
A Experimental Details442

We implemented our methods using PyTorch [37] hooks and an efficient Jacobian approximate443

algorithm [19].444

Figure 1: We generated MNIST-like inputs, where all elements are sampled from the Gaussian445

distribution N (0, 1). J 0,l data was averaged over 100 different parameter-initializations. Networks446

were initialized width Nl = 1000. For erf plot we initialized at critical point (σw, σb) = (
√

π
4 , 0),447

used depth L = 250 and the fitting was done with data points collected at depth l > 100; for ReLU448

plot we initialized at critical point (σw, σb) = (
√
2, 0), used depth L = 100 and the fitting was done449

with all data points; for the µ = 1 Pre-LN plot, we initialized both networks at (σw, σb) = (
√
2, 0),450

used depth L = 250 and the fitting was done with l > 100 data points.451

Figure 2: All the phase diagrams were plotted using χL−1
J generated from networks with L = 50452

and Nl = 500. We used hooks to obtain the gradients that go into calculating χL−1
J . χL−1

J data was453

averaged over 100 different parameter-initializations. Inputs were generated from a normal Gaussian454

distribution and have dimension 28× 28. Generating the data for the figure took approximately 2455

days on Google Colab Pro (single Tesla P100 GPU).456

Figure 3: In all cases, networks are trained for 10 epochs using stochastic gradient descent with457

CrossEntropy loss. We used the Fashion MNIST dataset [47]. All networks had depth L = 50 and458

width Nl = 500. The learning rates were logarithmically sampled within (10−5, 1). Generating the459

data for the figure took approximately 12 days on Google Colab Pro (single Tesla P100 GPU).460

Figure 4: (1)We made the σ2
w − σ2

b phase diagram for ResNet110(LayerNorm) by averaging over461

100 different parameter-initializations. The σ2
w − µ phase diagram was made by averaging over462

200 parameters initialization. (3)(4) We used SGD with momentum= 0.9 and batch size 128. For463

selecting the learning rate we ran a grid-search over 0.001, 0.005, 0.01, 0.02, 0.5 for 10 epochs; with464

weight decay λ = 10−4. All models were trained for 50 epochs and averaged over 3 random seeds.465

It takes 6 GPU days in total on a single NVIDIA RTX 3090 GPU.466

Figure 5: (1)(2)We made the phase diagram for MLP-Mixer with 30 blocks and averaged over 100467

different parameter-initializations. (3)(4)We used network with L = 100, patch size 4× 4, hidden468

size C = 128, two MLP dimensions Ntm = Ncm = 256. The L = 32 point has doubled widths. All469

networks have 10 million parameters. Notice that for all Mixer Layers we used NTK initialization.470

We trained all cases on CIFAR-10 dataset using vanilla SGD paired with CSE. Batch size bs = 256,471

weight decay λ = 10−4 was selected from {10−5, 10−4}, mixup rate α = 0.8 was selected from472

{0.4, 0.8}. We also used RandAgument and horizontal flip with default settings in PyTorch. For473

all cases we searched learning rates within {0.005, 0.01, 0.05, 0.1, 0.2, 0.5}. We also tried a linear474

warm-up schedule for first 3000 iterations, but we did not see any improvement in performance.475

Generating the data for the figure took approximately 4 days on Google Colab Pro (single Tesla P100476

GPU).477

B Additional Discussion on ResNet, ResNet with BatchNorm478

For Convolution Layers, the NNGP kernel is a 4-index tensor: Kl
µν;ij(x, x

′), where the Greek479

letters(µ, ν) index the channels, whereas the Latin letters (i, j) index the pixels. The infinite width480

limit in this case is achieved by taking the number of channels to infinity (sequentially). In this limit,481

most of our equations for MLP can be easily rewritten using the convolutional NNGP kernel. However,482

in this case, the kernel is only diagonal in channel dimension: Kl
µν;ij(x, x

′) = Kl
ij(x, x

′)δµν . This483

additional structure in the kernel makes it difficult to get a closed-form solution for J l,l+1 in general.484

ResNet110 (LayerNorm) In Figure 4 (2), the networks is critical close to µ = 1, as expected from485

our analysis. One would naively expect the µ < 1 cases also to be critical, since for MLP with ReLU486

and Pre-LN, σb = 0 is critical regardless of σw and µ. However, in Figure 4(2) the region away from487

µ = 1 is in ordered phase. This is likely a result of the kernel Kl
µν;ij(x, x

′) not being diagonal in488

spatial dimensions. We emphasize that the µ = 1 case stays unaffected by this, since the existence of489

criticality does not depend on the details of the NNGP kernel in this case. This can be readily seen490

from (77). We present the Numerical and training results in Figure 4.491
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ResNet110 (BatchNorm) The operation of BatchNorm on a preactivation (pre-BN) in an MLP can492

be described as follows:493

h̃i(x) =
hi(x)− µi,B

σi,B
,

µi,B =
1

|B|
∑
x′∈B

h(x′) and σi,B =

√
1

|B|
∑
x′∈B

(h(x′)− µi,B)2 ,
(24)

where B is the batch that x belongs to and |B| is batch size.494

The works Yang et al. [57], He et al. [18] show that for large batch size, the effect of BatchNorm for495

NNGP kernel and Jacobian Norm is deterministic. We summarize the results for the pre-BN MLP496

setup:497

Kl+1(x, x′) =
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(h̃l

j(x))ϕ(h̃
l
j(x

′))
]
+ µ2Kl(x, x′) (25)

J l,l+1 =
σ2
w

Kl(x, x)−Kl(x, x′)
Eθ

[
ϕ(h̃l

j(x))ϕ(h̃
l
j(x))

]
+ µ2 , (26)

where x′ in the APJN term can be any x′ ̸= x, since for a large batch size all choices are equivalent.498

From the above result, we can see that most results we have for LayerNorm can be translated to499

BatchNorm with an easy replacement Kl(x, x) →
(
Kl(x, x)−Kl(x, x′)

)
. As a simple example,500

consider a pre-BN ResNet architecture, but with all the Convolutioal layers replaced with Linear501

(Fully Connected) layers. For such a network, we have the following result for µ < 1:502

J l,l+1 =
π2(1− µ2)

(π − 1)2
+ µ2 . (27)

For µ = 1, we have503

J l,l+1 = 1 +O(l−1) (28)

The ResNet results can then be obtained by replacing Fully Connected layers with Convolution layers,504

in a similar way as discussed in ResNet(LayerNorm) section. We show the numerical results for505

ResNet with BatchNorm in Figure 6.506

Figure 6: ResNet110(BatchNorm): Left to right: (1)(2) J L−1,L phase diagrams, with (σ2
w, σ

2
b ) and

(σ2
w, µ). (3)(4) Training curves w.r.t σ2

w and µ.

C Technical details for Jacobians and LayerNorm507

We will drop the dependence of hl
i(x) on x throughout the Appendices. It should not cause any508

confusion since we are always considering a single input.509

C.1 NNGP Kernel510

First, we derive the recurrence relation for the NNGP kernel Eq.(10). As mentioned in the main text,511

weights and biases are initialized (independently) from standard normal distribution N (0, σ2
w/fan_in).512

We then have513

Eθ[w
l
ijw

l
mn] =

σ2
w

Nl−1
δimδjn and Eθ[b

l
ib

l
j ] = σ2

bδij (29)
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by definition.514

We would like to prove theorem 2.4, as a consequence of lemma 2.2. The proof of lemma 2.2 can be515

found in [40].516

Proof of theorem 2.4. One can prove this by definition with lemma 2.2.517

Kl+1 ≡ 1

Nl+1

Nl+1∑
i=1

Eθ[h
l+1
i hl+1

i ]

=
1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

wl+1
ij ϕ(hl

j) + bl+1
i

( Nl∑
k=1

wl+1
ik ϕ(hl

k) + bl+1
i

)
=

1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

Nl∑
k=1

wl+1
ij wl+1

ik ϕ(hl
j)ϕ(h

l
k) + bl+1

i bl+1
i


=

1

Nl+1

Nl+1∑
i=1

Eθ

σ2
w

Nl

Nl∑
j=1

ϕ(hl
j)ϕ(h

l
j) + σ2

b


=
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(hl

j)ϕ(h
l
j)
]
+ σ2

b . (30)

518

C.2 Jacobians519

Next, we prove theorem 2.5 in the main text.520

Proof of theorem 2.5. We start from the definition of the averaged partial Jacobian norm (APJN)521

(l > l0)522

J l0,l+1 ≡ 1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

∂hl+1
i

∂hl0
j

∂hl+1
i

∂hl0
j


=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

(
Nl∑
k=1

∂hl+1
i

∂hl
k

∂hl
k

∂hl0
j

)(
Nl∑

m=1

∂hl+1
i

∂hl
m

∂hl
m

∂hl0
j

)
=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k,m=1

(
wl+1

ik ϕ′(hl
k)
) (

wl+1
im ϕ′(hl

m)
)( ∂hl

k

∂hl0
j

∂hl
m

∂hl0
j

)
=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k,m=1

wl+1
ik wl+1

im ϕ′(hl
k)ϕ

′(hl
m)

∂hl
k

∂hl0
j

∂hl
m

∂hl0
j


=

1

Nl+1

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k=1

σ2
w

Nl
Eθ

[
ϕ′(hl

k)ϕ
′(hl

k)
∂hl

k

∂hl0
j

∂hl
k

∂hl0
j

]

=
σ2
w

Nl

Nl∑
k=1

Eθ

ϕ′(hl
k)ϕ

′(hl
k)

Nl0∑
j=1

∂hl
k

∂hl0
j

∂hl
k

∂hl0
j

 . (31)
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where we used chain rule and took expectation value over wl+1. Next we take chain rule again:523

J l0,l+1 =
σ2
w

Nl

Nl∑
k=1

Eθ

ϕ′(hl
k)ϕ

′(hl
k)

Nl0∑
j=1

Nl−1∑
m,n=1

wl
kmwl

knϕ
′(hl−1

m )ϕ′(hl−1
n )

∂hl−1
m

∂hl0
j

∂hl−1
n

∂hl0
j


=

σ4
w

NlNl−1

Nl∑
k=1

Eθ

ϕ′(hl
k)ϕ

′(hl
k)

Nl0∑
j=1

Nl−1∑
m=1

ϕ′(hl−1
m )ϕ′(hl−1

m )
∂hl−1

m

∂hl0
j

∂hl−1
m

∂hl0
j

+O(1/Nl−1)


=

σ4
w

NlNl−1

Nl∑
k=1

Eθ

[
ϕ′(hl

k)ϕ
′(hl

k)
]
Eθ

Nl0∑
j=1

Nl−1∑
m=1

ϕ′(hl−1
m )ϕ′(hl−1

m )
∂hl−1

m

∂hl0
j

∂hl−1
m

∂hl0
j


=

σ2
w

Nl

Nl∑
k=1

Eθ

[
ϕ′(hl

k)ϕ
′(hl

k)
]
· σ2

w

Nl−1
Eθ

Nl0∑
j=1

Nl−1∑
m=1

ϕ′(hl−1
m )ϕ′(hl−1

m )
∂hl−1

m

∂hl0
j

∂hl−1
m

∂hl0
j


= χl

J J l0,l , (32)

where we integrate (by parts) over wl to get the second line. We take Nl−1 → ∞ and then Nl → ∞524

to get the third line. We rearange terms and use the Eq.(12) to get the fourth and fifth lines. Notice that525

to get the third line we used the fact in the infinite width limit, the distribution of hl
i is independent of526

hl−1
i . Thus we proved527

J l0,l+1 = χl
JJ l0,l . (33)

528

The critical line is defined by requiring χ⋆
J = 1, where critical points are reached by further requiring529

χ⋆
K = 1.530

As we mentioned in main text, l0 = 0 is subtle since the input dimension is fixed N0, which can not531

be assumed to be infinity. Even though for dataset like MNIST, usually N0 is not significantly smaller532

than width Nl. We show how to take finite O(N−1
0 ) correction into account by using one example.533

Lemma C.1. Consider a one hidden layer network with a finite input dimension N0. In the infinite534

width limit, the APJN is still deterministic and the first step of the recurrence relation is modified to:535

J 0,2 =

(
χ1
J +

2σ2
w

N0
χ1
∆

N0∑
k

1

N0
h0
kh

0
k

)
J 0,1 , (34)

where J 0,1 = σ2
w.536
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Proof.

J 0,2 =
1

N2
Eθ

 N2∑
i=1

N0∑
j=1

∂h2
i

∂h0
j

∂h2
i

∂h0
j


=

1

N2
Eθ

 N2∑
i=1

N0∑
j=1

N1∑
k,m=1

w2
ikw

2
imϕ′(h1

k)ϕ
′(h1

m)
∂h1

k

∂h0
j

∂h1
m

∂h0
j


=

1

N2

N2∑
i=1

N0∑
j=1

N1∑
k,m=1

Eθ[w
2
ikw

2
imw1

kjw
1
mjϕ

′(h1
k)ϕ

′(h1
m)]

=

N0∑
j=1

N1∑
k=1

σ2
w

N1
Eθ[w

1
kjw

1
kjϕ

′(h1
k)ϕ

′(h1
k)]

=σ2
w

(
χ1
J +

2σ2
w

N0
χ1
∆

N0∑
k

1

N0
h0
kh

0
k

)

=

(
χ1
J +

2σ2
w

N0
χ1
∆

N0∑
k

1

N0
h0
kh

0
k

)
J 0,1 , (35)

where to get the result we used integrate by parts, then explicitly integrated over w1
ij . We have537

introduced a coefficient of finite width corrections, χl
∆, defined follows.538

Definition C.2 (Coefficient of Finite Width Corrections).

χl
∆ =

σ2
w

Nl

Nl∑
i=1

Eθ[ϕ
′′(hl

i)ϕ
′′(hl

i) + ϕ′′′(hl
i)ϕ

′(hl
i)] . (36)

Remark C.3. Notice that the correction to J 0,2 is order O(N−1
0 ). If one calculate the recurrence539

relation for deeper layers, the correction to J 0,l will be O(
∑l

l′=0 N
−1
l′ ), which means the contribution540

from hidden layers can be ignored in infinite width limit.541

The J 0,2 example justifies the factorization of the integral when we go from the last line of Eq.(31)542

to Eq.(33).543

Finally, the full Jacobian in infinite width limit can be written as544

Lemma C.4 (APJN with l0 = 0). The APJN (with l0 = 0) of a given network can be written as545

J 0,l = σ2
w

(
χ1
J +

2σ2
w

N0
χ1
∆

N0∑
k

1

N0
h0
kh

0
k

)
l−1∏
l′=2

χl′

J . (37)

Note that APJN with l0 > 0 does not receive the O(N−1
0 ) correction.546

C.3 APJN and gradients547

As mentioned in the main text, APJN is an important tool in studying the exploding and vanishing548

gradients problem. Its utility stems from the fact that it is a dominant factor in the norm of the549

gradients. This can be readily by looking at the (squared) L2 norm of the gradient of any flattened550
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parameter matrix θl, at initialization. In the infinite width limit, one gets551

∥∇θlL∥22 =

(∑
all

∂L
∂hL

i

∂hL
i

∂hL−1
j

· · ·
∂hl+1

k

∂hl
m

∂hl
m

∂θln

)2

=
∑
all

(
∂L
∂hL

i

∂L
∂hL

i′

)(
∂hL

i

∂hL−1
j

∂hL
i′

∂hL−1
j′

)
· · ·

(
∂hl+1

k

∂hl
m

∂hl+1
k′

∂hl
m′

)(
∂hl

m

∂θln

∂hl
m′

∂θln

)

=
∑
all

(
∂L
∂hL

i

∂L
∂hL

i′

)(
∂hL

i

∂hL−1
j

∂hL
i′

∂hL−1
j′

)
· · ·

(
∂hl+1

k

∂hl
m

∂hl+1
k′

∂hl
m′

)
δmm′

∥∥∥∥∂hl

∂θl

∥∥∥∥2
F

=
∑
all

(
∂L
∂hL

i

∂L
∂hL

i′

)(
∂hL

i

∂hL−1
j

∂hL
i′

∂hL−1
j′

)
· · · δkk′J l,l+1

∥∥∥∥∂hl

∂θl

∥∥∥∥2
F

=
∑

i,i′,j,j′

(
∂L
∂hL

i

∂L
∂hL

i′

)(
∂hL

i

∂hL−1
j

∂hL
i′

∂hL−1
j′

)
δjj′ · · · J l,l+1

∥∥∥∥∂hl

∂θl

∥∥∥∥2
F

=
∑
i,i′

(
∂L
∂hL

i

∂L
∂hL

i′

)
δii′J L−1,L · · · J l,l+1

∥∥∥∥∂hl

∂θl

∥∥∥∥2
F

=

∥∥∥∥ ∂L
∂hL

∥∥∥∥2
2

J L−1,L · · · J l,l+1

∥∥∥∥∂hl

∂θl

∥∥∥∥2
F

=

∥∥∥∥ ∂L
∂hL

∥∥∥∥2
2

J l,L

∥∥∥∥∂hl

∂θl

∥∥∥∥2
F

, (38)

where ∥·∥2 denotes the L2 norm and ∥·∥F denotes the Frobenius norm.552

C.4 LayerNorm on Pre-activations553

Definition C.5 (Layer Normalization).

h̃l
i =

hl
i − E[hl]√

E[(hl)2]− E[hl]2
γl
i + βl

i , (39)

where γl
i and βl

i are learnable parameters.554

Remark C.6. With only LayerNorm, the (1) is simplified to555

hl+1
i =

Nl∑
j=1

wl+1
ij ϕ(h̃l

j) + bl+1
i . (40)

Remark C.7. In the limit of infinite width, using the law of large numbers, the average over neurons556

E [· · · ] can be replaced by the average of parameter-initializations Eθ [· · · ]. Additionally, in this limit,557

the preactivations are i.i.d. Gaussian distributed : hl ∼ N (0,Kl).558

E
[
hl
]
= Eθ

[
hl
]
= 0 , (41)

E
[(
hl
)2]

= Eθ

[(
hl
)2]

= Kl . (42)

The normalized preactivation then simplifies to the form of Eq.(20).559

Remark C.8. At initialization, the parameters γl
i and βl

i take the values 1 and 0, respectively. This560

leads to the form in equation (20). In infinite width limit it has the following form561

h̃l
i =

hl
i − Eθ[h

l]√
Eθ[(hl)2]− Eθ[hl]2

. (43)

Lemma C.9. With LayerNorm on preactivations, the gaussian average is modified to562

Eθ

[
O(h̃l

i)
]
=

1√
2π

∫
dh̃l

i O(h̃l
i) e

− (h̃l
i)

2

2 . (44)
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Proof. By definition h̃l
i is sampled from a standard normal distribution N (0, 1), then use lemma 2.2563

to get the final form.564

Theorem C.10. In the infinite width limit the recurrence relation for the NNGP kernel with Layer-565

Norm on preactivations is566

Kl+1 =
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(h̃l

j)ϕ(h̃
l
j)
]
+ σ2

b . (45)

Proof.

Kl+1 =
1

Nl+1

Nl+1∑
i=1

Eθ

[
hl+1
i hl+1

i

]
=

1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

wl+1
ij ϕ(h̃l

j) + bl+1
i

( Nl∑
k=1

wl+1
ik ϕ(h̃l

k) + bl+1
i

)
=
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(h̃l

j)ϕ(h̃
l
j)
]
+ σ2

b . (46)

567

Theorem C.11. In the infinite width limit the recurrence relation for partial Jacobian with LayerNorm568

on preactivations is569

J l0,l+1 = χl
JJ l0,l , (47)

where χl
J =

σ2
w

NlKl

∑Nl

i=1 Eθ

[
ϕ′(h̃l

i)
2
]
.570

Proof.

J l0,l+1 =
1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

∂hl+1
i

∂hl0
j

∂hl+1
i

∂hl0
j


=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

(
Nl∑
k=1

∂hl+1
i

∂h̃l
k

∂h̃l
k

∂hl
k

∂hl
k

∂hl0
j

)(
Nl∑

m=1

∂hl+1
i

∂h̃l
m

∂h̃l
m

∂hl
m

∂hl
m

∂hl0
j

)
=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k,m=1

(
wl+1

ik ϕ′(h̃l
k)

1√
Kl

)(
wl+1

im ϕ′(h̃l
m)

1√
Kl

)(
∂hl

k

∂hl0
j

∂hl
m

∂hl0
j

)
=

σ2
w

NlKl

Nl∑
k=1

Eθ

ϕ′(h̃l
k)ϕ

′(h̃l
k)

Nl0∑
j=1

∂hl
k

∂hl0
j

∂hl
k

∂hl0
j


=

σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]
J l0,l

= χl
JJ l0,l , (48)

571

C.5 LayerNorm on activations572

The general definition of LayerNorm on activations is given as follows.573

Definition C.12 (LayerNorm on Activations).

ϕ̃(hl
i) =

ϕ(hl
i)− E[ϕ(hl)]√

E[ϕ(hl)2]− E[ϕ(hl)]2
γl
i + βl

i . (49)
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Remark C.13. The recurrence relation for preactivations (Eq.(1)) gets modified to574

hl+1
i =

Nl∑
j=1

wl+1
ij ϕ̃(hl

j) + bl+1
i . (50)

Remark C.14. At initialization, the parameters γl
i and βl

i take the values 1 and 0, respectively. This575

leads to the form576

ϕ̃(hl
i) =

ϕ(hl
i)− E[ϕ(hl)]√

E[ϕ(hl)2]− E[ϕ(hl)]2

=
ϕ(hl

i)− Eθ

[
ϕ(hl)

]√
Eθ [ϕ(hl)2]− Eθ [ϕ(hl)]

2
,

(51)

where the first line follows from the fact that at initialization, the parameters γl
i and βl

i take the values577

1 and 0 respectively. In the second line, we have invoked the infinite width limit.578

Remark C.15. Evaluating Gaussian average in this case is similar to cases in previous section. The579

only difference being that the averages are taking over the distribution hl−1 ∼ N (0,Kl−1 = σ2
w+σ2

b ).580

Again this can be summarized as581

Eθ

[
O(hl

i)
]
=

1√
2π(σ2

w + σ2
b )

∫
dhl

i O(hl
i) e

− (hl
i)

2

2(σ2
w+σ2

b
) . (52)

Next, we calculate the modifications to the recurrence relations for the NNGP kernel and Jacobians.582

Theorem C.16. In the infinite width limit the recurrence relation for the NNGP kernel with Layer-583

Norm on activations is584

Kl+1 = σ2
w + σ2

b . (53)

Proof.

Kl+1 =
1

Nl+1

Nl+1∑
i=1

Eθ

[
hl+1
i hl+1

i

]
=

1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

wl+1
ij ϕ̃(hl

j) + bl+1
i

( Nl∑
k=1

wl+1
ik ϕ̃(hl

k) + bl+1
i

)
=

σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ̃(hl

j)
2
]
+ σ2

b

=
σ2
w

Nl

Nl∑
j=1

Eθ


 ϕ(hl

j)− Eθ

[
ϕ(hl)

]√
Eθ [ϕ(hl)2]− Eθ [ϕ(hl)]

2

2
+ σ2

b

=
σ2
w

Nl

Nl∑
j=1

Eθ

[(
ϕ(hl

j)− Eθ

[
ϕ(hl)

])2]
Eθ [ϕ(hl)2]− Eθ [ϕ(hl)]

2 + σ2
b

= σ2
w + σ2

b . (54)

585

Theorem C.17. In the infinite width limit the recurrence relation for partial Jacobian with LayerNorm586

on activations is587

J l0,l+1 = χl
JJ l0,l , (55)

where χl
J ≡ σ2

w

Eθ[ϕ′(hl)2)]
Eθ[ϕ(hl)2]−Eθ[ϕ(hl)]2

.588
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Proof.

J l0,l+1 =
1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

∂hl+1
i

∂hl0
j

∂hl+1
i

∂hl0
j


=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

(
Nl∑
k=1

∂hl+1
i

∂hl
k

∂hl
k

∂hl0
j

)(
Nl∑

m=1

∂hl+1
i

∂hl
m

∂hl
m

∂hl0
j

)
=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k,m=1

(
wl+1

ik ϕ̃′(hl
k)

)(
wl+1

im ϕ̃′(hl
m)
)( ∂hl

k

∂hl0
j

∂hl
m

∂hl0
j

)
=

σ2
w

Nl

Nl∑
k=1

Nl0∑
j=1

Eθ

ϕ̃′(hl
k)ϕ̃

′(hl
k)

Nl0∑
j=1

∂hl
k

∂hl0
j

∂hl
k

∂hl0
j


=

σ2
w

Nl

Nl∑
k=1

Eθ

[
ϕ̃′(hl

k)
2
]
J l0,l

= σ2
w

Eθ

[
ϕ′(hl)2

]
Eθ [ϕ(hl)2]− Eθ [ϕ(hl)]

2J
l0,l

= χl
JJ l0,l , (56)

589

D Critical Exponents590

To prove theorem 2.7, we first need to find the critical exponent of the NNGP kernel [40].591

Lemma D.1. In the infinite width limit, consider a critically initialized network with a activation592

function ϕ. The scaling behavior of the fluctuation δKl ≡ Kl − K⋆ in non-exponential. If the593

recurrence relation can be expand to leading order δKl as δKl+1 ≈ δKl − cn(δKl)n for n ≥ 2. The594

solution of δKl is595

δKl =
1

cn(n− 1)
l−ζK , (57)

where ζK = 1
n−1 .596

Remark D.2. The constant cn and the order of first non-zero term n is determined by the choice of597

activation function.598

Proof. We can expand the recurrence relation for the NNGP kernel (10) to second order of δKl =599

Kl −K⋆ on both side.600

δKl+1 ≈ δKl − cn(δKl)n . (58)

Use power law ansatz δKl = A l−ζK then601

(l + 1)−ζK = l−ζK − cnA l−nζK . (59)

Multiply lζK on both side then use Taylor expansion ( l
l+1 )

ζK ≈ 1− ζK
l602

ζK
l

= cnAl−(n−1)ζK . (60)

For arbitrary l, the only non-trivial solution of the equation above is603

A =
1

cn(n− 1)
and ζK =

1

n− 1
. (61)

604
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Proof of theorem 2.7. We will assume c2 ̸= 0. Then use lemma D.1, we can expand χl
J in terms of605

δKl. To leading order l−1606

χl
J ≈1− d1δKl

=1− d1
c2

l−1 . (62)

Consider a sufficiently large l. In this case O(l−1) approximation is valid. We write recurrence607

relations of Jacobians as608

J l0,l =

l−1∏
l′=l0

(
1− d1

c2
l′−1

)
J l0,l0

≈ cl0 · l−ζ . (63)

When cn = 0 for all n ≥ 2, from lemma D.1 we have δKl = 0. Thus the Jacobian saturates to some609

constant.610

We checked the scaling empirically by plotting J 0,l vs. l in a log–log plot and fitting the slope. These611

results are presented in Fig.1.612

E Residual Connections613

Definition E.1. We define residual connections by the modified the recurrence relation for preactiva-614

tions (Eq.(1))615

hl+1
i =

Nl∑
j=1

wl+1
ij ϕ(hl

j) + bl+1
i + µhl

i , (64)

where the parameter µ controls the strength of the residual connection.616

Remark E.2. Note that this definition requires Nl+1 = Nl. We ensure this by only adding residual617

connections to the hidden layers, which are of the same width. More generally, one can introduce a618

tensor parameter µij .619

Remark E.3. In general, the parameter µ could be layer-dependent (µl). But we suppress this620

dependence here since we are discussing self-similar networks.621

Theorem E.4. In the infinite width limit, the recurrence relation for the NNGP kernel with residual622

connections is changed by an additional term controlled by µ623

Kl+1 =
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(hl

j)ϕ(h
l
j)
]
+ σ2

b + µ2Kl . (65)

Proof.

Kl+1 =
1

Nl+1

Nl+1∑
i=1

Eθ

[
hl+1
i hl+1

i

]
=

1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

wl+1
ij ϕ(hl

j) + bl+1
i + µhl

i

( Nl∑
k=1

wl+1
ik ϕ(hl

k) + bl+1
i + µhl

i

)
=

1

Nl+1

Nl+1∑
i=1

Eθ

 Nl∑
j=1

Nl∑
k=1

wl+1
ij wl+1

ik ϕ(hl
j)ϕ(h

l
k) + bl+1

i bl+1
i + µ2hl

ih
l
i


=

1

Nl+1

Nl+1∑
i=1

Eθ

σ2
w

Nl

Nl∑
j=1

ϕ(hl
j)ϕ(h

l
j) + σ2

b

+ µ2 1

Nl+1

Nl+1∑
i=1

Eθ

[
hl
ih

l
i

]
=

σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(hl

j)ϕ(h
l
j)
]
+ σ2

b + µ2Kl , (66)

where we used the fact Nl+1 = Nl to get the last line.624
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Theorem E.5. In the infinite width limit, the recurrence relation for partial Jacobians with residual625

connections has a simple multiplicative form626

J l0,l+1 = χl
JJ l0,l , (67)

where the recurrence coefficient is shifted to χl
J = σ2

wEθ

[
ϕ′(hl

k)ϕ
′(hl

k)
]
+ µ2.627

Proof.

J l0,l+1 ≡ 1

Nl+1
Eθ

Nl+1∑
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Nl0∑
j=1

∂hl+1
i

∂hl0
j

∂hl+1
i

∂hl0
j
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j
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1
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Nl0∑
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k

∂hl0
j

∂hl
m

∂hl0
j


=

σ2
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Nl

Nl∑
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Eθ

ϕ′(hl
k)ϕ

′(hl
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∂hl
k

∂hl0
j

∂hl
k

∂hl0
j
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k

∂hl0
j

∂hl
k

∂hl0
j


=
(
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wEθ

[
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k)ϕ
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)
Eθ
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Nl0∑
j=1

∂hl
k

∂hl0
j

∂hl
k

∂hl0
j


=
(
σ2
wEθ

[
ϕ′(hl

k)ϕ
′(hl

k)
]
+ µ2

)
J l0,l

J l0,l+1 = χl
JJ l0,l . (68)

628

F Residual Connections with LayerNorm on Preactivations (Pre-LN)629

We recall the recurrence relation (1):630

hl+1
i =

Nl∑
j=1

wl+1
ij ϕ(h̃l

j) + bl+1
i + µhl

i . (69)

Theorem F.1. In the infinite width limit, the recurrence relation for the NNGP kernel is then modified631

to632

Kl+1 =
σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(h̃l

j)ϕ(h̃
l
j)
]
+ σ2

b + µ2Kl . (70)

Proof.

Kl+1 =
1

Nl+1

Nl+1∑
i=1

Eθ

[
hl+1
i hl+1

i

]
=

1

Nl+1
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Eθ

 Nl∑
j=1

wl+1
ij ϕ(h̃l

j) + bl+1
i + µhl

i

( Nl∑
k=1
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ik ϕ(h̃l

k) + bl+1
i + µhl

i

)
=
σ2
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Nl

Nl∑
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Eθ

[
ϕ(h̃l

j)ϕ(h̃
l
j)
]
+ σ2

b + µ2Kl . (71)

633
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Remark F.2. For µ < 1, the recursion relation has a fixed point634

K⋆ =
σ2
w

Nl⋆(1− µ2)

Nl⋆∑
j=1

Eθ

[
ϕ(h̃l⋆

j )ϕ(h̃l⋆

j )
]
+

σ2
b

1− µ2
. (72)

where the average here is exactly the same as cases for LayerNorm applied to preactivations without635

residue connections. l⋆ labels some very large depth l.636

Remark F.3. For µ = 1 case, the solution of (70) is637

Kl = K0 +

l∑
l′=1

σ2
w

Nl

Nl∑
j=1

Eθ

[
ϕ(h̃l′

j )ϕ(h̃
l′

j )
]
+ σ2

b

 . (73)

which is linearly growing since the expectation does not depend on depth. K0 is the NNGP kernel638

after the input layer.639

Theorem F.4. In the infinite width limit, the recurrence relation for Jacobians changes by a constant640

shift in the recursion coefficient.641

J l0,l+1 = χl
JJ l0,l , (74)

where for this case642

χl
J =

σ2
w

NlKl

Nl∑
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Eθ

[
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k)ϕ
′(h̃l

k)
]
+ µ2 . (75)

Proof.
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j

)
=

1

Nl+1
Eθ

Nl+1∑
i=1

Nl0∑
j=1

Nl∑
k,m=1

(
wl+1

ik ϕ′(h̃l
k)√

Kl
+ µδik

)(
wl+1

im ϕ′(h̃l
m)√

Kl
+ µδik

)(
∂hl

k

∂hl0
j

∂hl
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NlKl
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k) + µ2

)Nl0∑
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∂hl
k

∂hl0
j

∂hl
k

∂hl0
j
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k)ϕ
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)
J l0,l

= χl
JJ l0,l , (76)

643

Remark F.5. One can directly use results from cases without residue connections. We will momentar-644

ily see that the phase boundary does not change with residual connections when µ < 1. However, the645

correlation length decays way slower when the network is initialized far from criticality.646

Remark F.6. As we mentioned above µ = 1 needs extra care. Plug in the result (73) and µ = 1 we647

find out that648

χl
J |µ=1 =

σ2
w

∑Nl

k=1 Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]

NlK0 +
∑l

l′=1

(
σ2
w

∑Nl

j=1 Eθ

[
ϕ(h̃l

j)ϕ(h̃
l
j)
]
+Nlσ2

b

) + 1

∼ 1 +O

(
1

l

)
, (77)

which leads to power law behaved Jacobians at large depth. Where the exponent ζ is not universal.649

Recall that ξ = | logχ⋆
J |−1, then Theorem 1.3 is a summary of (72) and (75) for µ < 1; and (77) for650

µ = 1 in l → ∞ limit.651
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G MLP-Mixer652

In this section we would like to analyze an architecture called MLP-Mixer [43], which is based on653

multi-layer perceptrons (MLPs). A MLP-Mixer (i) chops images into patches, then applies affine654

transformations per patch, (ii) applies several Mixer Layers, (iii) applies pre-head LayerNorm, Global655

Average Pooling, an output affine transformation. We will explain the architecture by showing656

forward pass equations.657

Suppose one has a single input with dimension (Cin, Hin,Win). We label it as xµi, where the Greek658

letter labels channels and the Latin letter labels flattened pixels.659

First of all the (i) is realized by a special convolutional layer, where kernel size f is equal to the stride660

s. Then first convolution layer can be written as661

h0
µi =

f2∑
j=1

Cin∑
ν=1

W 0
µν;jxν,j+(i−1)s2 + b0µi , (78)

where f is the size of filter and s is the stride. In our example f = s. Notice in PyTorch both bias662

and weights are sampled from a uniform distribution U(−
√
k,
√
k), where k = (Cinf

2)−1.663

Eθ[W
0
µν;iW

0
ρσ;j ] =

1

3Cinf2
δµρδνσδij , (79)

Eθ[b
0
µib

0
νj ] =

1

3Cinf2
δµνδij . (80)

Notice that the output of Conv2d: h0
µi ∈ RC×Np , where C stands for channels and Np = HinWin/f

2664

stands for patches, both of them will be mixed later by Mixer layers.665

Next we stack l Mixer Layers. A Mixer Layer contains LayerNorms and two MLPs, where the666

first one mixed patches i, j (token mixing) with a hidden dimension Ntm, the second one mixed667

channels µ, ν (channel-mixing) with a hidden dimension Ncm. Notice that for Mixer Layers we use668

the standard parameterization.669

• First LayerNorm. It acts on channels µ.670

h̃6l
µi =

h6l
µi − EC [h

6l
ρi]√

VarC [h6l
ρi]

, (81)

where we defined a channel mean EC [h
6l
ρi] ≡ 1

C

∑C
ρ=1 h

6l
ρi and channel variance VarC ≡671

EC

[(
h6l
ρi

)2]− (EC [h
6l
ρi]
)2

.672

• First MlpBlock. It mixes patches i, j, preactivations from different channels share the same673

weight and bias.674

– 6l + 1: Linear Affine Layer.675

h6l+1
µj =

Np∑
k=1

w6l+1
jk h̃6l

µk + b6l+1
j . (82)

– 6l + 2: Affine Layer.676

h6l+2
µi =

Ntm∑
j=1

w6l+2
ij ϕ(h6l+1

µj ) + b6l+2
i , (83)

where Ntm stands for hidden dimension of "token mixing".677

– 6l + 3: Residual Connections.678

h6l+3
µi = h6l+2

µi + µh6l
µi . (84)
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• Second LayerNorm. It again acts on channels µ.679

h̃6l+3
µi =

h6l+3
µi − EC [h

6l+3
ρi ]√

VarC [h
6l+3
ρi ]

. (85)

• Second MlpBlock. It mixes channels µ, ν, preactivations from different patches share the680

same weight and bias.681

– 6l + 4: Linear Affine Layer.682

h6l+4
νi =

C∑
ρ=1

w6l+4
νρ h̃6l+3

ρi + b6l+4
ν . (86)

– 6l + 5. Affine Layer.683

h6l+5
µi =

Ncm∑
ν=1

w6l+5
µν ϕ(h6l+4

νi ) + b6l+5
µ . (87)

– 6l + 6. Residual Connections.684

h6l+6
µi = h6l+5

µi + µh6l+3
µi . (88)

Suppose the network has L Mixer layers. After those layers the network has a pre-head LayerNorm685

layer, a global average pooling layer and a output layer. The pre-head LayerNorm normalizes over686

channels µ can be described as the following687

h̃6L
µi =

h6L
µi − EC [h

6L
ρi ]√

VarC [h6L
ρi ]

. (89)

Global Average Pool over patches i.688

hp
µ =

1

Np

Np∑
i=1

h̃6L
µi . (90)

Output Layer689

fµ =

C∑
ν=1

wµνh
p
ν + bµ . (91)

We plotted phase diagram using the following quantity from repeating Mixer Layers:690

χ⋆
J = lim

L→∞

 1

NpC

Np∑
i=1

C∑
µ=1

Eθ

 C∑
ρ=1

Np∑
k=1

∂h6L
µi

∂h6L−6
ρk

∂h6L
µi

∂h6L−6
ρk

 . (92)

H Results for Scale Invariant Activation Functions691

Definition H.1 (Scale invariant activation functions).

ϕ(x) = a+ xΘ(x) + a− xΘ(−x) , (93)

where Θ(x) is the Heaviside step function. ReLU is the special case with a+ = 1 and a− = 0.692
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H.1 NNGP Kernel693

First evaluate the average using lemma 2.2694

Eθ

[
ϕ(hl

i)ϕ(h
l
i)
]
=

1√
2πKl

∫
dhl

i

(
a2+ + a2−

) (
hl
i

)2
e−

(hl
i)

2

2Kl

=
a2+ + a2−

2
Kl . (94)

Thus we obtain the recurrence relation for the NNGP kernel with scale invariant activation function.695

Kl+1 =
σ2
w(a

2
+ + a2−)

2
Kl + σ2

b . (95)

Finite fixed point of the recurrence relation above exists only if696

χ⋆
K =

σ2
w(a

2
+ + a2−)

2
≤ 1 . (96)

As a result697

σ2
w ≤ 2

a2+ + a2−
. (97)

For σ2
w = 2

a2
++a2

−
case, finite fixed point exists only if σ2

b = 0.698

H.2 Jacobian(s)699

The calculation is quite straight forward, by definition700

χl
J =σ2

wEθ

[
ϕ′(hl

i)ϕ
′(hl

i)
]

=
σ2
w√

2πKl

∫
dhl

i

[
a+Θ(hl

i)− a−Θ(hl
i)
]2

e−
(hl

i)
2

2Kl

=
σ2
w(a

2
+ + a2−)

2
, (98)

where we used the property xδ(x) = 0 for Dirac’s delta function to get the first line.701

Thus the critical line is defined by702

σw =

√
2

a2+ + a2−
. (99)

For ReLU with a+ = 1 and a− = 0, the network is at critical line when703

σw =
√
2 , (100)

where the critical point is located at704

(σw, σb) = (
√
2, 0) . (101)

H.3 Critical Exponents705

Since the recurrence relations for the NNGP kernel and Jacobians are linear. Then from lemma D.1706

and theorem 2.7707

ζK = 0 and ζ = 0 . (102)
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H.4 LayerNorm on Pre-activations708

Use lemma C.9 and combine all known results for scale invariant functions709

χl
J =

σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]∣∣∣∣∣

K̃l−1=1

=
σ2
w(a

2
+ + a2−)

σ2
w(a

2
+ + a2−) + 2σ2

b

. (103)

For this case,710

χl
J ≤ 1 (104)

is always true. The equality only holds at σb = 0 line.711

H.5 LayerNorm on Activations712

First we substitute Kl−1 = σ2
w + σ2

b into known results713

Eθ

[
ϕ′(hl

i)ϕ
′(hl

i)
]
=

a2+ + a2−
2

, (105)

Eθ

[
ϕ(hl

i)ϕ(h
l
i)
]
=

a2+ + a2−
2

(σ2
w + σ2

b ) . (106)

There is a new expectation value we need to show explicitly714

Eθ

[
ϕ(hl

i)
]
=

1√
2π(σ2

w + σ2
b )

∫ ∞

−∞
dhl

iϕ(h
l
i)e

− 1
2h

l
i(σ

2
w+σ2

b )
−1hl

i

=
1√

2π(σ2
w + σ2

b )

∫ ∞

0

dhl
i(a+ − a−)h

l
ie

− (hl
i)

2

2(σ2
w+σ2

b
)

= (a+ − a−)

√
σ2
w + σ2

b

2π
. (107)

Thus715

χl
J =

σ2
w

σ2
w + σ2

b

·
π(a2+ + a2−)

π(a2+ + a2−)− (a+ − a−)2
. (108)

The critical line is defined by χ⋆
J = 1, which can be solved as716

σb =

√
(a+ − a−)2

π(a2+ + a2−)− (a+ − a−)2
σw . (109)

For ReLU with a+ = 1 and a− = 0717

σb =

√
1

π − 1
σw

≈0.683σw . (110)

H.6 Residual Connections718

The recurrence relation for the NNGP kernel can be evaluated to be719

Kl+1 =
σ2
w(a

2
+ + a2−)

2
Kl + σ2

b + µ2Kl . (111)

The condition for the existence of fixed point720

χ⋆
K =

σ2
w(a

2
+ + a2−)

2
+ µ2 ≤ 1 (112)
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leads us to721

σ2
w ≤ 2(1− µ2)

a2+ + a2−
. (113)

For σ2
w = 2(1−µ2)

a2
++a2

−
, finite fixed point exists only if σ2

b = 0. (Diverges linearly otherwise)722

The recurrence coefficient for Jacobian is evaluated to be723

χ⋆
J =

σ2
w(a

2
+ + a2−)

2
+ µ2 . (114)

The critical line is defined as724

σw =

√
2(1− µ2)

a2+ + a2−
. (115)

The critical point is located at
(√

2(1−µ2)
a2
++a2

−
, 0
)

.725

For ReLU, the critical point is at
(√

2(1− µ2), 0
)

.726

H.7 Residual Connections with LayerNorm on Preactivations (Pre-LN)727

Again use lemma C.9 and combine all known results for scale invariant functions728

χ⋆
J = lim

l→∞

(
σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]∣∣∣∣∣

K̃l−1=1

+ µ2

)

=
σ2
w(a

2
+ + a2−)(1− µ2)

σ2
w(a

2
+ + a2−) + 2σ2

b

+ µ2

= 1− 2σ2
b (1− µ2)

σ2
w(a

2
+ + a2−) + 2σ2

b

(116)

Similar to the case without residue connections729

χl
J ≤ 1 (117)

is always true. The equality only holds at σb = 0 line for µ < 1.730

Notice there is a very special case µ = 1, where the whole σb − σw plane is critical.731

I Results for erf Activation Function732

Definition I.1 (erf activation function).

ϕ(x) =
2√
π

∫ x

0

e−t2dt . (118)

I.1 NNGP Kernel733

To evaluate lemma 2.2 exactly, we introduce two dummy variables λ1 and λ2[45].734

Eθ

[
ϕ(λ1h

l
i)ϕ(λ2h

l
i)
]
=

∫
dλ1

∫
dλ2

d2

dλ1dλ2
Eθ

[
ϕ(λ1h

l
i)ϕ(λ2h

l
i)
]

=

∫
dλ1

∫
dλ2

∫
dhl

i

4√
2π3Kl

(
hl
i

)2
e−(λ

2
1+λ2

2+
1

2Kl )(h
l
i)

2

=

∫
dλ1

∫
dλ2

4Kl

π (1 + 2Kl(λ2
1 + λ2

2))

=
2

π
arcsin

(
2Klλ1λ2

1 + 2Kl(λ2
1 + λ2

2)

)
. (119)
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We use the special case where λ1 = λ2 = 1.735

Thus the recurrence relation for the NNGP kernel with erf activation function is736

Kl+1 =
2σ2

w

π
arcsin

(
2Kl

1 + 2Kl

)
+ σ2

b . (120)

As in scale invariant case, finite fixed point only exists when737

χ⋆
K =

4σ2
w

π

1

(1 + 2K⋆)
√
1 + 4K⋆

≤ 1 . (121)

Numerical results show the condition is satisfied everywhere in σb − σw plane, where χ⋆
K = 1 is only738

possible when K⋆ = 0.739

I.2 Jacobians740

Follow the definition741

χl
J = σ2

wEθ

[
ϕ′(hl

i)ϕ
′(hl

i)
]

=
4σ2

w√
2π3Kl

∫
dhl

i e
−2(hl

i)
2

e−
(hl

i)
2

2Kl

=
4σ2

w

π

1√
1 + 4Kl

. (122)

To find phase boundary χ⋆
J = 1, we need to combine Eq.(120) and Eq.(122) and evaluate them at742

K⋆.743

K⋆ =
2σ2

w

π
arcsin

(
2K⋆

1 + 2K⋆

)
+ σ2

b , (123)

χ⋆
J =

4σ2
w

π

1√
1 + 4K⋆

= 1 . (124)

One can solve equations above and find the critical line744

σb =

√
16σ4

w − π2

4π2
− 2σ2

w

π
arcsin

(
16σ4

w − π2

16σ4
w + π2

)
. (125)

Critical point is reached by further requiring χ⋆
K = 1. Since χ⋆

K ≤ χ⋆
J , the only possible case is745

K⋆ = 0, which is located at746

(σw, σb) =

(√
π

4
, 0

)
. (126)

I.3 Critical Exponents747

We show how to extract critical exponents of the NNGP kernel and Jacobians of erf activation748

function.749

Critical point for erf is at (σb, σw) = (0,
√

π
4 ), with K⋆ = 0. Now suppose l is large enough such750

that the deviation of Kl from fixed point value K⋆ is small. Define δKl ≡ Kl −K⋆. Eq.(120) can be751

rewritten as752

δKl+1 =
1

2
arcsin

(
2δKl

1 + 2δKl

)
≈δKl − 2(δKl)2 .

(127)

From lemma D.1753

A =
1

2
and ζK = 1 . (128)
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Next we analyze critical exponent of Jacobians by expanding (122) around K⋆ = 0 critical point754

(σb, σw) = (0,
√

π
4 ).755

To leading order l−1 we have756

χl
J ≈1− 2δKl

≈1− 1

l
.

(129)

Thus the recurrence relation for partial Jacobian, at large l, takes form757

J l0,l+1 =

(
1− 1

l

)
J l0,l . (130)

At large l758

J l0,l = cl0 l
−1 , (131)

with a non-universal constant cl0 .759

The critical exponent is760

ζ = 1 , (132)

which is the same as ζK.761

I.4 LayerNorm on Pre-activations762

Use lemma C.9, we have763

χl
J =

σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]∣∣∣∣∣

K̃l−1=1

=
4σ2

w√
5
[
2σ2

w arcsin
(
2
3

)
+ πσ2

b

] . (133)

The critical line is then defined by764

σb =

√
2

π

[
2√
5
− arcsin

(
2

3

)]
σw

≈ 0.324σw . (134)

I.5 LayerNorm on Activations765

Due to the symmetry of erf activation function Eθ

[
ϕ(hl

i)
]
= 0, we only need to modify our known766

results.767

Eθ

[
ϕ′(hl

i)ϕ
′(hl

i)
]
=

4

π

1√
1 + 4(σ2

w + σ2
b )

, (135)

Eθ

[
ϕ(hl

i)ϕ(h
l
i)
]
=

2

π
arcsin

(
2(σ2

w + σ2
b )

1 + 2(σ2
w + σ2

b )

)
. (136)

Thus768

χl
J =

2σ2
w√

1 + 4(σ2
w + σ2

b )
· 1

arcsin
(

2(σ2
w+σ2

b )

1+2(σ2
w+σ2

b )

) , (137)

where the phase boundary is defined by the transcendental equation χl
J = 1.769
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I.6 Residual Connections770

The recurrence relation for the NNGP kernel can be evaluated to be771

Kl+1 =
2σ2

w

π
arcsin

(
2Kl

1 + 2Kl

)
+ σ2

b + µ2Kl . (138)

Finite fixed point only exists when772

χ⋆
K =

4σ2
w

π

1

(1 + 2K⋆)
√
1 + 4K⋆

+ µ2 ≤ 1 . (139)

Notice that χ⋆
K ≤ χ⋆

J still holds, where the equality holds only when K⋆ = 0.773

The recurrence coefficient for Jacobian is evaluated to be774

χ⋆
J =

4σ2
w

π

1√
1 + 4K⋆

+ µ2 . (140)

The critical line is defined as775

σb =

√
16σ4

w − π2(1− µ2)2

4π2(1− µ2)
− 2σ2

w

π
arcsin

(
16σ4

w − π2(1− µ2)2

16σ4
w + π2(1− µ2)2

)
. (141)

Critical point is reached by further requiring χ⋆
K = 1. Since χ⋆

K ≤ χ⋆
J , the only possible case is776

K⋆ = 0, which is located at777

(σw, σb) =

(√
π(1− µ2)

4
, 0

)
. (142)

Note that for µ = 1, one needs to put extra efforts into analyzing the scaling behavior. First we notice778

that Kl monotonically increases with depth l – the recurrence relation for the NNGP kernel at large l779

(or large Kl) is780

Kl+1 ≈ σ2
w + σ2

b +Kl , (143)
which regulates the first term in (140).781

For µ = 1 at large depth782

χl
J ∼ 1 +

4σ2
w

π
√

C0 + 4(σ2
w + σ2

b )l
. (144)

Here C0 is a constant that depends on the input.783

We can approximate the asymptotic form of logJ l0,l as follows784

logJ l0,l = log

(
l∏

l′=l0

χl′

J

)

=

l∑
l′=l0

log

(
1 +

4σ2
w

π
√
C0 + 4(σ2

w + σ2
b )l

′

)

≈
∫ l

l0

dl′ log

(
1 +

4σ2
w

π
√
C0 + 4(σ2

w + σ2
b )l

′

)
∼ 2c̃

√
l +O(log l) , (145)

where c̃ =
2σ2

w

π
√

σ2
w+σ2

b

.785

We conclude that at large depth, the APJN for µ = 1, erf networks can be written as786

J l0,l ∼ O
(
e2c̃

√
l+O(log l)

)
. (146)

This result checks out empirically, as shown in Figure 7.3787

3We used NTK parameterization for this experiment. However, we emphasize that it does not affect the final
result.
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Figure 7: log(J l0,l)-
√
l for µ = 1, σ2

b = 0, erf.

I.7 Residual Connections with LayerNorm on Preactivations (Pre-LN)788

Use lemma C.9 and results we had without residue connections for erf with LayerNorm on preactiva-789

tions.790

χ∗
J = lim

l→∞

(
σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]∣∣∣∣∣

K̃l−1=1

+ µ2

)

=
4σ2

w(1− µ2)√
5
[
2σ2

w arcsin
(
2
3

)
+ πσ2

b

] + µ2 . (147)

The critical line is then defined by791

σb =

√
2

π

[
2√
5
− arcsin

(
2

3

)]
σw

≈ 0.324σw .

(148)

J Results for GELU Activation Function792

Definition J.1 (GELU activation function).

ϕ(x) =
x

2

[
1 + erf

(
x√
2

)]
=
x

2

[
1 +

2√
π

∫ x√
2

0

e−t2dt

]
. (149)
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J.1 NNGP Kernel793

Use lemma 2.2 for GELU794

Eθ
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ϕ(hl

i)ϕ(h
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i)
]
=
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2πKl

∫
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i√
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2

)]
e−
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32πKl
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2

)
e−

(hl
i)

2

2Kl
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4
+
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32πKl

∫
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)
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2

2Kl

+
(Kl)2√
32πKl

∫
dhl

i

[
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(
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i√
2

)
erf′
(
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i√
2

)
+ erf

(
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i√
2

)
erf′′

(
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i√
2
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e−

(hl
i)

2

2Kl

=
Kl

4
+

Kl

2π

[
arcsin

(
Kl

1 +Kl

)
+

2Kl

(1 +Kl)
√
1 + 2Kl

]
, (150)

where from the third line to the fourth line we used integrate by parts twice, and to get the last line795

we used results from erf activations.796

Thus the recurrence relation for the NNGP kernel is797

Kl+1 =

[
Kl

4
+

Kl

2π
arcsin

(
Kl

1 +Kl

)
+

(Kl)2

π(1 +Kl)
√
1 + 2Kl

]
σ2
w + σ2

b . (151)

As a result798

χ⋆
K =

σ2
w

4
+

σ2
w

2π

[
arcsin
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K⋆

1 +K⋆

)
+

4(K⋆)3 + 11(K⋆)2 + 5K⋆

(1 +K⋆)2(1 + 2K⋆)
3
2

]
. (152)

J.2 Jacobians799

Follow the definition800

χl
J =σ2

wEθ

[
ϕ′(hl

i)ϕ
′(hl
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]
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2πKl
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)
+
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(

hl
i√
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+
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e−
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2

2

√
2π

+
e−(hl
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2

(hl
i)

2

2π

 e−
(hl

i)
2

2Kl

=
σ2
w

4
+

σ2
w

2π

[
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(
Kl

1 +Kl

)
+

Kl(3 + 5Kl)

(1 +Kl)(1 + 2Kl)
3
2

]
, (153)

where we dropped odd function terms to get the third line, and to get the last line we used known801

result for erf in the second term, integrate by parts in the third term.802

Here to get the critical line is harder. One can use the recurrence relation for the NNGP kernel at803

fixed point K⋆ and χ⋆
J = 1804

K⋆ =
σ2
w

4
K⋆ +

σ2
w

2π

[
arcsin

(
K⋆

1 +K⋆

)
+

σ2
wK⋆

π(1 +K⋆)
√
1 + 2K⋆

]
K⋆ + σ2

b , (154)

χ⋆
J =

σ2
w

4
+

σ2
w

2π

[
arcsin

(
K⋆

1 +K⋆

)
+

K⋆(3 + 5K⋆)

(1 +K⋆)(1 + 2K⋆)
3
2

]
= 1 . (155)
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Cancel the arcsin term, σw and σb then can be written as a function of K⋆805

σw = 2

[
1 +

2K⋆(3 + 5K⋆)

π(1 +K⋆)(1 + 2K⋆)
3
2

+
2

π
arcsin

(
K⋆

1 +K⋆

)]− 1
2

, (156)

σb =
K⋆

√
2π(1 + 2K⋆)

3
4

σw . (157)

One can then scan K⋆ to draw the critical line.806

In order to locate critical point, we further require χ⋆
K = 1. To locate the critical point, we solve807

χ⋆
J − χ⋆

K = 0 instead. We have808

σ2
w[(K⋆)3 − 3(K⋆)2 − 2K⋆]

2π(1 +K⋆)2(1 + 2K⋆)
3
2

= 0 , (158)

which has two non-negative solutions out of three809

K⋆ = 0 and K⋆ =
3 +

√
17

2
. (159)

One can then solve σb and σw by plugging corresponding K⋆ values.810

(σw, σb) = (2, 0) , for K⋆ = 0 , (160)

(σw, σb) ≈ (1.408, 0.416) , for K⋆ =
3 +

√
17

2
. (161)

J.3 Critical Exponents811

GELU behaves in a different way compare to erf. First we discuss the K⋆ = 0 critical point, which is812

located at (σb, σw) = (0, 2). We expand Eq.(151), and keep next to leading order δKl = Kl −K⋆813

δKl+1 ≈ δKl +
6

π
(δKl)2 . (162)

From lemma D.1814

A = −π

6
and ζK = 1 , (163)

which is not possible since δKl ≥ 0 for this case. This result means scaling analysis is not working815

here.816

Next, we consider the other fixed point with K⋆ = 3+
√
17

2 at (σb, σw) = (0.416, 1.408). Expand the817

NNGP kernel recurrence relation again.818

δKl+1 ≈ δKl + 0.00014(δKl)2 . (164)

Following the same analysis, we find819

δKl ≈ −7142.9 l−1 . (165)

Looks like scaling analysis works for this case, since K⋆ > 0. The solution shows that the critical820

point is half-stable[40]. If Kl < K⋆, the fixed point is repealing, while when Kl > K⋆, the fixed point821

is attractive. However, the extremely large coefficient in the scaling behavior of δKl embarrasses the822

analysis. Since for any network with a reasonable depth, the deviation δKl is not small.823

Now we can expand χl
J at some large depth, up to leading order l−1.824

χl
J ≈ 1− 66.668

l
. (166)

Then825

δJ l0,l ≈ cl0 l
−66.668 , (167)

where cl0 is a positive non-universal constant.826

Critical exponent827

ζ = 66.668 . (168)
Which in practice is not traceable.828
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J.4 LayerNorm on Pre-activations829

Use lemma C.9, we have830

χl
J =

σ2
w

NlKl

Nl∑
k=1

Eθ

[
ϕ′(h̃l

k)ϕ
′(h̃l

k)
]∣∣∣∣∣

K̃l−1=1

=
σ2
w(6π + 4

√
3)

σ2
w(6π + 3

√
3) + 18πσ2

b

. (169)

The critical line is then at831

σb =
(
6
√
3π
)− 1

2

σw

≈0.175σw . (170)

J.5 LayerNorm on Activations832

First we need to evaluate a new expectation value833

Eθ

[
ϕ(hl

i)
]
=

1√
2π(σ2

w + σ2
b )

∫
dhl

i

hl
i

2

[
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(
x√
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e
− (hl

i)
2

2(σ2
w+σ2

b
)

=
σ2
w + σ2

b√
2π(1 + σ2

w + σ2
b )

, (171)

where we used integrate by parts to get the result.834

The other integrals are modified to835

Eθ

[
ϕ′(hl

i)ϕ
′(hl
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]
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1

4
+

1
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[
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(
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(172)
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(173)

One can then combine those results to find χl
J836
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J =
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(174)

The critical line defined by χl
J = 1, one can numerically solve it by scanning over σb and σw.837

J.6 Residual Connections838

The recurrence relation for the NNGP kernel is839

Kl+1 =

[
Kl

4
+

Kl

2π
arcsin

(
Kl

1 +Kl

)
+

(Kl)2

π(1 +Kl)
√
1 + 2Kl
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b + µ2Kl . (175)

Fixed point exists if840

χ⋆
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σ2
w

4
+

σ2
w

2π
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1 +K⋆

)
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2

]
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The recurrence coefficient for Jacobian is841

χ⋆
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σ2
w

4
+

σ2
w

2π

[
arcsin

(
K⋆

1 +K⋆

)
+

K⋆(3 + 5K⋆)
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3
2
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+ µ2 . (177)

Phase boundary is shifted842

σw = 2
√
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σb =
K⋆

√
2π(1 + 2K⋆)

3
4

σw . (179)

One can again scan over K⋆ to draw the critical line.843

In order to locate critical point, we further require χ⋆
K = 1. To locate the critical point, we solve844

χ⋆
J − χ⋆

K = 0 instead. We have845

σ2
w[(K⋆)3 − 3(K⋆)2 − 2K⋆]

2π(1 +K⋆)2(1 + 2K⋆)
3
2

= 0 , (180)

which has two non-negative solutions out of three846

K⋆ = 0 and K⋆ =
3 +

√
17

2
. (181)

One can then solve σb and σw by plugging corresponding K⋆ values.847

(σw, σb) = (2
√
1− µ2, 0) , for K⋆ = 0 , (182)

(σw, σb) ≈ (1.408
√
1− µ2, 0.416
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√
17

2
. (183)

J.7 Residual Connections with LayerNorm on Preactivations (Pre-LN)848

Use lemma C.9 and results we had without residue connections for GELU.849
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The critical line is then at850

σb =
(
6
√
3π
)− 1

2

σw

≈0.175σw ,
(185)

just like without residue connections.851

K Additional Experimental Results852

In the following training results, we used NTK parameterization for the linear layers in the MLP. We853

emphasize that this choice has little effect on the training and convergence in this case, compared to854

standard initialization.855

In figure 8, we compare the performance of deep MLP networks with and without LayerNorm. We856

note that the case with LayerNorm applied to preactivations continues to train at very large value857

of σ2
w. In all cases, networks are trained using stochastic gradient descent with MSE. We used the858

Fashion MNIST dataset[47]. All networks had depth L = 50 and width Nl = 500. The learning859

rates were logarithmically sampled860
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• within (10−8, 106) for ReLU, (10−5, 10) for LN-ReLU and ReLU-LN;861

• within (10−5, 1) for erf, LN-erf and erf-LN;862

• within (10−8, 10) for GELU, (10−3, 10) for LN-GELU and GELU-LN, where λmax is the863

largest eigenvalue of NTK for each σw.864
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Figure 8: Performance of deep MLP networks at and away from criticality, with and without
LayerNorm. The blue plateau, corresponding to LayerNorm applied to preactivations, continues to
train at very large values of σ2

w without the need to tune the learning rate.

In figure 9, we showed empirically that the critical exponent of partial Jacobians are vanished for erf865

with LayerNorm.
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Figure 9: log− log plot of partial Jacobian J 0,l vs. l for (A) LN-erf and (B) erf-LN.

866

In figure 10, we tested 6k samples from CIFAR-10 dataset[23] with kernel regression based on neural867

tangents library [35] [26] [36]. Test accuracy from kernel regression reflects the trainability (training868

accuracy) with SGD in ordered phase. We found that the trainable depth is be predicted by the869

correlation length cξ with LayerNorm applied to preactivations, where the prefactor c = 28. The870

prefactor we had is the same as vanilla cases in [49]. The difference is from the fact that they used871

log10 and we used loge.872

In figure 11, we explore the broad range in σ2
w of the performance of MLP network with erf activation873

function and LayerNorm on preativations. The network has depth L = 50 and width Nl = 500; and874

is trained using SGD on Fashion MNIST. The learning rates are chosen based on a logarithmic scan875

with a short training time.876
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Figure 10: Test accuracy for LayerNorm applied to preactivations. σ2
b = 0.5 for all cases. Correlation

lengths calculated using analytical results of χl
J .
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Figure 11: Training performance of MLP networks with erf activation function; and LayerNorm
applied to preactivations. It continues to train for several orders of magnitude of σ2

w (with learning-
rate tuning).
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