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ABSTRACT

This paper presents LingmaAgent, a novel Automated Software Engineering
method designed to comprehensively understand and utilize whole software repos-
itories for issue resolution. LingmaAgent addresses the limitations of existing
LLM-based agents that primarily focus on local code information. Our approach
introduces a top-down method to condense critical repository information into a
knowledge graph, reducing complexity, and employs a Monte Carlo tree search
based strategy enabling agents to explore entire repositories. We guide agents to
summarize, analyze, and plan using repository-level knowledge, allowing them to
dynamically acquire information and generate patches for real-world GitHub is-
sues. In extensive experiments, LingmaAgent demonstrated significant improve-
ments, achieving an 18.5% relative improvement on the SWE-bench Lite bench-
mark compared to SWE-agent. In production deployment and evaluation at a
major cloud computing industrial partner, LingmaAgent automatically resolved
16.9% of in-house issues faced by development engineers, and solved 43.3% of
problems after manual intervention. Additionally, we have open-sourced a Python
prototype of LingmaAgent for reference by other industrial developers 1.

1 INTRODUCTION

Automated Software Engineering (ASE) explores the automation of complex software development
processes and develops innovative tools to improve software lifecycle. Recent years, in the ASE
domain, LLM-based agents have demonstrated their strong general abilities, e.g., the environment
awareness ability (Hong et al., 2023; Wang et al., 2024b; Kong et al., 2024), planning & reasoning
ability (Cognition, 2023; OpenDevin, 2023; Luo et al., 2024; Wang et al., 2024b), tool construc-
tion (Zhang et al., 2024a) ability, etc.

More recently, an exemplary milestone termed Devin (Cognition, 2023) explores an end-to-end
LLM-based agent system for real-world SE tasks (i.e., fix Github issues). It plans user require-
ments, utilizes editor and terminal tools for independent decision-making and reasoning, and even-
tually generates code patches to meet the needs. This innovative approach has garnered considerable
attention from the AI and SE communities (Zhang et al., 2024b; Yang et al., 2024). For instance,
SWE-agent (Yang et al., 2024) strategically designs an Agent Computer Interface (ACI) to empower
SE agents in creating & editing code files, navigating repositories, and executing programs. Addi-
tionally, AutoCodeRover (Zhang et al., 2024b) extracts abstract syntax trees in programs, iteratively
searches for useful information based on requirements, and generates program patches. Although
these works achieved promising performance, their designs, focusing on local code information,
failed to grasp the global context and intricate interdependencies among functions and classes. For
example, SWE-agent maintains a context window within a code file that allows the agent to scroll up
and down. AutoCodeRover searches functions or classes within the whole repository. Typically, the
code comprising a full logic chain for a specific functionality is not arranged sequentially within a
single file; rather, it is logically scattered across multiple folders and files. It is difficult to retrieve all
relevant code files among maybe thousands of files in a repository, especially starting only from the
text in user requirements. This paper argues that a comprehensive understanding of the whole repos-
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itory becomes the most critical path to ASE. This also is the basis for the multi-file editing functions
in existing commercial software like Cursor (Cursor, 2024) and Amazon Q (Amazon, 2024).

Undoubtedly, it is challenging to utilize the vast information of an entire repository within LLM.
Firstly, a GitHub repository may contain thousands of code files, making it impractical to include
them all in the context windows of LLM. Even if it could, an LLM would struggle to accurately
capture the code relevant to the objective within such an extensive context. Secondly, the intrinsic
logic of how the code execution is distinctly different from the sequence of the code text in a file.
For instance, the location where a bug triggers an error message and the actual place that requires
modification may not be in the same file, yet they are certainly logically connected.

To address these challenges, we propose LingmaAgent. Inspired by how human software engineers
approach project-level issues, LingmaAgent guides LLM-based agents to first gain a comprehensive
understanding of the entire software repository. This approach enables agents to grasp the over-
all structure and dependencies, thereby enhancing their ability to effectively resolve issues within
the broader context of the project. Specifically, we construct a repository knowledge graph using
a top-down approach, organizing the repository into a hierarchical structure tree that provides a
clear understanding of code context and scope. This structure is further enhanced by expanding it
into a reference graph, capturing intricate function call relationships and facilitating comprehensive
dependency and interaction analysis. Subsequently, we propose a Monte Carlo Tree Search based
repository exploration method. Specifically, the agents first collect the critical information regard-
ing to the SE task on the repository knowledge graph by the explore-and-exploit strategy. Then, by
simulating multiple trajectories and evaluating their reward score, our method iteratively narrows
down the search space and guide the agents to focus on the most relevant areas. In addition, to
better utilize the repository-level knowledge, we guide the agents to summarize, analyze, and plan
for the repository information. Finally, the agents are instructed to manipulate the search API tools
to dynamically acquire local information, and fix the real-world issues by generating patches.

We demonstrate the superiority and effectiveness of LingmaAgent through extensive experiments
and comprehensive analyses. Using the SWE-bench benchmark (Jimenez et al., 2024), we eval-
uate our method’s capabilities for issue resolution. Our experiments reveal an 18.5% relative im-
provement compared to SWE-agent on the SWE-bench Lite benchmark. In production deployment
and evaluation at a major cloud computing industrial partner, LingmaAgent automatically resolved
16.9% of in-house issues faced by development engineers and solved 43.3% of problems after man-
ual intervention. The main contributions of this paper are summarized as follows.

• We highlight the whole repository understanding as the crucial path to ASE and propose a
novel agent-based method named LingmaAgent to solve the challenges.

• We propose to condense the extensive codes and complex relations of the repository into
the knowledge graph in a top-to-down mode, improving performance and efficiency.

• We design a Monte Carlo tree search based repository exploration strategy to assist the
comprehensive understanding of the whole repository for the issue-solving agents.

• Extensive experiments demonstrate the superiority and effectiveness of LingmaAgent.

2 METHODOLOGY

2.1 OVERVIEW

We first describe the overall operating process of LingmaAgent, and introduce the stages in detail
in the subsequent parts of this section. Given a workspace, LingmaAgent can automatically solve
real-world issues. Among them, LingmaAgent involves three key steps, repository knowledge graph
construction stage, MCTS-enhanced repository understanding stage, information utilization & patch
generation stage. The overall workflow is shown in Figure 1.

2.2 REPOSITORY KNOWLEDGE GRAPH CONSTRUCTION

For human programmers, when solving project-level issues, developers first need to carefully review
and understand the project’s software repository to ensure that they have a full understanding of the
functional modules and dependencies that may be involved. This includes building the hierarchical
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Figure 1: The overview of our proposed LingmaAgent.

tree structure and call graph of the software repository. Through the hierarchical tree structure,
developers can clearly see the overall architecture of the project and the relationship between each
module; through the call graph, developers can understand the calling relationships and dependency
paths between functions to identify the root causes of problems and the potential impact of changes.

Therefore, in order to learn from the practices of human programmers in understanding and main-
taining code, we represent the entire repository as a repository knowledge graph and describe the
relationships between entities by parsing the software structure (see Repo. Knowledge Graph Con-
struction in Figure 1). First, we top-down analyze the structure of the software repository, organizing
the repository into a hierarchical structure tree (including files, classes, and functions) to clearly un-
derstand the context and scope of the code. We then extend the tree structure into a reference graph
containing function call relationships, allowing the model to perform comprehensive dependency
and interaction analysis. Different from existing methods(Luo et al., 2024; Ding et al., 2022), our
reference relationship only involves functions, because functions are the basic unit of program ex-
ecution, and the calling relationship between functions directly affects the behavior and execution
logic of the program. Excessive reference relationships may increase the complexity of the graph
structure and affect the analysis efficiency and accuracy of the model. This structured repository
knowledge graph not only improves the efficiency of the model in retrieving relevant information,
but also ensures the consistency and reliability of the automated process.

2.3 MCTS-ENHANCED REPOSITORY UNDERSTANDING

After building a repository knowledge graph, a comprehensive understanding of the information in
the graph is critical to effectively solving problems. However, given the complexity and size of
modern software systems, often containing hundreds of files and thousands of functions. The vast
magnitude of the search space in large software repositories makes exhaustive analysis impractical.
To address these challenges, we propose an repository exploration approach that leverages MCTS
to enhance LLM and agents’ understanding of software repositories (see MCTS-Enhanced Repo.
Understanding in Figure 1). This method systematically explores the repository knowledge graph
and prioritizes the discovery of critical information such as repository functions and dependency
structures that have a greater impact on resolving issues. Below we describe each stage in detail.

Selection. The selection phase aims to balance exploration and exploitation problems in the node
selection process. The main challenge in this phase is to maintain a balance between in-depth
analysis of highly relevant content in the repository and a broad search for potentially important
information throughout the repository. Delving excessively into high-correlation modules can cause
the model within a local optimal solution, ignoring that other critical paths or dependencies may
exist. Extensive search may lead to the dispersion of computing resources and the processing of a
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large amount of irrelevant information, which increases the burden on the model and reduces search
efficiency. To balance the needs of the above two aspects, we use the UCT algorithm (Kocsis &

Szepesvári, 2006) for node selection, following the formula: UCT = wi

ni
+ c

√
2 lnnp

ni
, where wi is

the total reward of child node i. The calculation of specific rewards will be introduced in detail in
Simulation & Evaluation section. ni is the number of visits to child node i and np is the number
of visits to the parent node. c is the exploration parameter used to adjust the balance between
exploration and exploitation. In this work, we set c to

√
2/2.

Correlation Expansion. During the expansion process, leaf nodes are expanded to incorporate new
nodes. If the current leaf node has a child node in the repository knowledge graph, the most likely
child node is selected instead of random expansion. In this stage, we designed two methods: Cor-
relation expansion and Reference relationship expansion. In this section, we mainly introduce cor-
relation expansion, and reference relationship expansion will be introduced in the Backpropagation
& Reference Expansion section. Similar code is most likely to be code related to user requirements.
User requirements or issues usually contain some keywords that may add new or modified func-
tions. Therefore, we use the bm25 score to calculate the relevance (Ding et al., 2024b; Husain et al.,
2019; Xie et al., 2023), and give priority to codes with higher relevance for expansion. Correlation
expansion can effectively match user requirements with relevant nodes in the software knowledge
graph, thereby improving the accuracy and efficiency of node expansion.

Simulation & Evaluation. After completing the expansion, we enter the simulation process. We
start from the newly expanded node and simulate along possible paths to evaluate the effectiveness
of these paths in solving the current issue. Consistent with the correlation expansion method, we
continuously and recursively select the child nodes with the highest correlation scores in the soft-
ware knowledge graph until leaf nodes, and then reward the nodes. In the evaluation phase, we
need to evaluate the relevance of the selected leaf nodes to the issue, including classes, top-level
functions, class methods or sub-functions, etc. However, traditional evaluation methods usually rely
on keyword matching and semantic matching algorithms, which perform poorly when dealing with
complex software systems and diverse problem descriptions.

Drawing upon previous work on in-context learning (ICL) and Chain-of-Thought (CoT) (Dong et al.,
2022; Work; Wei et al., 2022), we employ a reward method based on ICL and CoT to provide reward
scores. Our approach leverages the advanced ability of LLMs to learn and optimize reward functions
from limited examples of programming practice to accurately assess the correlation between leaf
nodes and problem descriptions. Specifically, we first use ICL to let the LLM learn to understand
the core functions and operating modes of the reward function in a given context. Then, the CoT
is used to enable the model to conduct in-depth reasoning based on the specific information in the
question and code snippets to evaluate the correlation of leaf nodes. The reward function prompt
template we designed (see Figure 2 in the Appendix) starts with a guided system prompt that clearly
points out the goals and responsibilities of the reward function. Then, through a series of example
combinations of <issue description, code snippets, thinking process, results>, the input, output and
reasoning chain in the scoring process are demonstrated. Finally, the prompt ends with a new set of
issue descriptions and code snippets, at which point the model is expected to learn the intermediate
reasoning steps from the given examples and output corresponding reward scores.

Backpropagation & Reference Expansion. After the evaluation ends, we perform a bottom-up
update from the terminal node back to the root node. During this process, we update the visit count
n and the reward value w. In addition, we also introduced reference relationship expansion in the
backpropagation phase. Different from the conventional expansion method, we not only expand
when we encounter leaf nodes, but also when we encounter those nodes with higher reward scores
(set the threshold to a reward score of not less than 6 here), we will expand their reference modules
and objects based on the repository knowledge graph. And then integrate them into new nodes. The
insight is that in actual development, the node called by the current node is often the key node for
function implementation, and the called node is usually the use of the current node and depends on
the implementation and changes of the current node. Therefore, if a node has a higher reward score,
the nodes with calling relationships may also be relevant.
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2.4 INFORMATION UTILIZATION & PATCH GENERATION

At this stage, LingmaAgent first summarizes the whole repository experience, then obtains code
snippet information dynamicly on this basis, and finally generates patches that try to solve the prob-
lem. The three steps are detailed below.

Repository Summary. To more effectively utilize the global repository information collected dur-
ing the repository understanding phase, we introduce a summary agent. The agent aims to system-
atically analyze and summarize the code snippets collected in the repository knowledge graph and
submitted issues, and then plan how to solve the problem, thereby forming an experience of the
entire repository. Specifically, the summary agent takes the issue and the collected relevant code
fragments as input, and then outputs a summary of the relevant fragments in sequence and plans a
solution. The specific prompt template is shown in Figure 3 in the Appendix. Since the collected
global repository information may be complex and contain a large number of code fragments and
annotation descriptions, we only use the location description of the relevant code fragments (i.e.,
structural dependencies in the repository) and the output of the Summary Agent (i.e., summary and
planning) as LingmaAgent’s experience to guide subsequent actions.

Dynamic information acquisition. Global experience information is LingmaAgent’s experience
summary of relevant information in the current workspace, which can help the LLM understand
issues and find solutions more quickly. In the process of solving problems, to make full use of
this global experience information, LingmaAgent futher needs to dynamically extract local infor-
mation from the current repository, including specific classes, functions and code snippets. The
ReAct (Yao et al., 2022) framework (i.e., Reson then Act) guides the model to generate inference
trajectories and task-specific actions in a staggered manner, allowing the model to interact with the
code repository and collect information. Specifically, the ReAct framework first generates reasoning
paths through the CoT, and then outputs actual actions based on the reasoning results. Therefore,
LingmaAgent can call the corresponding search API according to task requirements and dynami-
cally extract local information from the current repository to collect relevant context. We follow
AutoCodeRover’s search API method (Zhang et al., 2024b), using the three-layer search method of
search class, search method, and search code. Specifically, LingmaAgent first independently de-
termines the API that needs to be called. Then the retrieval API will search for code snippets in the
repository knowledge graph, and finally return the results to the agent.

Patch Generation. In the patch generation step, LingmaAgent first locates faults based on the sum-
mary of global experience and dynamic information, extracts the context of code snippets that may
need to be modified, and then generates modified code snippets. Finally, a diff is generated based on
the code snippet before modification and the code snippet after modification, and is returned as the
final result. If a diff is incorrect due to syntax, we will retry until an applicable patch with correct
syntax is generated. We follow AutoCodeRover (Zhang et al., 2024b) and set the maximum number
of retries to 3 to ensure that the generated patch can be applied as much as possible.

3 EXPERIMENT

To validate the performance of LingmaAgent, we conduct a series of comprehensive experiments
and comparisons. We begin by comparing LingmaAgent with RAG-based and Agent-based systems
on the SWE-bench Lite dataset (§3.2). In addition, we conduct detailed ablation studies to under-
stand the contribution of each component in LingmaAgent (§3.3). Finally, we assess LingmaAgent’s
effectiveness in industrial settings using an in-house dataset from our industrial partner, testing both
fully automated and human-in-the-loop scenarios (§3.4).

3.1 EXPERIMENTAL SETUP

Datasets. We evaluate on the SWE-bench Lite dataset (Jimenez et al., 2024) which are constructed
due to the high cost of evaluating in the complete SWE-bench. SWE-bench Lite includes 300 task
instances sampled from SWE-bench, following a similar repository distribution.

Baselines. We compare LingmaAgent with two types of baselines. The first category is the RAG
baselines (Jimenez et al., 2024). This type of baseline uses the BM25 method to retrieve code base
files related to the issue and inputs them into LLM to directly generate patch files that solve the
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Method Resolved Apply Avg Cost
RAG-based
SWE-Llama 7B 1.33% 38.00% -
SWE-Llama 13B 1.00% 38.00% -
GPT-4 2.67% 29.67% $0.13
Claude-3 Opus 4.33% 51.67% $0.25
Agent-based
AutoCodeRover 16.11% 83.00% $0.45
SWE-agent 18.00% 93.00% $2.51
LingmaAgent 21.33% (18.5%↑) 85.67% $3.99

Table 1: Main results for LingmaAgent performance on the SWE-bench-lite test set.

Method Resolved Apply Avg Cost
ACR & SWE-agent 24.33% (73) 98.00% -
Lingma & ACR 25.33% (76) 94.67% -
Lingma & SWE-agent 26.67% (80) 99.67% -
LingmaAgent (w.feedback)
GPT-4 27.70% (83) 96.30% $4.72
GPT-4o 28.33% (85) 95.33% $2.39
Claude3.5 Sonnet 32.00% (96) 96.67% $2.27
Claude3.5 Sonnet v1022 38.33% (115) ↑ 98.00% $2.18 ↓

Table 2: Complementarity analysis of our method and baselines.

problem. The second type of baseline is the agents baseline (i.e., AutoCodeRover (Zhang et al.,
2024b) and SWE-agent (Yang et al., 2024)), which locates the problem through complex multiple
rounds of interaction and execution feedback, and finally generates a patch to solve the problem
through iterative verification.

Metrics. Following the SWE-bench (Jimenez et al., 2024), We evaluate the effectiveness of Ling-
maAgent, using the percentage of resolved instances and the patch application rate. Among them,
the patch application rate refers to the proportion of instances where code changes are successfully
generated and can be applied to existing code bases using Git tools. Resolved ratio represents the
overall effectiveness of solving actual GitHub issues, and application ratio reflects the intermediate
results of patch availability.

Configurations. All results, ablations, and result analyzes of LingmaAgent use the GPT4-Turbo
model (i.e., gpt-4-1106-preview, the same model with SWE-agent. We use ast2 and Jedi3 library to
parse repository and obtain syntax structures and dependencies of repository. In MCTS-Enhanced
Repository Understanding stage, we set the number of search iterations to 600 and maximum search
time to 300 seconds. In information Utilization & Patch Generation stage, we set the maximun
number of summary code snippets to 10. SWE-bench has a relatively complex environment con-
figuration. Thanks to the development of the open source community, we use the well-build open
source docker of the AutoCodeRover team for experiments.

3.2 COMPARISON EXPERIMENT

We first evaluate the effectiveness of LingmaAgent in SWE-bench Lite (300 instances). The perfor-
mance comparison analysis between LingmaAgent and other methods is shown in Table 1. In each
instance, we provide a natural language description from a real-world software engineering problem
and a local code repository of corresponding versions, asking the model to solve the problem and
generate patches that can pass local automated testing. Resolved reflects the end-to-end ability of
the current RAG LLM system and Agent system to solve software engineering problems. The re-

2https://docs.python.org/3/library/ast.html
3https://github.com/davidhalter/jedi
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sults show that LingmaAgent is significantly better than other RAG and Agent systems, achieving
SOTA performance on the test set. Compared with the RAG system, our method improves per-
formance by nearly 5 times. Compared with the state-of-the-art Agent system, we improve the
accuracy of SWE-agent by 18.5%. These excellent performances demonstrate the advancement of
our approach. In addition, the Apply application rate indicates the availability of generated patches.
We found that Agent-based systems all achieved high availability, while RAG-based systems have
lower availability, which proves that agent systems may be an important means to automatically
solve software engineering tasks.

SWE-agent has the highest Apply rate due to the introduction of its execution feedback capability.
For each issue, SWE-agent first constructs reproduction code to replicate the error, then verifies
whether each generated patch has resolved the problem. If not, it uses feedback from the executor
to iteratively refine the patch. Because it operates in a real production environment, automatically
setting up and obtaining the user’s runtime environment may face challenges such as security con-
cerns, environmental complexity, and resource constraints. Therefore, our approach focuses more
on understanding the entire repository information. However, to verify the complementarity of the
methods, we integrated execution feedback into LingmaAgent. The detailed results are shown in
Table 2. We compared the issue-solving distribution of three Agent-based methods. We found that
our method is highly complementary to the SWE-agent method. The two methods jointly solved 80
examples, achieving a task resolved rate of 26.67%, which further illustrates the complementarity
of our method and the execution feedback method. To further integrate the execution feedback, we
followed the practice and prompts of SWE-agent. First, we prompted the agent to write code to
reproduce the problem, then fix the program and run the reproduction code to determine whether
the issue is resolved. If it is not resolved, the agent debugs according to the running results and
iteratively refines the generated code to improve the model’s output. The experimental result is
shown as LingmaAgent (w.feedback) in Table 2, which we found to be consistent with our expecta-
tions and achieved further optimal performance (27.7%), further verifying the complementarity of
LingmaAgent and SWE-agent.

Furthermore, we experimented with different models and found that performance improved signifi-
cantly with more advanced models. As model capabilities continue to improve and costs decrease,
we anticipate even better results in the future. Notably, Claude3.5 Sonnet v1022 (Anthropic, 2024)
achieved the highest resolution rate of 38.33% while maintaining a lower average cost, demonstrat-
ing the potential for more efficient and effective software engineering problem-solving as LLMs
evolve. In addition, We observed that some approaches on SWE-bench leverage voting and test-time
scaling (Antoniades et al., 2024; Zhang et al.) to enhance performance. However, these methods
may introduce significant latency in real-world applications. The exploration of efficient strategies
to balance performance gains and latency in practical settings is left for future work.

3.3 ABLATION STUDY

3.3.1 MODULE ANALYSIS

Method Resolved Apply
LingmaAgent 21.33% 85.67%
- w.o. call graph 19.67% 83.00%
- w/o. summary 17.67% 85.33%
- w/o. mcts & summary 16.00% 83.33%
- w. review 18.33% 87.67%

Table 3: Ablation results of LingmaAgent.

This ablation experiment aims to study the ef-
fectiveness of LingmaAgent’s global repository
understanding component. (1) Remove only
the call graph module: Only the structure tree
in MCTS is retained for tree search, and the
reference extension module (i.e., the call rela-
tionship graph) is removed. This experiment
aims to verify the effectiveness of the reference
extension module, i.e., the importance of ref-
erence relations in the repository. (2) Remove
only the summary module: Only the signature
and dependency structure of relevant information in the repository obtained by MCTS are used as
global experience, and the summary and planning of information are removed. This experiment aims
to verify the effectiveness of the summary agent, i.e., the importance of comprehensive summary of
repository information. (3) Remove MCTS & summary modules: LingmaAgent has no prior knowl-
edge of the repository structure and functions, that is, it lacks empirical information about the whole
repository and can only locate relevant code snippets by searching through limited information in
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the issue. (4) Add a review agent module: After LingmaAgent generates a patch that can be applied,
in order to simulate the code review process in the development process, a static review of the patch
by the review agent is added to discover possible defects in the newly generated code. If there is a
defect, the patch is regenerated according to the review reason until a patch that passes the review is
generated. This process is repeated up to three times.

Our experimental results demonstrate the importance of global experience and the effectiveness of
the summary agent. As shown in Table 3, removing these modules all resulted in a drop in the
performance of LingmaAgent, especially after removing the MCTS & summary agent; the number
of problem instances solved rate decreased from 21.33% to 16.00%, which highlights the impor-
tance of global experience for automatically solving repository-level issues. In addition, we found
that after adding the review agent, the performance of LingmaAgent dropped, suggesting the limi-
tations of static review. We speculate that the LLM-based static review may only rely on the surface
grammatical information of the code and cannot fully understand the semantic meaning of the code.
Therefore, the static review may ignore some hidden logical errors or illogical situations in the code.
Therefore, we suggest that subsequent work can combine dynamic program analysis (Zhang et al.,
2023a; Deng et al., 2023; Xia et al., 2024) such as program instrumentation (Hollingsworth et al.,
1994; Huang, 1978) to improve the reliability of the LLM Agent.

3.3.2 FAULT LOCALIZATION ANALYSIS

Method Function Loc File Loc
AutoCodeRover 42.3% 62.3%
SWE-agent 45.3% 61.0%
LingmaAgent 49.3% 67.7%

Table 4: Fault localization results of LingmaA-
gent.

In addition to the issue resolution evaluation,
we conducted a analysis focusing on the fault
localization capability (% Correct Location) (S
et al., 2024) of LingmaAgent. The fault local-
ization module is an intermediate module in the
issue solving process. Whether the fault loca-
tion is correctly located affects the subsequent
program repair. Specifically, we extracted the
fault locations from the developer patch and the
patch generated by the model, respectively, and
calculated the localization success rate by calculating whether the fault locations were consistent.
This analysis aims to further illustrate the effectiveness of our repository understanding module. The
resluts are shown in Table 4. We compared the two SOTA agent-based methods, AutoCodeRover and
SWE-agent, where Function represents the accuracy of fault function location and File represents
the accuracy of defect file location. Our findings show that our method significantly outperforms
the other two methods in the success rate of fault localization at both the Function and File levels,
which shows that understanding the repository and exploring critical information notably contribute
to improving fault localization.

3.3.3 HYPER PARAMETER ANALYSIS

MCTS Iters Resolved Apply
0 16.00% (48) 80.33%
50 19.67% (59) 86.67%

200 20.67% (62) 88.00%
600 21.33% (64) 85.67%

Table 5: Hyperparameter results.

We further analyzed the impact of the iterations
number in MCTS. We set the maximum num-
ber of iterations to 50, 200, and 600, and limited
the maximum iteration time to 300 seconds.
The results are shown in Table 5. We found
that: (1) As the number of iterations increases,
LingmaAgent solves more actual issues. This
shows that as the number of iterations rounds
increases, agents will collect more repository
information, i.e., they will have more experience with the repository, resulting in a higher prob-
lem solving rate; (2) As the number of iterations increases, we found that the relative improvement
in problem solving gradually decreases.

Specifically, the improvement of 50 iterations is significant compared to no iterations, but the relative
improvement of the subsequent 200 and 600 iterations decreases. This may be because in the early
stage, agents can quickly search and summarize relevant experience, but as the number of iterations
increases, the convergence speed of the model gradually slows down, and the contribution of new
information to performance improvement becomes smaller; (3) We observed that as the number of
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iterations increases from 200 to 600, the apply rate decreases. This phenomenon indicates that as the
number of iterations increases, the model may be affected by some interference information when
generating results, resulting in a decrease in the quality of the generated results. Therefore, when
selecting the number of iterations, it is necessary to consider avoiding the influence of excessive
interference information.

3.4 EVALUATION ON IN-HOUSE DATASET

Language Resolved Fault Location
Java 14.7% 41.2%
TypeScript 18.8% 28.1%
JavaScript 17.2% 31.3%
Average 16.9% 33.5%

Table 6: Results on In-house Dataset.

To assess the effectiveness of LingmaAgent
in real-world industrial settings, we conducted
a comprehensive evaluation using an in-house
dataset meticulously curated from a major
cloud computing industrial partner’s diverse de-
velopment scenarios. This dataset was de-
signed to test the performance of LingmaA-
gent on multi-language repositories, focusing
on Java, JavaScript, and TypeScript - three of
the most prevalent languages in cloud-based
and web application contexts. The dataset encompasses a wide range of projects including e-
commerce platforms, cloud infrastructure services, and data analytics tools, representing the com-
plexity and diversity of industrial-scale software projects. It comprises 10 Java repositories (averag-
ing 1538 files and 3.4 issues each), 24 JavaScript repositories (averaging 503 files and 4 issues each),
and 16 TypeScript repositories (averaging 793 files and 4 issues each), for a total of 194 issues.

We deployed LingmaAgent with the GPT-4 for this evaluation. We used the same metrics to evaluate
LingmaAgent’s performance. The experiment was conducted in two phases:

• Fully Automated Resolution. LingmaAgent attempted to resolve issues without any human
intervention. For this phase, we conducted a full evaluation on all 194 issues in the dataset.

• Human-in-the-Loop Intervention. For issues not resolved in the first phase, we imple-
mented a human-in-the-loop approach. Development engineers intervened in the product
interaction pipeline, manually adjusting LingmaAgent’s generation plans and search api
call, and refining potential fault localizations (interventions must less than 5 times). The
final patches were then generated using the model. For this phase, we randomly selected
30 issues for manual evaluation.

Tasks Automated Human-in-the-Loop
Resolved 16.7% 43.3%
Fault Loc 40.0% 66.7%

Table 7: Results of Human-in-the-Loop Interven-
tion on a major cloud computing industrial In-
house Dataset Subset.

The results of our evaluation are presented in
Table 6 and 7. These findings offer valuable
insights into LingmaAgent’s performance in
industrial-scale software engineering tasks. In
the Fully Automated Resolution phase, Ling-
maAgent successfully resolved 16.9% of the is-
sues across the multilingual dataset. This re-
sult shows that the system is capable of au-
tonomously handling some real software engi-
neering tasks without any human intervention,
but there is still much room for improvement. For the Human-in-the-Loop Intervention phase, we
randomly selected a subset of 30 issues. In this subset, LingmaAgent’s automated performance was
consistent with the full dataset, resolving 16.7% of issues independently. However, with human
intervention, the resolution rate dramatically increased to 43.3%. This substantial improvement of
26.7 percentage points highlights the synergistic potential of human-AI collaboration in tackling
complex software engineering problems. This indicates that the system effectively augments human
problem-solving skills rather than replacing them.

4 CONCLUSION

This paper emphasizes the importance of understanding entire software repositories for achieving
Automated Software Engineering. We introduce LingmaAgent, a novel LLM-based agent method
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that comprehensively analyzes repositories through knowledge graph construction, MCTS-enhanced
exploration, and global experience-based planning. This approach enables agents to solve real-world
GitHub issues effectively. Extensive experiments demonstrate LingmaAgent’s superior performance
over existing systems on the SWE-bench Lite benchmark. Ablation studies highlight the significance
of global repository experiences and the potential of integrating runtime feedback. We also validate
LingmaAgent’s effectiveness in real-world industrial settings using a major cloud computing indus-
trial dataset, showcasing its capabilities in both automated and human-in-the-loop scenarios.
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A APPENDIX

A.1 LIMITATION

Resource Overhead. Although LingmaAgent aims to guide LLMs to fully understand the whole
software repository to effectively solve the challenges in ASE, the MCTS process does require a cer-
tain amount of resource consumption. Specifically, we set the maximum number of iterations to 600
and the maximum search time to 300 seconds to ensure that the model can fully explore the search
space and accurately evaluate the rewards of different paths. However, such settings are controllable
and adjustable to adapt to different application scenarios and resource constraints. Through reason-
able parameter adjustment, the best balance between resource consumption and result accuracy can
be found. In addition, as shown in Table 5, only 50 iterations can also achieve results that are supe-
rior to other agents. At the same time, in Table 2, we ran LingmaAgent on different base models.
We found that with the introduction of the next generation of models, the improvement of model
capability and the cost will also bring about the improvement of LingmaAgent effect and the reduc-
tion of cost, which further demonstrates the possibility of application with LingmaAgent. Further
research may discover more efficient strategies to reduce resource requirements while maintaining
or improving agents performance.

Evaluation of LingmaAgent. While our evaluation of LingmaAgent demonstrates promising re-
sults, several limitations in our current assessment approach warrant consideration. Our primary
evaluation relies on the SWE-bench Lite dataset, and although we conducted additional tests using
an in-house dataset from a major cloud computing industrial partner, the scope of our human-in-
the-loop evaluation was limited due to the substantial human resources required for comprehensive
interaction and assessment. This constraint potentially limits the generalizability of our findings to a
broader range of real-world scenarios. Additionally, there is a possibility that some of the models we
used, may have been exposed to parts of the repositories in our test set during their training. While
this potential data leakage is a concern, we believe that the relative performance improvements
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demonstrated by LingmaAgent still provide valuable insights into its effectiveness. Nevertheless,
this limitation highlights the need for more controlled evaluation environments in future studies.
To address these limitations and enhance the robustness of future evaluations, we propose several
directions for future work: creating standardized protocols for human-in-the-loop evaluations, and
developing a dynamic, continuously updated version of SWE-bench that evolves with the software
engineering field. By addressing these limitations and expanding our evaluation methodologies, we
aim to provide more robust and generalizable assessments of AI-assisted software engineering tools
like LingmaAgent in the future.

A.2 RELATED WORK

A.2.1 LLM-BASED SOFTWARE ENGINEERING AGENTS

In recent years, Large Language Model (LLM) based AI agents have advanced the development
of automatic software engineering. AI agents improve the capabilities of project-level software
engineering (SE) tasks through running environment awareness (Hong et al., 2023; Wang et al.,
2024b; Kong et al., 2024), planning & reasoning (Wang et al., 2024b; Cognition, 2023; OpenDevin,
2023; Luo et al., 2024), and tool construction (Zhang et al., 2024a; Lee et al., 2024). Surpris-
ingly, Devin (Cognition, 2023) is a milestone that explores an end-to-end LLM-based agent system
to handle complex SE tasks. Concretely, it first plans the requirements of users, then adopts the
editor, terminal and search engine tools to make independent decisions and reasoning, and finally
generates codes to satisfy the needs of users in an end-to-end manner. Its promising designs and
performance swiftly ignited unprecedented attention from the AI community and SE community
to Automatic Software Engineering (ASE) (Yang et al., 2024; Zhang et al., 2024b). For example,
SWE-agent (Yang et al., 2024) carefully designs an Agent Computer Interface (ACI) to empower
the SE agents capabilities of creating & editing code files, navigating repositories, and executing
programs. Besides, AutoCodeRover (Zhang et al., 2024b) extracts the abstract syntax trees in pro-
grams, then iteratively searches the useful information according to requirements, and eventually
generates program patches. Their designs mainly focus on the local information in the repository,
e.g., code files, classes, or functions themselves. Although achieving promising performance, from
the insights of the human SE developers, the excellent understanding of the whole repository is a
critical path to ASE.

A.2.2 EVALUATION OF LLM-BASED SOFTWARE ENGINEERING AGENTS

Benefiting from the strong general capability of LLMs, LLM-based software engineering agents
can handle many important SE tasks, e.g., repository navigation (Zhang et al., 2024a; Wang et al.,
2024b), code generation (Hong et al., 2023; Ding et al., 2024a; Ishibashi & Nishimura, 2024; Tang
et al., 2024; Rasheed et al., 2024), debugging (Hong et al., 2023; Yang et al., 2024; Zhang et al.,
2024b), program repair (Qin et al., 2024; Zhang et al., 2024b; Yang et al., 2024). The existing meth-
ods usually regard code generation as a core ability and mainly conduct evaluations on it. Precisely,
the code generation test set (Chen et al., 2021; Austin et al., 2021; Liu et al., 2024; Zheng et al.,
2023a; Lu et al., 2021) consists of the short problem description, the solution, and the correspond-
ing unit test data. However, with the fast development of LLMs and agents, these datasets are no
longer able to comprehensively evaluate their capabilities in the real-world SE tasks. To this end, the
repository-level code completion and generation tasks (Liu et al., 2023; Ding et al., 2024b; Du et al.,
2024) are presented to evaluate the repository understanding and generation capabilities of LLMs
and agents. More recently, SWE team(Jimenez et al., 2024; Yang et al., 2024) develop a unified
dataset named SWE-bench to evaluate the capability of the agent system to solve real-world GitHub
issues automatically. Specifically, it collects the task instances from real-world GitHub issues from
twelve repositories. Consistent with previous evaluation methods, SWE-bench is based on the au-
tomatic execution of the unit tests. Differently, the presented test set is challenging and requires
the agents to have multiple capabilities, including repository navigation, fault locating, debugging,
code generation and program repairing. Besides, SWE-bench Lite (Carlos E. Jimenez, John Yang,
Jiayi Geng, 2024) is a subset of SWE-bench, and it has a similar diversity and distribution of repos-
itories as the original version. Due to the smaller test cost and more detailed filtering, SWE-bench
Lite is officially recommended as the benchmark of LLM-based SE agents. Therefore, consistent
with previous methods (Yang et al., 2024; Zhang et al., 2024b; OpenDevin, 2023), we report our
performance on SWE-bench Lite.
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Run AutoCodeRover SWE-agent LingmaAgent
Run1 16.00% 17.33% 21.33% (23.08%↑)
Run2 15.67% 18.00% 20.00% (11.11%↑)
Run3 16.67% 18.00% 21.67% (20.39%↑)
Average 16.11% 17.78% 21.00% (18.11%↑)
All 22.33% 27.35% 30.67% (12.14%↑)

Table 8: Performance for 3 separate runs of LingmaAgent on SWE bench Lite.

A.2.3 REPOSITORY-LEVEL CODE INTELLIGENCE

With the development of AI technology, the field of code intelligence has gradually transitioned from
solving single function-level or code snippet-level problems to real-world software development at
the repository level. In the repository-level code intelligence task, there are many works (Liang et al.,
2024; Ding et al., 2022; Zhang et al., 2023b; Lozhkov et al., 2024; Guo et al., 2024; Zan et al., 2023;
Shrivastava et al., 2023; Bairi et al., 2023) that aim to leverage the large amount of code available
in current repositories to help code models generate better, more accurate code. Among them, Star-
Coder2 (Lozhkov et al., 2024) and Deepseek-Coder (Guo et al., 2024) model repository knowledge
in the pre-training stage, sort repository files according to reference dependencies, and guide the
model to learn the global dependencies of repository information. RepoCoder (Zhang et al., 2023b)
continuously retrieves relevant content by iterating RAG, while methods such as CoCoMIC (Ding
et al., 2022) and RepoFuse (Liang et al., 2024) jointly use the RAG module and the current file’s de-
pendency relationship module to introduce it into the context of LLM. Although the above methods
enhance the model’s understanding of the repository context to a certain extent, the repository-level
code often contains complex contextual call relationships, and the RAG method alone may not be
able to recall all semantically relevant content. In addition, there may be a large amount of complex
irrelevant information in the RAG results, which interferes with the model’s accurate fault location.
Therefore, starting from the practical experience of software engineering, we simulated people’s
global experience in understanding the repository and experience-guided exploration and location
to achieve more effective repository understanding.

A.3 RANDOMNESS IN LINGMAAGENT

Product performance stability is crucial for user experience. However, given the inherent random-
ness in LLMs, it is essential to rigorously assess the consistency of our method’s outputs. Therefore,
following the practices of AutoCodeRover (Zhang et al., 2024b) and SWE-agent (Yang et al., 2024),
we run the system three times to evaluate its average performance and Pass@k performance. These
results are shown in Table 8, where Run1−3 represents three different runs, Average represents the
average performance of three times, and All represents the result of Pass@3.

Notably, LingmaAgent consistently outperforms both SWE-agent and AutoCodeRover across all
three runs, with an average improvement of 18.11% over SWE-agent, the stronger baseline. The
Pass@3 performance (represented by ”All” in the table 8) shows that LingmaAgent achieves a suc-
cess rate of 30.67%, which is a 12.14% improvement over SWE-agent and a 37.35% improvement
over AutoCodeRover, indicating its superior ability to solve problems when given multiple attempts.
This suggests that the model has the potential to address a wider range of issues, and improving its
pass@1 performance could be a promising approach to further enhance its issue-solving capabili-
ties, such as sampling multiple trajectories for DPO/PPO (Rafailov et al., 2024; Wang et al., 2024a;
Zheng et al., 2023b) training, which we leave for future work.

A.4 FUTURE WORK

Future work will focus on developing a dynamic, evolving version of SWE-bench, and optimizing
resource efficiency while maintaining or improving agent performance. These efforts aim to advance
the field of AI-assisted software engineering and provide more robust solutions for complex software
development tasks.
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You are a programming assistant who helps users solve issue regarding their workspace code. 
Your main responsibilities include examining issue information to analyze possible causes of the issue and determine the code 
that needs to be fixed.

Please refer to the above responsibilities and provide detailed reasoning and analysis. Then at the last line conclude "Thus 
the probability score that this code needs to be modified to solve this issue is s", where s is an integer between 1 and 10.

# Examples
Issue: ModelChain.prepare_inputs error, ...
Code:
```
def prepare_inputs_from_poa(self, data): ...
```
Thought: To solve the problem in the prepare_inputs(), ... Result:Thus the probability score that this code needs to be 
modified to solve this issue is 1.
# Now the issue is:
{issue}
Code:
```
# {method_type} method {method_name} in {rel_file_path} file.
{code_content}
```

Thought: The provided code snippet is the `database_forwards` method of the `RenameModel` class. This method handles 
the ...

Consequently, to address the issue, modifications to the `database_forwards` method are needed to introduce checks ...

Given the direct correlation between the issue and the location of the behavior within the `database_forwards` method of 
the `RenameModel` operation, it's clear that changes to this code are required to resolve the raised concern.

Result: Thus the probability score that this code needs to be modified to solve this issue is 9.

Issue: ModelChain.prepare_inputs error, ...
Code:
```def prepare_inputs_from_poa(self, data): ...```
Thought: To solve the problem in the prepare_inputs(), ... 
Result: Thus the probability score that this code needs to be modified to solve this issue is 1.

Figure 2: Reward agent’s input prompt template and output results, with some details omitted.

You are a senior software developer maintaining a large project. You are working on an issue submitted to your project. The 
issue contains a description marked between <issue> and </issue>.

We've collected some code snippets from the code repository that may be relevant.

To help diagnose and fix issues in repositories, let's systematically analyze the collected context step by step. 

<issue>
{issue_content}
</issue>

<collected content>
{collected_content}
</collected content>

Analyze results:

Based on the collected code snippets, here's the analysis of the migration process that's intended to update proxy model 
permissions:
1. The migration was introduced to update the `content_type` ...\n  2. The `update_proxy_model_permissions` function is 
designed ... \n 3. The `revert_proxy_model_permissions` function calls ...

Based on the description of the issue, it seems that so far:
- The error persists despite attempts to delete the ...
- The error has been encountered when updating from Django ...
- Clearing the virtual environment did not resolve the issue.
There are a few possible steps to fix the issue further:
- **Ensure the `content_type_id` and `codename` ...**
- **Examine the Proxy Models**.
- ** ... **

Figure 3: Summary agent’s input prompt template and output results, with some details omitted.

A.5 PROMPT
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