ]‖2F + η2t tr

[
Id ◦Var

(
(E[Wt]Xt − Yt)XT

t

)]]
<∞,

where we recognize that (E[Wt]Xt − Yt)XT
t is precisely the stochastic gradient estimate at time

t for the proxy loss Lt, evaluated at E [Wt], which is the location at time t for vanilla GD on Lt
since taking expectations in the GD update equation (3.3) coincides with GD for Lt. Moreover,
condition (B.4) actually implies condition (B.3) (see (B.12) below). The reason we state Theorem
B.1 with both conditions, however, is that (B.4) makes explicit reference to the average E [Wt] of
the augmented trajectory. Thus, when applying Theorem B.1 with this weaker condition, one must
separately estimate the behavior of this quantity.

Theorem B.1 gave conditions on joint learning rate and data augmentation schedules under which
augmented optimization is guaranteed to converge. Our next result proves rates for this convergence.
Theorem B.4. Suppose that ηt → 0 and that for some 0 < α < 1 < β1, β2 and C1, C2 > 0, we
have

logE

∥∥∥∥∥(
t∏

r=s

(
Id−2ηr

N
XrX

T
r

))
Q‖

∥∥∥∥∥
2

2

 < C1 − C2

∫ t+1

s

r−αdr (B.6)

as well as
‖Ξ∗t ‖F = O(t−β1) (B.7)

and
η2t tr

[
Id ◦Var(E[Wt]XtX

T
t − YtXT

t

)]
= O(t−β2). (B.8)

Then, for any initialization W0, we have for any ε > 0 that

tmin{β1−1, β2−α2 }−ε‖WtQ‖ −W ∗∞‖F
p→ 0.

Remark B.5. To reduce Theorem 3.2 to Theorem B.4, we notice that (3.10) and (3.11) mean that
Theorem A.6 applies to Yt = Id−2ηt

XtX
T
t

N with at = 1 − Ω(t−α) and and b2t = O(t−γ), thus
implying (B.6).

The first step in proving both Theorem B.1 and Theorem B.4 is to obtain recursions for the mean
and variance of the difference Wt −W ∗t between the time t proxy optimum and the augmented
optimization trajectory at time t. We will then complete the proof of Theorem B.1 in §B.3 and the
proof of Theorem B.4 in §B.4.

B.2 Recursion relations for parameter moments

The following proposition shows that difference between the mean augmented dynamics E[Wt]
and the time−t optimum W ∗t satisfies, in the sense of Definition A.1, one-sided decay of type
({At}, {Bt}) with

At =
2ηt
N
XtX

T
t , Bt = −Ξ∗t .
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It also shows that the variance of this difference, which is non-negative definite, satisfies two-sided
decay of type ({At}, {Ct}) with At as before and

Ct =
4η2t
N2

[
Id ◦Var

(
E[Wt]XtX

T
t − YtXT

t

)]
.

In terms of the notations of Appendix A.1, we have the following recursions.
Proposition B.6. The quantity E[Wt]−W ∗t satisfies

E[Wt+1]−W ∗t+1 = (E[Wt]−W ∗t )
(

Id−2ηt
N

E[XtX
T
t ]
)
− Ξ∗t (B.9)

and Zt := E[(Wt − E[Wt])
T(Wt − E[Wt])] satisfies

Zt+1 = E
[
(Id−2ηt

N
XtX

T
t )Zt(Id−

2ηt
N
XtX

T
t )

]
+

4η2t
N2

[
Id ◦Var

(
E[Wt]XtX

T
t − YtXT

t

)]
.

(B.10)

Proof. Notice that E[XtX
T
t ]u = 0 if and only if XT

t u = 0 almost surely, which implies that

W ∗t E[XtX
T
t ] = E[YtX

T
t ]E[XtX

T
t ]+E[XtX

T
t ] = E[YtX

T
t ].

Thus, the learning dynamics (3.3) yield

E[Wt+1] = E[Wt]−
2ηt
N

(
E[Wt]E[XtX

T
t ]− E[YtX

T
t ]
)

= E[Wt]−
2ηt
N

(E[Wt]−W ∗t )E[XtX
T
t ].

SubtractingW ∗t+1 from both sides yields (B.9). We now analyze the fluctuations. Writing Sym(A) :=

A+AT, we have

E[Wt+1]TE[Wt+1] = E[Wt]
TE[Wt] +

2ηt
N

Sym
(
E[Wt]

TE[YtX
T
t ]− E[Wt]

TE[Wt]E[XtX
T
t ]
)

+
4η2t
N2

(
E[XtX

T
t ]E[Wt]

TE[Wt]E[XtX
T
t ]+E[XtY

T
t ]E[YtX

T
t ]−Sym(E[XtX

T
t ]E[Wt]

TE[YtX
T
t ])
)
.

Similarly, we have that

E[WT
t+1Wt+1] = E[WT

t Wt] +
2ηt
N

Sym(E[WT
t YtX

T
t −WT

t WtXtX
T
t ])

+
4η2t
N2

E[XtX
T
t W

T
t WtXtX

T
t − Sym(XtX

T
t W

T
t YtX

T
t ) +XtY

T
t YtX

T
t ].

Noting that Xt and Yt are independent of Wt and subtracting yields the desired.

B.3 Proof of Theorem B.1

First, by Proposition B.6, we see that E[Wt]−W ∗t has one-sided decay with

At = 2ηt
XtX

T
t

N
and Bt = −Ξ∗t .

Thus, by Lemma A.2 and (B.1), we find that

lim
t→∞

(E[Wt]Q‖ −W ∗t ) = 0, (B.11)

which gives convergence in expectation.

For the second moment, by Proposition B.6, we see that Zt has two-sided decay with

At = 2ηt
XtX

T
t

N
and Ct =

4η2t
N2

[
Id ◦Var

(
E[Wt]XtX

T
t − YtXT

t

)]
.

We now verify (A.7) and (A.8) in order to apply Lemma A.3.
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For (A.7), for any ε > 0, notice that

E[‖As − E[As]‖2F ] = η2sE[‖XsX
T
s − E[XsX

T
s ]‖2F ]

so by either (B.3) or (B.4) we may choose T1 > t so that
∑∞
s=T1

E[‖As − E[As]‖2F ] < ε
2 . Now

choose T2 > T1 so that for T > T2, we have∥∥∥∥∥(
T∏

r=T1

E[Id−Ar]
)
Q‖

∥∥∥∥∥
2

2

<
ε

2

1

‖∏T1−1
s=t E[Id−As]‖2F +

∑T1−1
s=t E[‖As − E[As]‖2F ]

.

For T > T2, we then have

E

∥∥∥∥∥(
T∏
s=t

(Id−As)
)
Q‖

∥∥∥∥∥
2

2


≤
∥∥∥∥∥(

T∏
s=t

E[Id−As]
)
Q‖

∥∥∥∥∥
2

+

T∑
s=t

E

∥∥∥∥∥
s∏
r=t

(Id−Ar)
T∏

r=s+1

(Id−E[Ar])Q‖

∥∥∥∥∥
2

F

−
∥∥∥∥∥
s−1∏
r=t

(Id−Ar)
T∏
r=s

(Id−E[Ar])Q‖

∥∥∥∥∥
2

F


=

∥∥∥∥∥(
T∏
s=t

E[Id−As]
)
Q‖

∥∥∥∥∥
2

F

+

T∑
s=t

E

∥∥∥∥∥
s−1∏
r=t

(Id−Ar)(As − E[As])

T∏
r=s+1

(Id−E[Ar])Q‖

∥∥∥∥∥
2

F


≤
∥∥∥∥∥
T1−1∏
s=t

E[Id−As]
∥∥∥∥∥
2 ∥∥∥∥∥F(

T∏
r=T1

E[Id−Ar]
)
Q‖

∥∥∥∥∥
2

2

+

T∑
s=t

E[‖As − E[As]‖2F ]

∥∥∥∥∥(
T∏

r=s+1

E[Id−Ar]
)
Q‖

∥∥∥∥∥
2

2

≤
(∥∥∥∥∥

T1−1∏
s=t

E[Id−As]
∥∥∥∥∥
2

F

+

T1−1∑
s=t

E[‖As − E[As]‖2F ]
)∥∥∥∥∥(

T∏
r=T1

E[Id−Ar]
)
Q‖

∥∥∥∥∥
2

2

+

T∑
s=T1

E[‖As − E[As]‖2F ]

< ε,

which implies (A.7). Condition (A.8) follows from either (B.4) or (B.3) and the bounds

tr(Ct) ≤
8η2t
N2

(
‖E[Wt](XtX

T
t − E[XtX

T
t ])‖2F + ‖YtXT

t − E[YtX
T
t ]‖2F

)
(B.12)

≤ 8η2t
N2

(
‖E[Wt]‖2‖XtX

T
t − E[XtX

T
t ]‖2F + ‖YtXT

t − E[YtX
T
t ]‖2F

)
,

where in the first inequality we use the fact that ‖M1−M2‖2F ≤ 2(‖M1‖2F + ‖M2‖2F ). Furthermore,
iterating (B.9) yields ‖E[Wt] −W ∗t ‖F ≤ ‖W0 −W ∗0 ‖F +

∑∞
t=0 ‖Ξ∗t ‖F , which combined with

(B.12) and either (B.3) or (B.4) therefore implies (A.8). We conclude by Lemma A.3 that

lim
t→∞

QT
‖ZtQ‖ = lim

t→∞
E[QT

‖ (Wt − E[Wt])
T(Wt − E[Wt])Q‖] = 0. (B.13)

Together, (B.11) and (B.13) imply that WtQ‖ −W ∗t
p→ 0. The conclusion then follows from the fact

that limt→0W
∗
t = W ∗∞. This complete the proof of Theorem B.1. �

B.4 Proof of Theorem B.4

By Proposition B.6, E[Wt]−W ∗t has one-sided decay with

At =
2ηt
N
XtX

T
t , Bt = −Ξ∗t .

By Lemma A.7 and (B.6), E[At] satisfies

log

∥∥∥∥∥
t∏

r=s

(
Id−2ηr

1

N
E[XrX

T
r ]
)
Q‖

∥∥∥∥∥
2

≤ 1

2
logE

∥∥∥∥∥(
t∏

r=s

(
Id−2ηr

XrX
T
r

N

))
Q‖

∥∥∥∥∥
2

2


<
C1

2
− C2

2

∫ t+1

s

r−αdr.
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Applying Lemma A.4 using this bound and (B.7), we find that

‖E[Wt]Q‖ −W ∗t ‖F = O(tα−β1).

Moreover, because ‖Ξ∗t ‖F = O(t−β1), we also find that ‖W ∗t −W ∗∞‖F = O(t−β1+1), and hence

‖E[Wt]Q‖ −W ∗∞‖F = O(t−β1+1).

Further, by Proposition B.6, E[(Wt − E[Wt])
T(Wt − E[Wt])] has two-sided decay with

At =
2ηt
N
XtX

T
t , Ct =

4η2t
N2

[
Id ◦Var

(
E[Wt]XtX

T
t − YtXT

t

)]
.

Applying Lemma A.5 with (B.6) and (B.8), we find that

E
[
‖(Wt − E[Wt])Q‖‖2F

]
= O(tα−β2).

By Chebyshev’s inequality, for any x > 0 we have

P
(
‖WtQ‖ −W ∗∞‖F ≥ O(t−β1+1) + x ·O(t

α−β2
2 )

)
≤ x−2.

For any ε > 0, choosing x = tδ for small 0 < δ < ε we find as desired that

tmin{β1−1, β2−α2 }−ε‖WtQ‖ −W ∗∞‖F
p→ 0,

thus completing the proof of Theorem B.4. �

C Intrinsic time

Theorem 3.2 measures rates in terms of optimization steps t, but a different measurement of time
called the intrinsic time of the optimization will be more suitable for measuring the behavior of
optimization quantities. This was introduced for SGD in [28, 27], and we now generalize it to our
broader setting. For gradient descent on a loss L, the intrinsic time is a quantity which increments
by ηλmin(H) for a optimization step with learning rate η at a point where L has Hessian H . When
specialized to our setting, it is given by

τ(t) :=

t−1∑
s=0

2ηs
N
λmin,V‖(E[XsX

T
s ]). (C.1)

Notice that intrinsic time of augmented optimization for the sequence of proxy losses Ls appears in
Theorems 3.1 and 3.2, which require via conditions (3.8) and (3.11) that the intrinsic time tends to
infinity as the number of optimization steps grows.

Intrinsic time will be a sensible variable in which to measure the behavior of quantities such as the
fluctuations of the optimization path f(t) := E[‖(Wt − E[Wt])Q‖‖2F ]. In the proofs of Theorems
3.1 and 3.2, we show that the fluctuations satisfy an inequality of the form

f(t+ 1) ≤ f(t)(1− a(t))2 + b(t) (C.2)

for a(t) := 2ηt
1
N λmin,V‖(E[XtX

T
t ]) and b(t) := Var[‖ηt∇WL(Wt)‖F ] so that τ(t) =

∑t−1
s=0 a(s).

Iterating the recursion (C.2) shows that

f(t) ≤ f(0)

t−1∏
s=0

(1− a(s))2 +

t−1∑
s=0

b(s)

t−1∏
r=s+1

(1− a(r))2

≤ e−2τ(t)f(0) +

t−1∑
s=0

b(s)

a(s)
e2τ(s+1)−2τ(t)(τ(s+ 1)− τ(s)).

Changing variables to τ := τ(t) and defining A(τ), B(τ), and F (τ) by A(τ(t)) = a(t), B(τ(t)) =
b(t), and F (τ(t)) = f(t), we find by replacing a right Riemann sum by an integral that

F (τ) - e−2τ
[
F (0) +

∫ τ

0

B(σ)

A(σ)
e2σdσ

]
. (C.3)
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In order for the result of optimization to be independent of the starting point, by (C.3) we must have
τ →∞ to remove the dependence on F (0); this provides one explanation for the appearance of τ in
condition (3.8). Further, (C.3) implies that the fluctuations at an intrinsic time are bounded by an
integral against the function B(σ)

A(σ) which depends only on the ratio of A(σ) and B(σ).

In the case of minibatch SGD, our proof of Theorem F.1 shows the intrinsic time is τ(t) =∑t−1
s=0 2ηs

1
N λmin,V‖(XX

T) and the ratio b(t)
a(t) in (C.3) is by (F.5) bounded uniformly by b(t)

a(t) ≤ C ·
ηt
Bt

for a constantC > 0. Thus, keeping b(t)
a(t) fixed as a function of τ suggests the “linear scaling” ηt ∝ Bt

used empirically in [13] and proposed via an heuristic SDE limit in [27].

D Analysis of Noising Augmentations

In this section, we give a full analysis of the noising augmentations presented in Section 4. Let us
briefly recall the notation. As before, we consider overparameterized linear regression with loss

L(W ;D) =
1

N
‖WX − Y ‖2F ,

where the datasetD of sizeN consists of data matricesX,Y that each haveN columns xi ∈ Rn, yi ∈
Rp with n > N. We optimize L(W ;D) by augmented gradient descent or augmented stochastic
gradient descent with additive Gaussian noise. This means that at each time t we replace D = (X,Y )
by a random batch Dt = (Xt, Y ) of size Bt, where the columns xi,t of Xt are

xi,t = xi + σtGi,t, Gi,t ∼ N (0, 1) i.i.d.

In the case of gradient descent, the batch consists of the entire dataset, and the resulting data matrices
are

Xt = X + σtGt and Yt = Y.

In the case of stochastic gradient descent, the batch consists of Bt datapoints chosen uniformly at
random with replacement, and the resulting data matrices are

Xt = ct(XAt + σtGt) and Yt = ctY At,

where ct =
√
N/Bt, At ∈ RN×Bt has i.i.d. columns with a single non-zero entry equal to 1, and

Gt ∈ Rn×Bt has i.i.d. Gaussian entries. In both cases, the proxy loss is

Lt(W ) :=
1

N
‖Y −WX‖2F + σ2

t ‖W‖2F ,

which has ridge minimizer

W ∗t = Y XT(XXT + σ2
tN · Idn×n)−1,

and the space V‖ := column span of E[XtX
T
t ] is all of Rn. We now separately analyze the cases of

GD and SGD in Theorems 4.1 and Theorem 4.2, respectively.

D.1 Proof of Theorem 4.1 for GD

We begin by proving convergence without rates. For this, we seek to show that if σ2
t , ηt → 0 with σ2

t
non-increasing and

∞∑
t=0

ηtσ
2
t =∞ and

∞∑
t=0

η2t σ
2
t <∞, (D.1)

then, Wt
p→Wmin. We will do this by applying Theorem 3.1, so we check that our assumptions imply

the hypotheses of these theorems. For Theorem 3.1, we directly compute

E[YtX
T
t ] = Y XT and E[XtX

T
t ] = XXT + σ2

tN · Idn×n
and

E[XtX
T
t Xt] = XXTX + σ2

t (N + n+ 1)X

E[XtX
T
t XtX

T
t ] = XXTXXT + σ2

t

(
(2N + n+ 2)XXT + tr(XXT) Idn×n

)
+ σ4

tN(N + n+ 1) Idn×n .
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We also find that

‖Ξ∗t ‖F = |σ2
t − σ2

t+1|N
∥∥∥∥Y XT

(
XXT + σ2

tN · Idn×n
)−1(

XXT + σ2
t+1N · Idn×n

)−1∥∥∥∥
F

≤ |σ2
t − σ2

t+1|N‖Y XT[(XXT)+]2‖F .

Thus, because σ2
t is decreasing, we see that the hypothesis (3.7) of Theorem 3.1 indeed holds. Further,

we note that

∞∑
t=0

η2tE
[
‖XtX

T
t − E[XtX

T
t ]‖2F + ‖YtXT

t − E[YtX
T
t ]‖2F

]
=

∞∑
t=0

η2t σ
2
t

(
2(n+ 1)‖X‖2F +N‖Y ‖2F + σ2

tNn(n+ 1)
)

= O

( ∞∑
t=0

η2t σ
2
t

)
,

which by (D.1) implies (B.3). Theorem 3.1 and the fact that limt→∞W ∗t = Wmin therefore yield that
Wt

p→Wmin.

We now prove convergence with rates, we aim to show that if ηt = Θ(t−x) and σ2
t = Θ(t−y) with

x, y > 0, x+ y < 1, and 2x+ y > 1, then for any ε > 0, we have that

tmin{y, 12x}−ε‖Wt −Wmin‖F p→ 0.

We now check the hypotheses for and apply Theorem B.4. For (B.6), notice that Yr = Id−2ηr
XrX

T
r

N

satisfies the hypotheses of Theorem A.6 with ar = 1 − 2ηrσ
2
r and b2r =

η2rσ
2
r

a2r

(
2(n + 1)‖X‖2F +

σ2
rNn(n+ 1)

)
. Thus, by Theorem A.6 and the fact that ηt = Θ(t−x) and σ2

t = Θ(t−y), we find for
some C1, C2 > 0 that

logE

∥∥∥∥∥
t∏

r=s

(Id−2ηr
XrX

T
r

N
)

∥∥∥∥∥
2

2

 ≤ t∑
r=s

b2r + 2

t∑
r=s

log(1− 2ηrσ
2
r) ≤ C1 − C2

∫ t+1

s

r−x−ydr.

For (B.7), we find that

‖Ξ∗t ‖F ≤ |σ2
t − σ2

t+1|N‖Y XT[(XXT)+]2‖F = O(t−y−1).

Finally, for (B.8), we find that

η2t tr
[
Id ◦Var

(
E[Wt]XtX

T
t − YtXT

t

)]
= η2tE

[
‖E[Wt](XtX

T
t − E[XtX

T
t ])− (YtX

T
t − E[YtX

T
t ])‖2F

]
≤ 2η2tE

[
‖E[Wt](XtX

T
t − E[XtX

T
t ])‖2F + ‖YtXT

t − E[YtX
T
t ]‖2F

]
≤ 2η2t

(
‖E[Wt]‖2FE[‖XtX

T
t − E[XtX

T
t ]‖2F ] + ‖YtXT

t − E[YtX
T
t ]‖2F

)
= O(t−2x−y).

Noting finally that ‖W ∗t −Wmin‖F = O(σ2
t ) = O(t−y), we apply Theorem B.4 with α = x + y,

β1 = y + 1, and β2 = 2x+ y to obtain the desired estimates. This concludes the proof of Theorem
4.1. �

D.2 Proof of Theorem 4.2 for SGD

We now prove Theorem 4.2 for SGD. As before, we will apply Theorems 3.1 and B.4. To check the
hypotheses of these theorems, we will use the following expressions for moments of the augmented
data matrices.

Lemma D.1. We have

E[YtX
T
t ] = Y XT and E[XtX

T
t ] = XXT + σ2

tN Idn×n . (D.2)
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Moreover,

E[YtX
T
t XtY

T
t ] = c4tE[Y AtA

T
t X

TXAtA
T
t Y

T + σ2
t Y AtG

T
t GtA

T
t Y

T]

=
N

Bt
Y diag(XTX)Y T +

Bt − 1

Bt
Y XTXY T + σ2

tNY Y
T

E[YtX
T
t XtX

T
t ] = c4tE[Y AtA

T
t X

TXAtA
T
t X

T + σ2
t Y AtG

T
t GtA

T
t X

T

+ σ2
t Y AtG

T
t XAtG

T
t + σ2

t Y AtA
T
t X

TGtG
T
t ]

=
N

Bt
Y diag(XTX)XT +

Bt − 1

Bt
Y XTXXT + σ2

t (N +
n+ 1

Bt/N
)Y XT

E[XtX
T
t XtX

T
t ] = c4tE[XAtA

T
t X

TXAtA
T
t X

T + σ2
tGtG

T
t XAtA

T
t X

T + σ2
tXAtG

T
t GtA

T
t X

T

+ σ2
tXAtA

T
t X

TGtG
T
t + σ2

tGtA
T
t X

TGtA
T
t X

T + σ2
tXAtG

T
t XAtG

T
t

+ σ2
tGtA

T
t X

TXAtG
T
t + σ4

tGtG
T
t GtG

T
t ]

=
N

Bt
X diag(XTX)XT +

Bt − 1

Bt
XXTXXT + σ2

t (2N +
n+ 2

Bt/N
)XXT

+ σ2
t

N

Bt
tr(XXT) Idn×n +σ4

tN(N +
n+ 1

Bt/N
) Idn×n .

Proof. All these formulas are obtained by direct, if slightly tedious, computation.

With these expressions in hand, we now check the conditions of Theorem 3.1. First, by the Sherman-
Morrison-Woodbury matrix inversion formula, we have

‖Ξ∗t ‖F = |σ2
tN − σ2

t+1N |
∥∥Y XT(XXT + σ2

tN · Idn×n)−1(XXT + σ2
t+1N · Idn×n)−1

∥∥
F
(D.3)

≤ N |σ2
t − σ2

t+1|
∥∥Y XT[(XXT)+]2

∥∥
F
.

Because σ2
t is non-increasing, this implies (3.7). Next, by Lemma D.1 we have that

∞∑
t=0

ηtλmin,V‖(E[XtX
T
t ]) ≥

∞∑
t=0

ηtσ
2
t =∞

by the first given condition in (4.7), which verifies (3.8). Finally, by Lemma D.1, we may compute

E
[∥∥XtX

T
t − E

[
XtX

T
t

]∥∥2
F

]
=

1

Bt
tr
(
X(N diag(XTX)−XTX)XT

)
+ 2σ2

t

n+ 1

Bt/N
tr(XXT) + σ4

t

Nn(n+ 1)

Bt/N

and

E
[
‖YtXT

t − E[YtX
T
t ]‖2F

]
=

1

Bt
tr
(
Y (N diag(XTX)−XTX)Y T

)
+ σ2

tN tr(Y Y T).

Together, these imply that for some constant C > 0, we have that
∞∑
t=0

η2t

[
E
[∥∥XtX

T
t − E

[
XtX

T
t

]∥∥2
F

]
+ E

[∥∥YtXT
t − E[YtX

T
t ]
∥∥2
F

]]
≤
∞∑
t=0

Cη2t <∞

by the second given condition in (4.7), which verifies (3.9). Thus the conditions of Theorem 3.1
apply, which shows that Wt

p→Wmin, as desired.

For rates of convergence, we check the conditions of Theorem B.4. For (B.6), we will apply Theorem

A.6 to bound logE
∥∥∥∏t

r=s

(
Id− 2ηr

N XrX
T
r

)∥∥∥2
2
. By the second moment expression E[XrX

T
r ] =

XXT + σ2
rN Idn×n, we find that∥∥∥∥E [Id−2ηr

N
XrX

T
r

]∥∥∥∥
2

= 1− 2ηrσ
2
r .
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Moreover, by Lemma D.1, for some constant C > 0 we have

E

[∥∥∥∥Id−2ηr
N
XrX

T
r − E

[
Id−2ηr

N
XrX

T
r

]∥∥∥∥2
2

]

=
4η2r
N2

E
[∥∥XrX

T
r − E

[
XrX

T
r

]∥∥2
2

]
≤ 4η2r
N2

[
1

Bt
tr
(
X(N diag(XTX)−XTX)XT

)
+ 2σ2

t

n+ 1

Bt/N
tr(XXT) + σ4

t

Nn(n+ 1)

Bt/N

]
≤ Cη2r .

Applying Theorem A.6 with ar = 1− 2ηrσ
2
r and b2r =

Cη2r
a2r

, we find that

logE

∥∥∥∥∥
t∏

r=s

(
Id−2ηr

N
XrX

T
r

)∥∥∥∥∥
2

2

≤
t∑

r=s

Cη2r
a2r

+ 2 log

(
t∏

r=s

(
1− 2ηrσ

2
r

))

≤
t∑

r=s

Cη2r
a2r
− 4

t∑
r=s

ηrσ
2
r .

Because ηr = Θ(r−x) and σ2
r = Θ(r−y), we obtain (B.6) with α = x+ y, C1 =

∑∞
r=0

Cη2r
a2r

, and
some C2 > 0, where C1 is finite because x > 1

2 . Next, (B.7) holds for β1 = −y−1 by (D.3). Finally,
it remains to bound

η2t tr
[
Id ◦Var(E[Wt]XtX

T
t − YtXT

t

)]
to verify (B.8). Again using D.1 and noting that WminX = Y , we find

η2t tr
[
Id ◦Var(E[Wt]XtX

T
t − YtXT

t )
]

= η2t tr
( 1

Bt
E[Wt]X(N diag(XTX)−XTX)XTE[Wt]

T

+ 2σ2
t

n+ 1

Bt/N
E[Wt]XX

TE[Wt]
T + (σ2

t

N

Bt
tr(XXT) + σ4

tN
n+ 1

Bt/N
)E[Wt]E[Wt]

T
)

− 2η2t tr
( 1

Bt
Y (N diag(XTX)−XTX)XTE[Wt]

T + σ2
t

n+ 1

Bt/N
Y XTE[Wt]

T
)

+ η2t tr
( 1

Bt
Y (N diag(XTX)−XTX)Y T + σ2

tNY Y
T
)

≤ Cη2t (σ2
t + ‖∆t‖2F )

for some C > 0 and ∆t := E[Wt] −Wmin. Define also ∆′t := E[Wt] −W ∗t so that, exactly as in
Proposition B.6, we have

∆′t+1 = ∆′t

(
Id−2ηt

N
E
[
XtX

T
t

])
+

2

N
Ξ∗t , ∆′t := E [Wt −W ∗t ] .

Since ‖Ξ∗t ‖F = O(t−y−1) and we already saw that∥∥∥∥Id−2ηt
N

E
[
XtX

T
t

]∥∥∥∥
2

= 1− 2ηtσ
2
t ,

we may use the single sided decay estimates of Lemma A.4 to conclude that ‖∆′t‖F = O(tx−1).
This implies that

‖∆t‖F ≤ ‖∆′t‖F + ‖W ∗t −Wmin‖F = O(tx−1) + Θ(t−y) = Θ(t−y)

since we assumed that x+ y < 1. Therefore, we obtain

η2t tr
[
Id ◦Var(E[Wt]XtX

T
t − YtXT

t )
]
≤ Cη2t (σ2

t + Θ(t−2y)) = Θ(t−2x−y),

showing that condition (B.8) holds with β2 = 2x+ y. We have thus verified all of the conditions of
Theorem B.4, whose application completes the proof. �
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E Analysis of random projection augmentations

In this section, we give a full analysis of the random projection augmentations presented in Section 5.
In this setting, we have a preconditioning matrix Πt = QtΠ̃tQ

T
t ∈ Rn×n, where Π̃t is a projection

matrix and Qt are Haar random orthogonal matrices. Define the normalized trace of the projection
matrix by

γt :=
tr(Πt)

n
. (E.1)

We consider the augmentation given by

Xt = ΠtX and Yt = Y.

In this setting, we first record the values of the lower order moments of the augmented data matrices,
with proofs deferred to Section E.1

Lemma E.1. We have that

E[Xt] = γtX (E.2)

E[YtX
T
t ] = γtY X

T (E.3)

E[XtX
T
t ] =

γt(γt + 1/n− 2/n2)

1 + 1/n− 2/n2
XXT +

γt(1− γt)
n(1 + 1/n− 2/n2)

‖X‖2F Id (E.4)

E[XtX
T
t Xt] =

γ2t + γt(1/n− 2/n2)

1 + 1/n− 2/n2
XXTX +

γt(1− γt)
1 + 1/n− 2/n2

‖X‖2F
n

X (E.5)

E[‖XtX
T
t ‖2F ] =

(γ2t + γt(1/n− 2/n2))‖XXT‖2F + γt(1− γt) 1
n‖X‖4F

1 + 1/n− 2/n2
. (E.6)

We now compute the proxy loss and its optima as follows.

Lemma E.2. The proxy loss for randomly rotated projections with normalized trace γt given by
(E.1) is

Lt(W ) =
1

N
‖Y−γtWX‖2F+

1

N
γt(1−γt)‖X‖2F ‖W‖2F+

γt(1− γt)
N

1/n− 2/n2

1 + 1/n− 2/n2
(‖WX‖2F+

1

n
‖X‖2F ‖W‖2F ).

It has proxy optima

W ∗t = Y XT
(γt + 1/n− 2/n2

1 + 1/n− 2/n2
XXT +

1− γt
1 + 1/n− 2/n2

‖X‖2F
n

Id
)−1

.

Proof. Applying (3.1), we find that

Lt(W ) =
1

N
E[‖Yt −WXt‖2F ] =

1

N
E[‖Yt‖2F ]− 2

N
E[tr(XT

t W
TYt)] +

1

N
E[tr(WTWXtX

T
t )].

Applying Lemma E.1, we conclude that

Lt(W ) =
1

N
‖Y ‖2F −

2γt
N

tr(XWTY ) +
1

N

γt(γt + 1/n− 2/n2)

1 + 1/n− 2/n2
‖WX‖2F +

1

N

γt(1− γt)
n(1 + 1/n− 2/n2)

‖X‖2F ‖W‖2F

=
1

N
‖Y − γtWX‖2F +

1

N
γt(1− γt)‖X‖2F ‖W‖2F +

γt(1− γt)
N

1/n− 2/n2

1 + 1/n− 2/n2
(‖WX‖2F +

1

n
‖X‖2F ‖W‖2F ).

The formula for W ∗t then results from Lemma E.1 and the general formula (3.4).

E.1 Proof of Lemma E.1

We apply the Weingarten calculus [7] to compute integrals of polynomial functions of the matrix
entries of a Haar orthogonal matrix. Because each matrix entry of the expectations in Lemma E.1 is
such a polynomial, this will allow us to compute the relevant expectations. The main result we use is
the following on polynomials of degree at most 4 and its corollary.
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Proposition E.3 (Corollary 3.4 of [7]). For an n × n orthogonal matrix Q drawn from the Haar
measure, we have that

E[Qi1j1Qi2j2 ] =
1

n
δi1i2δj1j2 (E.7)

E[Qi1j1Qi2j2Qi3j3Qi4j4 ] =
−1

n(n− 1)(n+ 2)

(
δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3

)(
δj1j2δj3j4 + δj1j3δj2j4 + δj1j4δj2j3

)
+

1

n(n− 1)

(
δi1i2δi3i4δj1j2δj3j4 + δi1i3δi2i4δj1j3δj2j4 + δi1i4δi2i3δj1j4δj2j3

)
,

(E.8)

where δab denotes the Kronecker delta function δab = 1{a = b}.
Corollary E.4. For matrices A,B,C ∈ Rn×n and an n× n Haar random orthogonal matrix Q, we
have

E[QAQT] =
1

n
tr(A) · Id (E.9)

E[QAQTBQCQT]ij = − 1

n(n− 1)(n+ 2)

(
tr(A)tr(C) + tr(ACT +AC)

)(
δij tr(B) +Bij +Bji

)
+

1

n(n− 1)

(
tr(A)tr(C)Bij + tr(ACT)Bji + δij tr(AC)tr(B)

)
.

(E.10)

Proof. For (E.9), notice by (E.7) that

E[QAQT]ij =

n∑
a,b=1

E[QiaAabQjb] =

n∑
a,b=1

δabδij
1

n
Aab = δij

1

n
tr(A).

For (E.10), notice by (E.8) that

E[QAQTBQCQT]ij =

n∑
a,b,c,d,e,f=1

E[QiaAabQcbBcdQdeCefQjf ]

= − 1

n(n− 1)(n+ 2)

( n∑
a,e=1

AaaCee +

n∑
a,b=1

AabCab +

n∑
a,b=1

AabCba

)( n∑
c=1

δijBcc +Bij +Bji

)
+

1

n(n− 1)

( n∑
a,e=1

AaaCeeBij +
n∑

a,b=1

AabCabBji + δij

n∑
a,b=1

AabCba

n∑
c=1

Bcc

)
,

which when simplified gives the desired conclusion.

We now compute each lower order moment; in each computation, let Q denote a random n × n
orthogonal matrix drawn from the Haar measure. Claims (E.2) and (E.3) follow from Corollary E.4
and the facts that

E[Xt] = E[QΠ̃tQ
T]X and E[YtX

T
t ] = Y E[QΠ̃tQ

T]X.

Claims (E.4) and (E.5) follow from Corollary E.4 and the facts that

E[XtX
T
t ] = E[QΠ̃tQ

TXXTQΠ̃tQ
T] and E[XtX

T
t Xt] = E[QΠ̃tQ

TXXTQΠ̃2
tQ

T]X.

Finally, (E.6) follows from Corollary E.4 and the fact that

E[‖XtX
T
t ]2F ] = E[tr(QΠ̃tQ

TXXTQΠ̃2
tQ

TXXTQΠ̃tQ
T)] = E[tr(Π̃tQ

TXXTQΠ̃2
tQ

TXXTQΠ̃t)]].

This completes the proof of Lemma E.1.
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E.2 Proof of Theorem 5.1

We first show convergence. By Lemma E.1, we find that V‖ = Rn. Furthermore, because γt → 1, we
have that W ∗∞ = limt→∞W ∗t = Wmin. It therefore suffices to verify the conditions of Theorem 3.1.
First, notice that

‖Ξ∗t ‖F =
|γt − γt+1|

1 + 1/n− 2/n2

∥∥∥∥Y XT
(γt+1 + 1/n− 2/n2

1 + 1/n− 2/n2
XXT +

1− γt+1

1 + 1/n− 2/n2
‖X‖2F
n

Id
)−1

(
XXT − ‖X‖

2
F

n
Id
)(γt + 1/n− 2/n2

1 + 1/n− 2/n2
XXT +

1− γt
1 + 1/n− 2/n2

‖X‖2F
n

Id
)−1∥∥∥∥

F

≤ |γ−1t − γ−1t+1|
1 + 1/n− 2/n2

‖Y XT‖F ‖[XXT]+‖2F ‖XXT − 1

n
‖X‖2F Id ‖F .

Because γt are increasing and limt→∞ γt = 1, we find that (3.7) holds. Now, by Lemma E.1, we
have

λmin(E[XtX
T
t ]) ≥ γt(1− γt)

1 + 1/n− 2/n2
‖X‖2F
n

,

so the first condition in (5.2) implies (3.8). Finally, using Lemma E.1 we may compute

E[‖XtX
T
t − E[XtX

T
t ]‖2F ] = E[‖XtXt‖2F ]− ‖E[XtX

T
t ]‖2F

=
γt(1− γt)(γt(1 + γt)n

4 + (1 + 2γt)n
3 − (1 + 4γt)n

2 − 4n+ 4)

(n− 1)2(n+ 2)2
‖XXT‖2F

+
γt(1− γt)((1− γt − γ2t )n4 + (1− 2γt)n

3 + (4γt − 2)n2)

(n− 1)2(n+ 2)2
1

n
‖X‖4F

≤ 2γt(1− γt)
(
‖XXT‖2F +

1

n
‖X‖4F

)
(E.11)

and also

E[‖YtXT
t − E[YtX

T
t ]‖2F ] = E[‖YtXT

t ‖2F ]− ‖E[YtX
T
t ]‖2F

=
γt(1− γt)(1/n− 2/n2)

1 + 1/n− 2/n2
‖Y XT‖2F +

γt(1− γt)
1 + 1/n− 2/n2

1

n
‖X‖2F ‖Y ‖2F

≤ γt(1− γt)
(
‖Y XT‖2F +

1

n
‖X‖2F ‖Y ‖2F

)
. (E.12)

Combining these bounds with the second condition in (5.2) gives (3.9). Having verified (3.7), (3.8),
and (3.9), we conclude by Theorem 3.1 that Wt

p→Wmin as desired.

We now obtain rates using Theorem B.4. We aim to show that if ηt = Θ(t−x) and γt = 1−Θ(t−y)
with x, y > 0, x+ y < 1, and 2x+ y > 1, then for any ε > 0 we have that

tmin{y, 12x}−ε‖Wt −Wmin‖F p→ 0.

We now check the hypotheses of Theorem B.4. For (B.6), by Lemma E.1 and (E.11), Yr =
Id− 2ηr

N XrX
T
r satisfies the hypotheses of Theorem A.6 with

ar = 1− 2ηr
N

γt(1− γt)
1 + 1/n− 2/n2

‖X‖2F
n

and b2r =
8η2rγt(1− γt)

a2rN
2

(
‖XXT‖2F +

1

n
‖X‖4F

)
.

By Theorem A.6 and the fact that ηt = Θ(t−x) and γt = 1−Θ(t−y), we find for some C1, C2 > 0
that

logE

∥∥∥∥∥
t∏

r=s

(Id−2ηr
N
XrX

T
r )

∥∥∥∥∥
2

2

 ≤ t∑
r=s

b2r + 2

t∑
r=s

log(1− 2ηr
N(1 + 1/n− 2/n2)

γt(1− γt)
‖X‖2F
n

)

≤ C1 − C2

∫ t+1

s

r−x−ydr.
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For (B.7), our previous computations show that

‖Ξ∗t ‖F ≤
|γ−1t − γ−1t+1|

1 + 1/n− 2/n2
‖Y XT‖F ‖[XXT]+‖2F ‖XXT − 1

n
‖X‖2F Id ‖F = O(t−y−1).

Finally, for (B.8), we find by (E.11), (E.12) and the fact that ‖E[Wt]‖F = O(1) that

η2t tr
[
Id ◦Var

(
E[Wt]XtX

T
t − YtXT

t

)]
= η2tE

[
‖E[Wt](XtX

T
t − E[XtX

T
t ])− (YtX

T
t − E[YtX

T
t ])‖2F

]
≤ 2η2tE

[
‖E[Wt](XtX

T
t − E[XtX

T
t ])‖2F + ‖YtXT

t − E[YtX
T
t ]‖2F

]
≤ 2η2t

(
‖E[Wt]‖2FE[‖XtX

T
t − E[XtX

T
t ]‖2F ] + ‖YtXT

t − E[YtX
T
t ]‖2F

)
= O(t−2x−y).

Noting finally that ‖W ∗t −Wmin‖F = O(1− γt) = O(t−y), we apply Theorem B.4 with α = x+ y,
β1 = y + 1, and β2 = 2x+ y to obtain the desired rate. This concludes the proof of Theorem 5.1.�

E.3 Experimental validation

To validate Theorem 5.1, we ran augmented GD with random projection augmentation on N = 100
simulated datapoints. Inputs were i.i.d. Gaussian vectors in dimension n = 400, and outputs in dim
p = 1 were generated by a random linear map with i.i.d Gaussian coefficients drawn from N (1, 1).
The learning rate followed a fixed polynomially decaying schedule ηt = 0.005

100 · (batch size) · (1 +
t
20 )−0.66. Figure E.1 shows MSE and ‖Wt,⊥‖F along a single optimization trajectory with different
schedules for the dimension ratio 1− γt used in random projection augmentation. Code to generate
this figure is provided in supplement.zip in the supplement. It ran in 30 minutes on a standard
laptop CPU.
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Figure E.1: MSE and ‖Wt,⊥‖F for optimization trajectories of GD with random projection augmen-
tation Jointly scheduling learning rate and noise variance to have polynomial decay is necessary for
optimization to converge to the minimal norm solution Wmin. Rand Proj const, Rand Proj exp, and
Rand Proj pow have random projection augmentation with 1−γt = 0.1, 0.1e−0.02t, 0.1(1+ t

50 )−0.33,
respectively. Other experimental details are the same as those described in §E.3.

F Analysis of SGD

This section gives an analysis of vanilla SGD using our method. Let us briefly recall the notation. As
before, we consider overparameterized linear regression with loss

L(W ;D) =
1

N
‖WX − Y ‖2F ,

where the datasetD of sizeN consists of data matricesX,Y that each haveN columns xi ∈ Rn, yi ∈
Rp with n > N. We optimize L(W ;D) by augmented SGD either with or without additive Gaussian
noise. In the former case, this means that at each time t we replace D = (X,Y ) by a random batch
Bt = (Xt, Yt) given by a prescribed batch size Bt = |Bt| in which each datapoint in Bt is chosen
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uniformly with replacement from D, and the resulting data matrices Xt and Yt are scaled so that
Lt(W ) = L(W ;D). Concretely, this means that for the normalizing factor ct :=

√
N/Bt we have

Xt = ctXAt and Yt = ctY At, (F.1)

where At ∈ RN×Bt has i.i.d. columns At,i with a single non-zero entry equal to 1 chosen uniformly
at random. In this setting the minimum norm optimum for each t are the same and given by

W ∗t = Wmin = Y XT(XXT)+,

which coincides with the minimum norm optimum for the unaugmented loss.
Theorem F.1. If the learning rate satisfies ηt → 0 and

∞∑
t=0

ηt =∞, (F.2)

then for any initialization W0, we have WtQ‖
p→ Wmin. If further we have that ηt = Θ(t−x) with

0 < x < 1, then for some C > 0 we have

eCt
1−x‖WtQ‖ −Wmin‖F p→ 0.

Theorem F.1 recovers the exponential convergence rate for SGD in the overparametrized settting,
which has been previously studied through both empirical and theoretical means [22]. Because
1 ≤ Bt ≤ N for all t, it does not affect the asymptotic results in Theorem F.1. In practice, however,
the number of optimization steps t is often small enough that BtN is of order t−α for some α > 0,
meaning the choice of Bt can affect rates in this non-asymptotic regime. Though we do not attempt
to push our generic analysis to this granularity, this is done in [22] to derive optimal batch sizes and
learning rates in the overparametrized setting.

Proof of Theorem F.1. In order to apply Theorems B.1 and B.4, we begin by computing the moments
of At as follows. Recall the notation diag(M) from Appendix A.1.

Lemma F.2. For any Z ∈ RN×N , we have that

E[AtA
T
t ] =

Bt
N

IdN×N and E[AtA
T
t ZAtA

T
t ] =

Bt
N

diag(Z) +
Bt(Bt − 1)

N2
Z.

Proof. We have that

E[AtA
T
t ] =

Bt∑
i=1

E[Ai,tA
T
i,t] =

Bt
N

IdN×N .

Similarly, we find that

E[AtA
T
t ZAtA

T
t ] =

Bt∑
i,j=1

E[Ai,tA
T
i,tZAj,tA

T
j,t]

=

Bt∑
i=1

E[Ai,tA
T
i,tZAi,tA

T
i,t] + 2

∑
1≤i<j≤Bt

E[Ai,tA
T
i,tZAj,tA

T
j,t]

=
Bt
N

diag(Z) +
Bt(Bt − 1)

N2
Z,

which completes the proof.

Let us first check convergence in mean:

E[Wt]Q‖ →Wmin.

To see this, note that Lemma F.2 implies

E[YtX
T
t ] = Y XT E[XtX

T
t ] = XXT,
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which yields that
W ∗t = Y XT[XXT]+ = Wmin (F.3)

for all t. We now prove convergence. Since all W ∗t are equal to Wmin, we find that Ξ∗t = 0. By (B.9)
and Lemma F.2 we have

E[Wt+1]−Wmin = (E[Wt]−Wmin)
(

Id−2ηt
N
XXT

)
,

which implies since 2ηt
N < λmax(XXT)−1 for large t that for some C > 0 we have

‖E[Wt]Q‖ −Wmin‖F ≤ ‖W0Q‖ −Wmin‖F
t−1∏
s=0

∥∥∥∥Q‖ − 2ηs
N
XXT

∥∥∥∥
2

≤ C‖W0Q‖ −Wmin‖F exp
(
−

t−1∑
s=0

2ηs
N
λmin,V‖(XX

T)
)
. (F.4)

From this we readily conclude using (F.2) the desired convergence in mean E[Wt]Q‖ →Wmin.

Let us now prove that the variance tends to zero. By Proposition B.6, we find that Zt = E[(Wt −
E[Wt])

T(Wt − E[Wt])] has two-sided decay of type ({At}, {Ct}) with

At =
2ηt
N
XtX

T
t , Ct =

4η2t
N2

[
Id ◦Var((E[Wt]Xt − Yt)XT

t )
]
.

To understand the resulting rating of convergence, let us first obtain a bound on tr(Ct). To do this,
note that for any matrix A, we have

tr (Id ◦Var[A]) = tr
(
E
[
ATA

]
− E [A]

T E [A]
)
.

Moreover, using the definition (F.1) of the matrix At and writing

Mt := E [Wt]X − Y,
we find (

(E [Wt]Xt − Yt)XT
t

)T
(E [Wt]Xt − Yt)XT

t = XAtA
T
tM

T
t MtAtA

T
t X

T

as well as

E
[(

(E[Wt]Xt − Yt)XT
t

)]T E
[
(E[Wt]Xt − Yt)XT

t

]
= XE

[
AtA

T
t

]
MT
t MtE

[
AtA

T
t

]
XT.

Hence, using the expression from Lemma F.2 for the moments of At and recalling the scaling factor
ct = (N/Bt)

1/2, we find

tr(Ct) =
4η2t
Bt

tr
(
X

{
diag

(
MT
t Mt

)
− 1

N
MT
t Mt

}
XT

)
.

Next, writing
∆t := E[Wt]−Wmin

and recalling (F.3), we see that
Mt = ∆tX.

Thus, applying the estimates (F.4) about exponential convergence of the mean, we obtain

tr(Ct) ≤
8η2t
Bt

∥∥∆tQ||
∥∥2
2

∥∥XXT
∥∥2
2
≤ C 8η2t

Bt

∥∥XXT
∥∥2
2
‖∆0Q‖‖2F exp

(
−
t−1∑
s=0

4ηs
N
λmin,V‖(XX

T)
)
.

(F.5)
Notice now that Yr = Q‖ − Ar satisfies the conditions of Theorem A.6 with ar = 1 −
2ηr

1
N λmin,V‖(XX

T) and b2r =
4η2r

Bra2rN
tr
(
X diag(XTX)X − 1

NXX
TXXT

)
. By Theorem A.6

we then obtain for any t > s > 0 that

E

∥∥∥∥∥
t∏

r=s+1

(Q‖ −Ar)
∥∥∥∥∥
2

2

 ≤ e∑t
r=s+1 b

2
r

t∏
r=s+1

(
1− 2ηr

1

N
λmin,V‖(XX

T)
)2
. (F.6)
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By two-sided decay of Zt, we find by (F.5), (F.6), and (A.9) that

E[‖WtQ‖ − E[Wt]Q‖‖2F ] = tr(Q‖ZtQ‖)

≤ e−
4
N λmin,V‖ (XX

T)
∑t−1
s=0 ηs

‖XXT‖22
N2

‖∆0Q‖‖2FC
t−1∑
s=0

8η2s
Bs/N

e
4ηs
N λmin,V‖ (XX

T)+
∑t
r=s+1 b

2
r . (F.7)

Since ηs → 0, we find that ηs NBs e
4ηs
N λmin,V‖ (XX

T) is uniformly bounded and that b2r ≤
4
N λmin,V‖(XX

T)ηr for sufficiently large r. We therefore find that for some C ′ > 0,

E[‖WtQ‖ − E[Wt]Q‖‖2F ] ≤ C ′
t−1∑
s=0

ηse
− 4
N λmin,V‖ (XX

T)
∑s
r=0 ηr ,

hence limt→∞ E[‖WtQ‖ − E[Wt]Q‖‖2F ] = 0 by Lemma A.8. Combined with the fact that
E[Wt]Q‖ →Wmin, this implies that WtQ‖

p→Wmin.

To obtain a rate of convergence, observe that by (F.4) and the fact that ηt = Θ(t−x), for some
C1, C2 > 0 we have

‖E[Wt]Q‖ −Wmin‖F ≤ C1 exp
(
− C2t

1−x
)
. (F.8)

Similarly, by (F.7) and the fact that ηs
Bs/N

<∞ uniformly, for some C3, C4, C5 > 0 we have

E[‖WtQ‖ − E[Wt]Q‖‖2F ] ≤ C3 exp
(
− C4t

1−x
)
t1−x

We conclude by Chebyshev’s inequality that for any a > 0 we have

P
(
‖WtQ‖ −Wmin‖F ≥ C1 exp

(
− C2t

1−x
)

+ a ·
√
C3t

1
2−

x
2 e−C4t

1−x/2
)
≤ a−2.

Taking a = t, we conclude as desired that for some C > 0, we have

eCt
1−x‖WtQ‖ −Wmin‖F p→ 0.

This completes the proof of Theorem F.1.
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