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A Experimental Details

We implemented our methods using PyTorch [37] hooks and an efficient Jacobian approximate
algorithm [19].

Figure I} We generated MNIST-like inputs, where all elements are sampled from the Gaussian
distribution A/(0,1). J%! data was averaged over 100 different parameter-initializations. Networks
were initialized width N; = 1000. For erf plot we initialized at critical point (0., 03) = (1/7,0),
used depth L = 250 and the fitting was done with data points collected at depth / > 100; for ReLU
plot we initialized at critical point (o, 03) = (1/2,0), used depth L = 100 and the fitting was done
with all data points; for the = 1 Pre-LN plot, we initialized both networks at (7, 75) = (v/2,0),
used depth L = 250 and the fitting was done with [ > 100 data points.

Figure All the phase diagrams were plotted using Xé_l generated from networks with L = 50

and N; = 500. We used hooks to obtain the gradients that go into calculating X‘Lfl. X‘Lyfl data was
averaged over 100 different parameter-initializations. Inputs were generated from a normal Gaussian
distribution and have dimension 28 x 28. Generating the data for the figure took approximately 2
days on Google Colab Pro (single Tesla P100 GPU).

Figure [3} In all cases, networks are trained for 10 epochs using stochastic gradient descent with
CrossEntropy loss. We used the Fashion MNIST dataset [47]]. All networks had depth L = 50 and
width N; = 500. The learning rates were logarithmically sampled within (10~°, 1). Generating the
data for the figure took approximately 12 days on Google Colab Pro (single Tesla P100 GPU).

Figure E} (1)We made the 02 — o7 phase diagram for ResNetl10(LayerNorm) by averaging over
100 different parameter-initializations. The o2 — p phase diagram was made by averaging over
200 parameters initialization. (3)(4) We used SGD with momentum= 0.9 and batch size 128. For
selecting the learning rate we ran a grid-search over 0.001, 0.005, 0.01, 0.02, 0.5 for 10 epochs; with
weight decay A\ = 10~*. All models were trained for 50 epochs and averaged over 3 random seeds.
It takes 6 GPU days in total on a single NVIDIA RTX 3090 GPU.

Figure[5} (1)(2)We made the phase diagram for MLP-Mixer with 30 blocks and averaged over 100
different parameter-initializations. (3)(4)We used network with L = 100, patch size 4 x 4, hidden
size C' = 128, two MLP dimensions Ny, = N,,,, = 256. The L = 32 point has doubled widths. All
networks have 10 million parameters. Notice that for all Mixer Layers we used NTK initialization.
We trained all cases on CIFAR-10 dataset using vanilla SGD paired with CSE. Batch size bs = 256,
weight decay A = 10~* was selected from {107°,10~*}, mixup rate o = 0.8 was selected from
{0.4,0.8}. We also used RandAgument and horizontal flip with default settings in PyTorch. For
all cases we searched learning rates within {0.005,0.01,0.05,0.1,0.2,0.5}. We also tried a linear
warm-up schedule for first 3000 iterations, but we did not see any improvement in performance.
Generating the data for the figure took approximately 4 days on Google Colab Pro (single Tesla P100
GPU).

B Additional Discussion on ResNet, ResNet with BatchNorm

For Convolution Layers, the NNGP kernel is a 4-index tensor: K i (z,2"), where the Greek
letters(u, v) index the channels, whereas the Latin letters (¢, 7) index the pixels. The infinite width
limit in this case is achieved by taking the number of channels to infinity (sequentially). In this limit,
most of our equations for MLP can be easily rewritten using the convolutional NNGP kernel. However,
in this case, the kernel is only diagonal in channel dimension: Iwa;ij (xz,2') = lC,lij (@, 2")6 . This
additional structure in the kernel makes it difficult to get a closed-form solution for 7"*! in general.

ResNet110 (LayerNorm) In Figure(Z), the networks is critical close to u = 1, as expected from
our analysis. One would naively expect the ;1 < 1 cases also to be critical, since for MLP with ReLU
and Pre-LN, oy, = 0 is critical regardless of o, and ;.. However, in Figure[d{2) the region away from
= 11is in ordered phase. This is likely a result of the kernel ]Ciw;ij (z,2’) not being diagonal in
spatial dimensions. We emphasize that the ;. = 1 case stays unaffected by this, since the existence of
criticality does not depend on the details of the NNGP kernel in this case. This can be readily seen
from (77). We present the Numerical and training results in Figure 4]
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ResNet110 (BatchNorm) The operation of BatchNorm on a preactivation (pre-BN) in an MLP can
be described as follows:

hute) = Dt

0i,B
1 ’ 1 ’ 2 .
Wi B = @ Z h({E) and 0iB — @ Z (h(l’ ) - /JZEB) )
=y :] z'€B

where B is the batch that x belongs to and | B| is batch size.

The works Yang et al. [57], He et al. [18] show that for large batch size, the effect of BatchNorm for
NNGP kernel and Jacobian Norm is deterministic. We summarize the results for the pre-BN MLP
setup:

2 M -
KA (2, a') = % ZEe [¢(B§($))¢(h§' (xl))} + Kz, 2') (25)
T = e e [0 )0 a)] + 47 (26)

where 2’ in the APIN term can be any x’ # x, since for a large batch size all choices are equivalent.

From the above result, we can see that most results we have for LayerNorm can be translated to
BatchNorm with an easy replacement K'(z,z) — (K!(z,2) — K!(x,2")). As a simple example,
consider a pre-BN ResNet architecture, but with all the Convolutioal layers replaced with Linear
(Fully Connected) layers. For such a network, we have the following result for p < 1:
(1 — p®) 2

Li+1 _
T = F S e @7)

For 1 = 1, we have
J=1+00™ (28)

The ResNet results can then be obtained by replacing Fully Connected layers with Convolution layers,
in a similar way as discussed in ResNet(LayerNorm) section. We show the numerical results for
ResNet with BatchNorm in Figure[§]

u=10

=00 3=2.0,03=0.0
10 2.0 % Oy %

Sos H=0.00 | 506
w0 g u=050 | g

£ — u=070 | £

Zoa —+ u=090 | S04
05 —+ u=1.00

10

05

0 0.0
2 a 6 8
u

Figure 6: ResNet110(BatchNorm): Left to right: (1)(2) 7L~ phase diagrams, with (02, 02) and
(02, 11). (3)(4) Training curves w.r.t o2 and p.

C Technical details for Jacobians and LayerNorm

We will drop the dependence of h!(z) on x throughout the Appendices. It should not cause any
confusion since we are always considering a single input.

C.1 NNGP Kernel

First, we derive the recurrence relation for the NNGP kernel Eq.(TI0). As mentioned in the main text,
weights and biases are initialized (independently) from standard normal distribution A/(0, o2, /fan_in).
We then have

2
Tw_

Ny

Eg[w!w! ] =

17 'mn

Sim0jn and Eg[bb}] = 074y (29)
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by definition.

We would like to prove theorem[2.4] as a consequence of lemma[2.2] The proof of lemma [2.2]can be

found in [40].

Proof of theorem One can prove this by definition with lemma 2.2}

C.2 Jacobians

N
1 < 1417141
=% ZE (ARl
1+1
1 Niya [
N Z Eq Zwl-‘rl hl _|_bl+1 (Zwl+1 hl +bl+1>
+1 =1
1 Niga _NL N,
N 2 B | 20D wi el o)) + bl
+1 55 =1 k=1
1 Nl+1 2 Nl . .
E h d(hk) + of
N ; ’ Nz;(b i)+
2 N
O-w
¥ > By [p(Bh)b(h})] + o7 - (30)
j=1
O

Next, we prove theorem [2.5]in the main text.

Proof of theorem[2.5] We start from the definition of the averaged partial Jacobian norm (APJN)

(> 1lo)

jl07l+1 =

- _Nf%ahﬁ“ OhL+1
e = =R
_Nl+1 Ny, I+1 1 N, I+1 1
1 ORI ohL OhHL opl,
N, E Z Z Z 6hl 8hl0 8hl ahlo
I+1 1, 1 j=1 = k 7 m=1 m 7
NH»I Nl() N; 1 1
1 Oh;. Oh
E l+1 wl_+1 / hl k m
Nig1 ! _; ;k;I )) (i ¢/ (i) ah;‘) ahép
_NH»I Nlo N; 1 1
1 Oh;. Oh
E@ wi+1wl+1 hl ¢ h»l,'n k m
Nij z};kzl 4§ K9l )ahg.o on'e
1N, N
NZZ% T, | g (hi ) (1) 2 a’ﬂ
lo lo
N1 i=1 j—1 k=1 Ohy Oh;
o2 Ny Ny

wZEO

e (2 21 21

31
= Oh} Ohlf Gh
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523 where we used chain rule and took expectation value over w'*!. Next we take chain rule again:

2 Ny Nlo N1

ahlfl ahlfl
jlo,l+1 Eq / / Wk hl 1 hil 1 m n
Z z; lek W@ )¢’ ( )6hl.° o
7 m,n j g
4 N, NLO N;_q -1 -1
2 . | Okl onl
= NNy 2B [P | 20 D o (e ) T T | + O/ Ne)
T k=1 j=1m=1 ] ;
4 Nig Ni—y 8hl 1ahl L
- ZEe ¢ (h)o (1)) Eo O () (i) oo
NN o ohle ons
2 4l NZD Ni-s ahl 18hl 1
= E hl hl 'w E /hl 1 l m
Z of (hy.)] - N, o 22 Z::1<Z> )8h§° o
=x7 7, (32)

s24 where we integrate (by parts) over w' to get the second line. We take N;_; — oo and then N; — 0o
525  to get the third line. We rearange terms and use the Eq.(12) to get the fourth and fifth lines. Notice that
s26  to get the third line we used the fact in the infinite width limit, the distribution of A! is independent of

s27 h.™1. Thus we proved

jlo,l+1 — X{/]]lg,l ) (33)

528 O

529 The critical line is defined by requiring x*; = 1, where critical points are reached by further requiring
530 Xk =L

531 As we mentioned in main text, [y = 0 is subtle since the input dimension is fixed Ny, which can not
532 be assumed to be infinity. Even though for dataset like MNIST, usually Ny is not significantly smaller
533 than width IV;. We show how to take finite O(N; 1 correction into account by using one example.

53¢ Lemma C.1. Consider a one hidden layer network with a finite input dimension Ny. In the infinite
535 width limit, the APJN is still deterministic and the first step of the recurrence relation is modified to:

JO? = <XJ+20 AZh0h0> T, (34)

s36 where 7% = 02,
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Proof.

N2 No 2 912

1 Oh? Oh

0,2 ——E i 7

J Meggmw
(N2 Ny My 1 971
1 Ohl Oh
=—Eq Wi Wiy ® (hi)d' (hy,) 76 =0
w22 2 o7, o

N2 No Ny

722 Z ]E9 zszmwkjwmj (hk)d)/(h?ln)]

llj 1 km=1

2

No N1
=Y > SEEolwijuwh;¢! (b6 (b))

, 1

j=1k=1

202 Moo
:‘7121; <X37 + ToxlA Z thh%)
k
2

:( w Azhoh()) j0,1’ (35)

where to get the result we used integrate by parts, then explicitly integrated over w . We have
introduced a coefficient of finite width corrections, X A» defined follows. O

Definition C.2 (Coefficient of Finite Width Corrections).

Z\EM

N;
Z // hl " hl)—‘y-qsm(hl)(ﬁ/(hé)}. (36)

Remark C.3. Notice that the correction to 7% is order O(N 1). If one calculate the recurrence

relation for deeper layers, the correction to 79! will be O(Z;,:O N, ) which means the contribution
from hidden layers can be ignored in infinite width limit.

The [7%2 example justifies the factorization of the integral when we go from the last line of Eq.(3T))
to Eq.(33).

Finally, the full Jacobian in infinite width limit can be written as

Lemma C.4 (APIN with o = 0). The APJN (with lo = 0) of a given network can be written as

T = <><J+ AZhOh‘)) 1:[ D 37)

'=2

Note that APJN with ly > 0 does not receive the O(Ny ') correction.

C.3 APJN and gradients

As mentioned in the main text, APJN is an important tool in studying the exploding and vanishing
gradients problem. Its utility stems from the fact that it is a dominant factor in the norm of the
gradients. This can be readily by looking at the (squared) Ly norm of the gradient of any flattened
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parameter matrix @', at initialization. In the infinite width limit, one gets

2
) oL OnF Ohit ont,
VoLl = Z aﬁahpfl UTORE 9ol

B Z aa oL Onk  onk OnLTt Onitt\ [ Ohl, oht,
e OhE OhL ohy =" onl ! Onl, OhL , a0l a0L,
B Z ac oc\ [ ont  onk onit omft\ o jan! ?
B ohE ont; ) \ ont=t onk oL, onl , | " |l o6t ||,
_ Z 8[2 8£ ohE onk N ol ||”
ok ahL oht-Tont ) a0
Loy (e ey (onk onh o
i Ohl Onk ahL 1 ahL 1 a0 ||,
oL oL on' ||*
_ S JLLL 1,141
Z <8hL 8hL> J A a0l s
on'|”
L-1,L Li+1
N e
oL |I” .. |lont|”
‘ 8hL j 80t || . (38)
where ||-||2 denotes the L2 norm and ||- || r denotes the Frobenius norm.
C.4 LayerNorm on Pre-activations
Definition C.5 (Layer Normalization).
~ ht — E[R!
Rk U3 WL (39)
E[(n!)?] — E[n']?
where ! and /3! are learnable parameters.
Remark C.6. With only LayerNorm, the @) is simplified to
Wit = Zwl“ o(hy) + b (40)
Remark C.7. In the limit of infinite Wldth, using the law of large numbers, the average over neurons
E[- - -] can be replaced by the average of parameter-initializations Eg [- - - |. Additionally, in this limit,
the preactivations are i.i.d. Gaussian distributed : h! ~ N(0, ).
E[n'] =E [W'] =0, (41)
2 2
E [(hl) } _ K, [(hl) } — K. (42)

The normalized preactivation then simplifies to the form of Eq.(20).
Remark C.8. At initialization, the parameters 7! and 3! take the values 1 and 0, respectively. This
leads to the form in equation (20). In infinite width limit it has the following form

Tl hi — Eg[h]

i (43)
VEo[(h!)?] — Eg[n']2
Lemma C.9. With LayerNorm on preactivatlbns the gaussian average is modified to
l)2
Eg [ / dht O(hl)e : (44)
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Proof. By definition Bﬁ is sampled from a standard normal distribution A/(0, 1), then use 1emma
to get the final form. 0

Theorem C.10. In the infinite width limit the recurrence relation for the NNGP kernel with Layer-

s66 Norm on preactivations is
o2 ~ ~
Kt = T8> [0()o(Rh)] + o7
Jj=1

Proof.
1 Nyy1
ICH—I E hl+1hl+1
Nt ; ]
Niya

=1
2Nz

“’ZEQ[ )]Jrag.

567

]E wl+1 hl + bl+1 wl+1 hl + bl+1
ey (3 >

(45)

(46)

O

ses Theorem C.11. In the infinite width limit the recurrence relation for partial Jacobian with LayerNorm

569 On preactivations is
1
j101l+ — ijleJa
l [NAY
570 where x'; = N}Cl Z Eq {(b’(hi) ]

Proof.
[Niva Nig 141 o041
1 Oh:T" OR:
jlo,l-{-l — EG 7 7
Nyt ; ; 8h§° 8h§°

i=1 j=1 \k=1

1 _NHI Ny N, 1
_ EG ( l+1 ) ( i;ld) (hl
Nt _; ]Zl k%:1 \/lCl )
2 M Nig o1 gy
o ~ ~ Oh. Oh
= B | ¢/ (b)) (hi) | D K —F
7 To A7l
NK i=1 Ohy Ohy
o2 ~ -
— > B [ () ()] T
k=1
=X7T",

571

sz C.5 LayerNorm on activations

573 The general definition of LayerNorm on activations is given as follows.
Definition C.12 (LayerNorm on Activations).

__ o(ht) — E[g(h!)]
hl) = ;
¢(h;) VE[p(h)?] — E[p(h)]2

v+ B

19

_ Ni% iahé“aigc on, i ORL1 oML, oI,
Niy ohl, Ohi onle | \ 4= ohl, Ohi, on'y

1

onL onl,

VKl

)

l l
ORI OBl

47

)
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Remark C.13. The recurrence relation for preactivations (Eq.(I)) gets modified to
hé+1 Z wl+1 hl + bl+1 (50)

Remark C.14. At initialization, the parameters /! and 3! take the values 1 and 0, respectively. This
leads to the form

L o) —E[p(h!)]
VE[B(h)?] — E[p(h)]2
¢(h}) — Eq [¢(h')] (51)

B 62— B o0

where the first line follows from the fact that at initialization, the parameters 4/ and /3! take the values
1 and O respectively. In the second line, we have invoked the infinite width limit.

Remark C.15. Evaluating Gaussian average in this case is similar to cases in previous section. The
only difference being that the averages are taking over the distribution h! =1 ~ N (0, K!~1 = 02 +02).
Again this can be summarized as

(n})?
Eg [O(R))] = e 20@8+op) (52)

/ dhlO(h)
\/ 0.3) + Ub

Next, we calculate the modifications to the recurrence relations for the NNGP kernel and Jacobians.

Theorem C.16. In the infinite width limit the recurrence relation for the NNGP kernel with Layer-
Norm on activations is

K =02 + 07 43
Proof.
o — L NZZH Eq [hl*lhl*l]
Nit i=1 Y
1 Nita1
_ L+l Tl L S(hL) + bt
7Nl+1;]E9 Zw (hL) + b} (Zw (hL,) + b, )
2 N; —2
_ % mpwﬂ+ﬁ
L4
2
2 N l !
_ oSty ¢(h}) —Eo [p(h")] o2
A\ B 2] — o fonn)?
ot $1Bo [(000) ~Ee o))
- % g
NI & By [p(h1?] — B [o(h)]? "
= 0'12” + crg . (54)

O

Theorem C.17. In the infinite width limit the recurrence relation for partial Jacobian with LayerNorm
on activations is

jlo,l+1 — X?]jlo,l , (55)

s Eelo'(nH?)]
W Eg[¢(h1)2]—Eo[¢(h1)]*"

where Y, = o
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Proof.

[Nit1 Nig

1 ORI Onltt
leJ-H = N, Ee Z a;Llo a;Llo
== O j
N
1l Niz’: Z Oh OnL ) [ onlt ol
Nl+1 z 1 7=1 \k=1 ahl 8h£0 m=1 ahfﬂ ahéo

[Nit1 Nig

1 . . Ohi, Ohl,
- Nl+1E0 ZZ Z ( l+1¢ i) )( ij21¢( )) (fﬁéz ahé-())

zljlkml

02 M Yo 9 Ak on

_ k k
o N ZZEG ('b/ hl ('b/ hl) Z 8hl0 8hl0
k=1j=1 J=1 J J

2Nl

=V Z]Eg [qb’ (hL) }jl“’l

_ 2 Eg [¢'(h')?] Flod
Y Eg [$(h1)2] — Bg [p(h1)]?

=\, Tt (56)

D Ciritical Exponents

To prove theorem [2.7] we first need to find the critical exponent of the NNGP kernel [40].

Lemma D.1. In the infinite width limit, consider a critically initialized network with a activation
function ¢. The scaling behavior of the fluctuation 6K' = K! — K* in non-exponential. If the
recurrence relation can be expand to leading order S K' as 5Kt ~ §K! — ¢, (SK')™ for n > 2. The
solution of 6KC' is

1 ¢k

1
oK Ccp(n—1) ’

(57)

1

where (x = .

Remark D.2. The constant ¢,, and the order of first non-zero term n is determined by the choice of
activation function.

Proof. We can expand the recurrence relation for the NNGP kernel (T0) to second order of 6K! =
K! — K* on both side.

S = 6K — ¢, (K™ (58)
Use power law ansatz 6! = A1~ then
(I+1)7%% =17 — ¢, AI7"F (59)

Multiply /¢ on both side then use Taylor expansion ()% ~ 1 — s
CT’C = ¢, A~ ("=, (60)

For arbitrary [, the only non-trivial solution of the equation above is
1

1
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Proof of theorem[2.7] We will assume ¢y # 0. Then use lemma we can expand Xf7 in terms of
SK!. To leading order [ !
X'y 1 — dlélCl
=1- —l L (62)
C2
Consider a sufficiently large . In this case O(I~!) approximation is valid. We write recurrence

relations of Jacobians as
-1
d
lol _ 1= 4y lo,lo
gt =] ( & ) 7

I'=lo

~c, 1=<. (63)
When ¢,, = 0 for all n > 2, from lemmawe have §/C! = 0. Thus the Jacobian saturates to some
constant. O]

We checked the scaling empirically by plotting 7% vs. [ in a log—log plot and fitting the slope. These
results are presented in Fig[T]

E Residual Connections

Definition E.1. We define residual connections by the modified the recurrence relation for preactiva-

tions (Eq.(T))
h7l;+1 Zwl-‘rl hl + bl+1 + Mh/ (64)

where the parameter x4 controls the strength of the residual connection.

Remark E.2. Note that this definition requires /N;+; = N;. We ensure this by only adding residual
connections to the hidden layers, which are of the same width. More generally, one can introduce a
tensor parameter (i;;.

Remark E.3. In general, the parameter u could be layer-dependent (u'). But we suppress this
dependence here since we are discussing self-similar networks.

Theorem E.4. In the infinite width limit, the recurrence relation for the NNGP kernel with residual
connections is changed by an additional term controlled by

2 N
O—UJ
Kt = 2 Z;]Eg [p(h5)p(hY)] + o + KL (65)
Proof.
1 Nyt
Kt = Eg [hiThit!
S 3 B ]
1 Niy1 [
_ E wl+1 hl +bl+1+ hl wl+l hl +bl+1Jr hl
N 2 o Z " Z "
1 Nita _Nl N,
=< ZEG Zzwl+l L+l )d)(hk)‘i’bé—i_lbé_‘—l‘l’ﬂzhéhé
14 =1 k=1
1 Nyt 2 N, 1 Niq1
= E (h)p(hl) + o7 | + Eg [hlR}
Nita ; ’ Nz Z¢ i)+ v Nipa ; o [Pt
2 Ni
= ZEQ (h})] + o + 2K, (66)
j
where we used the fact N;41 = N to get the last line. O
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Theorem E.5. In the infinite width limit, the recurrence relation for partial Jacobians with residual
connections has a simple multiplicative form

jlo,l-‘rl _ Xfy]lo,l , (67)
where the recurrence coefficient is shifted to x';, = o2 Eqg [¢'(h},)¢'(h},)] + p?
Proof.
_Nl+1 Nig 8hl»+1 ah{+1

jl07l+1 = E 7 7
Nigt ! 22 e

| i=1 j=1

_ g Nilgi Z On™! ol \ [~ Oni! o,
T Nt ! Ohy. ohp ) \ o=y Olin Oh

lel

Nl+1 Nl() N;

— E l+1 5 l+1 hl S 8h§€ 8hﬁn
_Nl+1 0 ZZZ +’U/7’k’)( ¢(m)+,u7fm)

lo lo
i=1 j=1k,m=1 ah] ah]

_Nl+1 Nl() N;

1 Ohl, Oh!
= B0 | 2200 D (i ()6 () + 120 im) o
Nita | i=1 j=1km=1 Oh Ohy
2 i Nio o op1 o1 Ny Nio ar1 o1
_ T Pl A7 (] Ohy, Ohy, 1 2 Ohy, Ohy,
- Fl ZEQ (b (hk)(b (hk) Z 8hl-0 8hl-0 + ﬁl ZEG H Z 8hl-0 8hl-0
k=1 j=1 " k=1 j=1 "% 9%
M l l
X Ohl, ont
_ 2 73N} e}
- (UwEB [¢ (hk)¢ (hk)] + Nl Z hlo 6hl.°
k=1j=1 J
= (0nEo [¢ ()¢’ (},)] + u?) T
jlo,l+1 _ nglg,l . (68)
O
F Residual Connections with LayerNorm on Preactivations (Pre-LN)
We recall the recurrence relation (I)):
hl+1 Zwl+1 hl _|_ bl-‘rl + ’uhl (69)
Theorem F.1. In the infinite width llmlt, the recurrence relation for the NNGP kernel is then modified
to
o2 N
i+l = Tw ZEQ [o(h)o(hh)] + of + w2 (70)
Proof.
1 Niy1
o — E, hl+1hl+1
N1 Z ]
1 Nyt N;
:Nl+1 Z ]EG Zwijlﬁb(hl) bl+1 + ,L,th <Z wl+1 bl+1 + ,u'hl>
i=1 j=1
02 TIN (7l 2 241
=% (6B )o(RY)] +0F + 2K (71)
j=1
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Remark F.2. For i1 < 1, the recursion relation has a fixed point
N 0_2
K = Eo [o(h)o(h))] + 22 . 72
Nl*l— Z o ) 1—pu2 (72)
where the average here is exactly the same as cases for LayerNorm applied to preactivations without
residue connections. [* labels some very large depth [.
Remark F.3. For p = 1 case, the solution of (70) is
l 2 Nl
K=k"+> 2 ZEQ[ )}+ab . (73)
=1

which is linearly growing since the expectation does not depend on depth. K is the NNGP kernel
after the input layer.

Theorem F.4. In the infinite width limit, the recurrence relation for Jacobians changes by a constant
shift in the recursion coefficient.
jlo,l+1 — ijjlml , (74)

where for this case

= ZEQ [/ (h)o! (hh)] + 2. (75)

Proof.
[Niy1 Ny

1 OhiTt ot
jlo,lJrl _ Ey Z Z zl zl
Ni1 | i=1 j=1 Ohy' Ohy

- NiNZ Z ORI ORL ANt i ORI ORL OhL

Ny ! S S\ om onony ohl,, OhL, Ol

[Niy1 Ny l+1 171 I+1 47/71 l l

| /() Wl (i) ohL on
E L2 —im T Tm) s k Zm
Nitq 0 Z Z Z ( H k) < VK Hi0:k ahéo 3h§-0

zljlkml

NZO

Aht Ohl
w 2 k k
Eo (NzIClZ¢ “‘) ;ahgo ohlo

U 7lo,l
= xLght, (76)
O
Remark E.5. One can directly use results from cases without residue connections. We will momentar-

ily see that the phase boundary does not change with residual connections when i < 1. However, the
correlation length decays way slower when the network is initialized far from criticality.

Remark F.6. As we mentioned above ;1 = 1 needs extra care. Plug in the result and 1 =1 we
find out that

7% SN B [0 (B! ()]
NI+ T4y (03 Y B [o(h)(R)] + Nio?)

~1+o<}), (77)

which leads to power law behaved Jacobians at large depth. Where the exponent ( is not universal.

Recall that £ = |log x%| ™', then Theorem|1.3|is a summary of and for u < 1; and for
p=1inl — oo limit.

XlL7 ‘#:1 = +1
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G MLP-Mixer

In this section we would like to analyze an architecture called MLP-Mixer [43], which is based on
multi-layer perceptrons (MLPs). A MLP-Mixer (i) chops images into patches, then applies affine
transformations per patch, (ii) applies several Mixer Layers, (iii) applies pre-head LayerNorm, Global
Average Pooling, an output affine transformation. We will explain the architecture by showing
forward pass equations.

Suppose one has a single input with dimension (Cj,, Hin, Wi, ). We label it as x,,;, where the Greek
letter labels channels and the Latin letter labels flattened pixels.

First of all the (i) is realized by a special convolutional layer, where kernel size f is equal to the stride
s. Then first convolution layer can be written as

Zi WiiTvj+(i-1)s + b,“a (78)

j=1lv=1

where f is the size of filter and s is the stride. In our example f = s. Notice in PyTorch both bias
and weights are sampled from a uniform distribution 2/ (—v/k, V’k), where k = (Cy,, f)~*

1

[WSV ) po,j] W(Sup(suoéz’j y (79)
[b;oubgj] = 3C f2 6u1/61] (80)

Notice that the output of Conv2d: hoi € RE*N» where C stands for channels and Ny = Hin Wi/ f 2
stands for patches, both of them will be mixed later by Mixer layers.

Next we stack [ Mixer Layers. A Mixer Layer contains LayerNorms and two MLPs, where the
first one mixed patches ¢, j (token mixing) with a hidden dimension Ny,,, the second one mixed
channels p, v (channel-mixing) with a hidden dimension N,,,. Notice that for Mixer Layers we use
the standard parameterization.

* First LayerNorm. It acts on channels p.

- RSt — Ec[hSY
61 i pi
hyi = —F——. (81)
Val"c [h?ﬂ
where we defined a channel mean E¢ [hgi] = é g 1 hgi and channel variance Varg =

2 2
Ec | (h%)*] - (Ec[ngl])”.
* First MlpBlock. It mixes patches %, j, preactivations from different channels share the same

weight and bias.
— 60 4 1: Linear Affine Layer.

Np
k=1
— 61 4 2: Affine Layer.
Nim
hili-i-Q Z w61+2 hGg—‘rl) 4 b?l+2 , (83)

where Ny, stands for hidden dimension of "token mixing".
— 6l + 3: Residual Connections.

h6l+3 h6l+2 ,uhzl@ ) (84)
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» Second LayerNorm. It again acts on channels .

hyi* — Ec[hpit)

jOI+3 _
pio 61+3
Varc[hm- ]

(85)

» Second MlpBlock. It mixes channels u, v, preactivations from different patches share the

same weight and bias.
— 6l + 4: Linear Affine Layer.

c
6l+4 _ 614+47 6143 61+4
h,; 75 wy, hpi +b,7".
p=1

— 60 + 5. Affine Layer.
Nem
= 3 G0 ¢
v=1

— 6/ + 6. Residual Connections.

6146 _ 1 61+5 61+3
hm’ —hm —|—uhm .

(86)

87

(88)

Suppose the network has L. Mixer layers. After those layers the network has a pre-head LayerNorm
layer, a global average pooling layer and a output layer. The pre-head LayerNorm normalizes over

channels p can be described as the following
oL _ hSE —Ec[hSH]

hGI_z _
i 6L
Varc [hpi ]

Global Average Pool over patches i.

Output Layer

C
fu= Zwﬁwhg + by
v=1

We plotted phase diagram using the following quantity from repeating Mixer Layers:

1 =& O Jn onsk onsk
*x 1z i Qi
Xy = fm N,C ;;E" ZZ 3hg£—6 8hg£—6

p=1k=1

H Results for Scale Invariant Activation Functions

Definition H.1 (Scale invariant activation functions).

6(2) = ay 2O(x) + a_2O(—z),

where ©(x) is the Heaviside step function. ReLU is the special case with a;. = 1 and a_ = 0.
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H.1 NNGP Kernel

First evaluate the average using lemma[2.7]

1 b2
Eo [o(hl)o(h})] :W/dhﬁ (a% +a2) (h§)2e 2T
2 2
e
== Kt

(94)

Thus we obtain the recurrence relation for the NNGP kernel with scale invariant activation function.

o (af +a2)

’Cl+1 —_
2

K'+of.

Finite fixed point of the recurrence relation above exists only if

on(ad +a2)

Xk = 5 <1
As aresult
012“ < aiia?'
For o2 = = 2= case, finite fixed point exists only if o = 0.

H.2 Jacobian(s)

The calculation is quite straight forward, by definition

Xy =02 Eq [¢' (hl)¢' (hh)]

—"f”/dhl [a4O(h}) —a @(hl)]ze—f?f
TTI”CZ 7 + i — i
_ou(ad +a?)

2 b

where we used the property xd(z) = 0 for Dirac’s delta function to get the first line.

Thus the critical line is defined by

2
Ow = -5 -
¢ a3 +a?

For ReLLU with a; = 1 and a_ = 0, the network is at critical line when
Ow = \/57

where the critical point is located at

(Ow, Ub) = (\/57 O) .

H.3 Critical Exponents

95)

(96)

o7)

(98)

99)

(100)

(101)

Since the recurrence relations for the NNGP kernel and Jacobians are linear. Then from lemmal[D.1]

and theorem 2.7]

(k =0and ( =0.
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H.4 LayerNorm on Pre-activations

Use lemmal[C.9]and combine all known results for scale invariant functions

k=1 —1—1
_ on(ad +a?)
" o2(a taZ) 1207
For this case,
X7 <1
is always true. The equality only holds at o}, = 0 line.
H.5 LayerNorm on Activations
First we substitute K'~! = 02 + o7 into known results
a? +a?
Ey [0/ ()0 ()] = B
a3 +a?
By [p(h)o(h)] = =—— (00, + o).

There is a new expectation value we need to show explicitly

1 > _1pl(o2 4o2)"1hl
Ey [¢(h})] = m/ dhig(hf)e™ 2 (uton)
w b -
(nh)?
)hée_2(agu+ag)

1 o0
= dhl(ay —a_
\/271'(03}—}—013)/0 i(as

2 2
_ B o +op
= (ay —a_)\/ — 5

o2 m(a% +a?)

Thus

I _ .
Xz 02 +o0f wai+a?)—(ay —a_)?’

The critical line is defined by x”; = 1, which can be solved as

op = (ay —a_)* Ow -
@l @)~ (as—a 2"

For ReLU withay =1landa_ =0

Op = Ow

T—1
~0.6830,, .

H.6 Residual Connections

The recurrence relation for the NNGP kernel can be evaluated to be
03 (a2 +a?)

,Cl+1 —
2

K'+ o} + 2Kt

The condition for the existence of fixed point

U?u(ai +a?)

2<1
5 +p” <

Xk =
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leads us to

2(1 — )
o2 < P 113
NS T T (113)
For o2, (21 +“2) , finite fixed point exists only if o7 = 0. (Diverges linearly otherwise)
The recurrence coefficient for Jacobian is evaluated to be
o2 (a? + a2
= Tl ) 5 - (114)
The critical line is defined as
2(1 — p2
=y ), (115)
ail +aZ

The critical point is located at (, / 2a(21 v 2, 0).
T+aZ
For ReLU, the critical point is at (\/2(1 — p?), 0).

H.7 Residual Connections with LayerNorm on Preactivations (Pre-LN)

Again use lemma[C.9]and combine all known results for scale invariant functions
02(a? +a?) + 20}
02,(a? + a%) + 20}
Similar to the case without residue connections

l 2
lﬂoo(NK:lZEg{ h)} ’@llJr,ll)
202(1 — p?)
<1 a1

owlat +a2)A—p?) |
=1- (116)
is always true. The equality only holds at o, = 0 line for p < 1.
Notice there is a very special case u = 1, where the whole o}, — o, plane is critical.
I Results for erf Activation Function

Definition I.1 (erf activation function).

b(z) = 2 /I e tdt. (118)
0

I.1 NNGP Kernel

To evaluate lemma exactly, we introduce two dummy variables A\; and A5 [45].
2

o [o0ub)o0a)] = [ dn [ dar By [60uR) o)

4 2 AZ4AZ4 1 )(hl)2
= [dx / Xy | dhl——— (h})* e ( T
VomsKt tt

4K
=[d d
/Al/ A27r(1+2iCl(A?+A§))

2 2K A1 Ao
=— i . 119
7Taurcsm(1+2ICZ()\%+/\%)> ( )
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We use the special case where A\ = Ao = 1.

Thus the recurrence relation for the NNGP kernel with erf activation function is

202 . 2K
o — - arcsin <1—|—2/Cl> + 05 . (120)

As in scale invariant case, finite fixed point only exists when
. 402 1 <
X 2k Va1 Ak

Numerical results show the condition is satisfied everywhere in o3, — o, plane, where xx- = 1 is only
possible when K* = 0.

(121)

1.2 Jacobians

Follow the definition
X'y = 2B [¢/ (B¢ (1))

1,2
b
2Kl

402 / 1\2
= ——%_ [ dhnl e—2(hi)" ¢
V23Kl
_don 1
T 1+4KL

To find phase boundary x*; = 1, we need to combine Eq.(120) and Eq.(122) and evaluate them at
K.

(122)

202 2K*
K* = % arcsin <]_—|—2]C*> + O'g, (123)
402 1
= =1. 124
X7 T A1+ 4K* (124)
One can solve equations above and find the critical line
1602 — 72 202 . (1604 — 72
op = \/47r2 - —“arcsin (1603, " 7r2> . (125)

Critical point is reached by further requiring xx- = 1. Since x5 < X7, the only possible case is

IC* = 0, which is located at
(Ow,0p) = (ﬁ 0) : (126)

We show how to extract critical exponents of the NNGP kernel and Jacobians of erf activation
function.

L3 Critical Exponents

Critical point for erf is at (03, 04,) = (0, \/F), with K* = 0. Now suppose [ is large enough such
that the deviation of /C! from fixed point value C* is small. Define 6KC! = K! — K*. Eq.(T20) can be

rewritten as
l
ST :1 arcsin ( 20K )
2 (127)

From lemma [D.1] )
A= andGe=1. (128)
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Next we analyze critical exponent of Jacobians by expanding (122)) around K* = 0 critical point
(Uba UU)) = (07 \/§)

To leading order [~! we have

1 (129)

Thus the recurrence relation for partial Jacobian, at large [, takes form

Jlod+1 — <1 _ }) Jlod (130)
Atlarge [
Jot=¢ 171, (131)
with a non-universal constant ¢, .
The critical exponent is
(=1, (132)

which is the same as (k.

1.4 LayerNorm on Pre-activations

Use lemmalC.9] we have

2 N
UU)
Xy = N 2 Bo [¢ ()6 ()]
k=1 Kil-1=1
2
- 40y . (133)

The critical line is then defined by

o= 2 [ ()]

~ 0.3240,, . (134)

L5 LayerNorm on Activations

Due to the symmetry of erf activation function Eg [¢(hl)] = 0, we only need to modify our known
results.

4 1

Eg [¢' (hi)¢' (h})] = e e (135)
Eo [p(h)¢(hi)] = %arcsin (M) . (136)
Thus ,
202 1
X7 =7 = 4((;%} —— (132?2;;12‘)) , (137)

where the phase boundary is defined by the transcendental equation ij =1
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1.6 Residual Connections

The recurrence relation for the NNGP kernel can be evaluated to be

202 2K!
o+l — % arcsin (1—#2/@) + 0?4+ 2Kt (138)
Finite fixed point only exists when
402 1
X = —w +p? <1, (139)

T (14 2K*)v1+ 4K~

Notice that k. < x7 still holds, where the equality holds only when £* = 0.

The recurrence coefficient for Jacobian is evaluated to be

codow 1L e (140)
T irae
The critical line is defined as
164_21_22 22 164_21_22
op = ow — (=) 2% aresin o — (1= 1) . (141)
472 (1 — p?) T 160% 4+ w2 (1 — p?)?

Critical point is reached by further requiring xx = 1. Since x5 < X7, the only possible case is

IC* = 0, which is located at
1_ 2
(0w, 08) = ( ”(4’“‘),0> . (142)

Note that for ;x = 1, one needs to put extra efforts into analyzing the scaling behavior. First we notice
that KC! monotonically increases with depth [ — the recurrence relation for the NNGP kernel at large
(or large K!) is

Kt =~ o2 + 02 + K, (143)
which regulates the first term in (140).

For ;4 = 1 at large depth

Lo 14 4o, (144)
xg 7v/Co + 4(02 + o)l
Here C is a constant that depends on the input.
We can approximate the asymptotic form of log 7' as follows
l
P
I'=lo
l
402
= log [ 1+ x
ZZ;O ( W\/Co+4(afu+ag)l’>
l 2
4o
~ | dl'log |1+ e
o & ( m\/Co + 4(c2 + af)l’)
~2&V1 + O(logl), (145)
h ~ 202
where ¢ = WTTUS
We conclude that at large depth, the APJN for p# = 1, erf networks can be written as
Tl w0 (ezeﬂ+0(1ogl)) . (146)

This result checks out empirically, as shown in Figure

3We used NTK parameterization for this experiment. However, we emphasize that it does not affect the final
result.
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Figure 7: log(J'")-/1 for p = 1, 0 = 0, erf.

LI.7 Residual Connections with LayerNorm on Preactivations (Pre-LN)

Use lemma[C.9]and results we had without residue connections for erf with LayerNorm on preactiva-

tions.

2 N
0' ~ ~
* 1 w ]E / hl / hl 2
X = lim (zw 2B [/ (Rl (A L
_ 40721;(1 - MQ) 12

V5 [203 arcsin (%) + Wog]

The critical line is then defined by

J Results for GELU Activation Function

Definition J.1 (GELU activation function).

(147)

(148)

(149)



793 J.1 NNGP Kernel

794 Use lemma[2.2]for GELU

-
al

Eo [o(R)o(h))] == /dhé(hb2 [1+erf< %) ? o
/

\/327T/C
hl hl h! 1?2
erf’ ! —|—erf< Z)erf"( ’)} ekl

Bl
dh |erf i
327TICl
2K }

I o
=— 4 — |arcsin +
[ (HKZ) (1+KHv/1 + 2K!

795 where from the third line to the fourth line we used integrate by parts twice, and to get the last line
796 we used results from erf activations.

(150)

797 Thus the recurrence relation for the NNGP kernel is

ICl /Cl /Cl (,Cl)Q
/Cl“:[ — arcsi ( ) } 2 2 151
1T\ ) Y oa ey T T (b

798 As aresult
2 2
o w
4

Tw
2m

Xk =+

* *\3 *\2 *
[arcsin< K ) 4(K*)° + 11(K*) +5IC]. (152)

L+ K (14 K*)2(1+ 2K*)2
799 J.2 Jacobians

soo Follow the definition

Xy =02 Eq [¢' (RL)¢' (h1)]

I ! NG
SR (Y e L
V2arKl ‘122 V2 V2r

1 (r1)2

1\2 hlerf ( hy ) e” T —(hH2 (12 1)2

_ w dhl 1 + lerf h’z + V2 + € (h’z) e~ (ZIIC)Z
Vorkl) |4 4T (V2 V2r 2

*ﬁ + ﬁ [arcsin( K > + K3 + 5K7) ] (153)
4 27 1+ Kt (1+]Cl>(1+2]cl)% ’

go1  where we dropped odd function terms to get the third line, and to get the last line we used known
go2 result for erf in the second term, integrate by parts in the third term.

go3 Here to get the critical line is harder. One can use the recurrence relation for the NNGP kernel at
so4 fixed point £* and x*; =1

o2 o K* o2 K
Kr = 2K 4 % |arcsi v K* + o} 154
1 —|—27T |:aerln(1+]C*>+7T(1—|—K:*) 1+2]C*} + oy, (154)
o2 o K* K*(3 4+ 5K*)
* — w w < = 1 . 1
X7 = +—27T {ar%m<1+l€*)+(1+}C*)(1+2}C*)3] (155)
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Cancel the arcsin term, o, and o, then can be written as a function of *

Nl

ow =21+ 2K7(3 + 5K7) - + z arcsin (Kﬂ , (156)
T(1+K*)(14+2K%)z w 1+ K*
IC*
=0y, 157
oy L TNETSE o (157)

One can then scan KC* to draw the critical line.

In order to locate critical point, we further require xj = 1. To locate the critical point, we solve
X7 — X = 0 instead. We have

o [(K*)* — 3(K*)* — 2K*]

— =0, (158)
27(1 4 K*)2(1 4 2K%)2
which has two non-negative solutions out of three
3 17
K* =0and K* = %ﬁ . (159)
One can then solve o, and o, by plugging corresponding K™* values.
(ow,0p) = (2,0), for K* =0, (160)
3 17
(0w, 0b) ~ (1.408,0.416) , for K* = %ﬁ (161)

J.3 Critical Exponents

GELU behaves in a different way compare to erf. First we discuss the * = 0 critical point, which is
located at (04, 0,y) = (0,2). We expand Eq.(T51)), and keep next to leading order 6K! = KC! — KC*

6
ST 0K 4+ = (K12 (162)
s
From lemma[D.] -
A:—E and (x =1, (163)
which is not possible since &' > 0 for this case. This result means scaling analysis is not working

here.

Next, we consider the other fixed point with * = 3+T‘/ﬁ at (op, 04) = (0.416,1.408). Expand the
NNGP kernel recurrence relation again.

KT = 6K 4 0.00014(0K1)? . (164)

Following the same analysis, we find

OK! ~ —T142.9171. (165)
Looks like scaling analysis works for this case, since K* > 0. The solution shows that the critical
point is half-stable[40]. If X! < K*, the fixed point is repealing, while when X! > KC*, the fixed point

is attractive. However, the extremely large coefficient in the scaling behavior of §XC! embarrasses the
analysis. Since for any network with a reasonable depth, the deviation §/C is not small.

Now we can expand xf7 at some large depth, up to leading order [ 1.

66.668
Then
5T a2 ¢y 1766668 (167)
where ¢, is a positive non-universal constant.
Critical exponent
¢ = 66.668 . (168)

Which in practice is not traceable.
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J.4 LayerNorm on Pre-activations

Use lemma|C.9] we have

9:N7’aZEe{ )

Ki-1=1
 o(6r+4V3) (169)
o2 (67 + 3v/3) + 18102
The critical line is then at
1
o= (35r) o
~0.1750,, . (170)
J.5 LayerNorm on Activations
First we need to evaluate a new expectation value
r b2
E hy)| =————s /dh {1 +erf ()} e 2D
0 [¢( )} m \/5
O+ % (171)

2r(1+ 02, +07)’
where we used integrate by parts to get the result.

The other integrals are modified to

1 1 2 2 2 2 2 2
Eo W(hﬁ)(ﬁ (hl)} — + — |arcsin ( Tw j Th 2) (03 +03)[3 + 5(03 + 03)] 3
1o l+og+03)  (1+02+0P)[l+2(c2 +02)2
(172)
2 2 2 2 2 2 2 2\2
B [oo(n)] = P20 4 P i ([P (03 + o) |
4 2 1+02 +o0; 7r(1+0%u+ag) 1+Q(ggu+gg)
(173)

One can then combine those results to find Xfy

. 2 2 2 2 2 345 2 2
0-12‘} (1 _|_ 0-121} _|_ O.l%) T + 2aI'CSln (101“;’01; 2) _|_ (a'w"”o'b)( + (0'1“4'0'1;))3
Towtoy (1+02 4+07)(14+2(02,+02)) 2

l
X7 = 4(02 +02)2 . 2 | 52 :
7(02 + 02)(1+ 02 + 02) — 2(02, + 02)2 + 71(3}?1)05) +2(02 + 02)(1+ 02, + 02) arcsin (71;‘;;1;5)

(174)
The critical line defined by Xf7 = 1, one can numerically solve it by scanning over o and o,.

J.6 Residual Connections

The recurrence relation for the NNGP kernel is

ICl+1 _ |:Icl

! ! !
+ — arcsin ( K > + (K) ] o2 4+ o} + pPKt. (175)
4 2m (

1+K') w1+ KHV1+2KT

Fixed point exists if

o2 o2 Kc* AMK%P+1KK?)2+5K?} )
* _ Zw + w arcsi + - + S 1. 176
Xk =3 to- { r 1n(1+l€*> (14 K2(1 1 2K7) ] 1% (176)
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The recurrence coefficient for Jacobian is

o2 o2 K* K*(3 + 5K%) ] ,
%= + —= |arcsin + = | + p-. 177
YT T o { (1+’C*> A+Kn+2kni] ! 4

Phase boundary is shifted

ow=2v1—p { 2K7(3 + 5K7) +2arcsin< K )] , (178)
T

(1+K%)(1+2K*)3 1+ K*
]C*

T Var(1 4 2K0)F

One can again scan over K* to draw the critical line.

Ow - (179)

In order to locate critical point, we further require xx- = 1. To locate the critical point, we solve
X7 — X = 0 instead. We have

o [(K*)* = 3(K*)* — 2K~]

— =0, (180)
27 (1 + K*)2(1 + 2K*)2
which has two non-negative solutions out of three
3+V17
R (181)

One can then solve o, and o, by plugging corresponding K* values.

(0w, o) = (20/1 — 112,0), for K* =0, (182)

1
(0w, o) ~ (1.408y/1 — §i2,0.416+/1 — pi2) , for K* = “T‘ﬁ (183)

J.7 Residual Connections with LayerNorm on Preactivations (Pre-LN)

Use lemmal[C.9]and results we had without residue connections for GELU.

% _llggo < ]Cl ZE& [ hl )} Kl-1=1 ’ ’U2>

TN I
02 (67 + 3v/3) + 1870}
(o 180D i)

184
02,(6m + 3v/3) + 1870} (154
The critical line is then at
1
2
(G\fﬁ) Tw (185)
~0.1750,, ,

just like without residue connections.

K Additional Experimental Results

In the following training results, we used NTK parameterization for the linear layers in the MLP. We
emphasize that this choice has little effect on the training and convergence in this case, compared to
standard initialization.

In figure|8} we compare the performance of deep MLP networks with and without LayerNorm. We
note that the case with LayerNorm applied to preactivations continues to train at very large value
of o2,. In all cases, networks are trained using stochastic gradient descent with MSE. We used the
Fashion MNIST dataset[47]. All networks had depth L = 50 and width N; = 500. The learning
rates were logarithmically sampled
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« within (1078, 10°) for ReLU, (10~?,10) for LN-ReLU and ReLU-LN;
« within (107°, 1) for erf, LN-erf and erf-LN;

« within (1078, 10) for GELU, (10~3, 10) for LN-GELU and GELU-LN, where Apay is the
largest eigenvalue of NTK for each o,.
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Figure 8: Performance of deep MLP networks at and away from criticality, with and without
LayerNorm. The blue plateau, corresponding to LayerNorm applied to preactivations, continues to
train at very large values of o2 without the need to tune the learning rate.

In figure[9] we showed empirically that the critical exponent of partial Jacobians are vanished for erf
with LayerNorm.

4x107t 6x 107"
*) ©  LN-erf, experiment ®) © erf-LN, experiment
Theory Theory
—-- Fitting, {= —0.007 —-- Fitting, {= —0.009
© 5x 1071
3x107!
T\J -
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-1l . N . N 1l . N . N
2x 107 g0 101 T T 10t 10°

1 1

Figure 9: log — log plot of partial Jacobian 7! vs. [ for (A) LN-erf and (B) erf-LN.

In figure[I0] we tested 6k samples from CIFAR-10 dataset[23] with kernel regression based on neural
tangents library [35] [26] [36]. Test accuracy from kernel regression reflects the trainability (training
accuracy) with SGD in ordered phase. We found that the trainable depth is be predicted by the
correlation length c£ with LayerNorm applied to preactivations, where the prefactor ¢ = 28. The
prefactor we had is the same as vanilla cases in [49]. The difference is from the fact that they used
log,, and we used log,.

In ﬁgure we explore the broad range in o2 of the performance of MLP network with erf activation
function and LayerNorm on preativations. The network has depth L = 50 and width N; = 500; and
is trained using SGD on Fashion MNIST. The learning rates are chosen based on a logarithmic scan
with a short training time.
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Figure 10: Test accuracy for LayerNorm applied to preactivations. o7 = 0.5 for all cases. Correlation
lengths calculated using analytical results of Xf7~
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Figure 11: Training performance of MLP networks with erf activation function; and LayerNorm

applied to preactivations. It continues to train for several orders of magnitude of o2, (with learning-
rate tuning).
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