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A Proof – NPT Is Equivariant over Datapoints

We here provide proof that NPT is equivariant to a permutation of the datapoints. This requires,
among other things, showing that multi-head self-attention is equivariant. We were unable to find
this proof in the existing literature, e.g., Set Transformer [59] relies heavily on equivariance of
self-attention but does not provide proof. In the following, we will refer to datapoints as the rows of
our input, see e.g., Fig. 1.

Definition 1. A function f : Xn → Xn is row-equivariant if for any permutation σ :
[1, . . . , n] → [1, . . . , n] applied to the dimensions of Xn, we have for all i, f(X1, . . . , Xn)[i] =
f(Xσ−1(1), . . . , Xσ−1(n))[σ(i)].

Lemma 1. Any function of the form f(X1, . . . , Xn) = (g(X1), . . . , g(Xn)) for some g is row-
equivariant. These functions are denoted as ‘row-wise operations’, as they consist of the same
function applied to each of the rows of the input.

Proof. Follows immediately from the structure of f .

Lemma 2. The composition of row-equivariant functions is row-equivariant.

Proof. This result is widely known, but a proof here is included for completeness. Let f and g be
row-equivariant.

f ◦ g(σX) = f(g(σX)) = f(σg(X)) = σf(g(X)). (8)

Lemma 3. Let W ∈ Rn×m1 and X ∈ Rm2×n. The function X 7→ XW is row-equivariant.

Proof. Let σX be a permutation of the rows of X . Then we have

(σX)W [i, j] =
∑

σX[i, k]W [k, j] (9)

=
∑

X[σ−1(i), k]W [k, j] = XW [σ−1(i), j] = σ(XW )[i, j]. (10)

Lemma 4. The function X 7→ Att(XWQ, XWK , XWV ) is row-equivariant.

Proof. Let the row-wise softmax function be denoted ω(·). Then we have

Att(XWQ, XWK , XWV ) = ω(XWQ(XWK)>/
√
h)XWV , (11)

where

σXWQ(σXWK)>[i, j] = σ(XWQ)σ(XWK)>[i, j] (12)

=
∑

σ(XWQ)[i, k]σ(XWK)[j, k] (13)

=
∑

XWQ[σ−1(i), k]XWK [σ−1(j), k] (14)

= XWQ(XWK)>[σ−1(i), σ−1(j)] (15)
=: A. (16)

Note that the above result states that the function XWQ(XWK)> is not row-equivariant because of
the additional permutation of the columns. Let σ denote a permutation operator on matrices. Then
straightforwardly we have the following:

ω(σA/
√
h)) = σω(A/

√
h) . (17)
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Finally, it remains to show that the final matrix multiplication step restores the row-equivariance
property we seek.

σ ω(XWQ(XWK)>/
√
h)︸ ︷︷ ︸

=:M

(σXWV )[i, j] = σ(M)(σXWV )[i, j] (18)

= σ(M)σ(XWV )[i, j] (19)

=
∑

M [σ−1(i), σ−1(k)](XWV )[σ−1(k), j] (20)

= M(XWV )[σ−1(i), j]. (21)

Which shows that self-attention is row-equivariant.

Lemma 5. The following hold:

1. Multihead self-attention is equivariant.
2. If f and g are row-equivariant, then the function x 7→ g(x) + f(x) is also row-equivariant.
3. Res(H) is row-equivariant.
4. MHSA(H) is row-equivariant.
5. ABD is row-equivariant.
6. ABA is row-equivariant.

Proof. We show each item.

1. We know thatX 7→ Oi is equivariant from the previous lemma, and this trivially implies that
X 7→ concat(O1, . . . , Ok) will also be row-equivariant. Finally, because σAB = σ(AB),
get that MHSelfAtt(H) is row-equivariant.

2. Straightforward.
3. Because LayerNorm is row-equivariant (being a function applied row-wise to the matrix),

Res(H) is a sum of two row-equivariant functions and so by a previous result will also be
row-equivariant.

4. Because rFF is again a row-wise operation and so trivially row-equivariant, the previous re-
sults on sums and compositions of row-equivariant functions directly yield row-equivariance
of MHSA.

5. ABD is by definition an application of MHSA(H), and therefore is row-equivariant by the
above result.

6. ABA is a row-wise operation and is therefore trivially row-equivariant.

Property A.0.1. NPT is row-equivariant.

Proof. Each layer of NPT has been shown to be row-equivariant. Because NPT is a composition of
such row-equivariant functions, it is therefore row-equivariant.

B Additional Results

B.1 Semi-Synthetic Experiments

B.1.1 Attention Maps for the Semi-Synthetic Experiments

We here display additional results for the semi-synthetic experiments of Section 4.2. In Fig. B.1, we
display attention weights for Attention Between Datapoints (ABD) for all depths and a subset of
heads of the architecture. We see that some, but not all, attention heads display the desired diagonal
lookup pattern. Note that, in this case, one head would suffice to implement lookup and perfectly
solve the task.

A brief comment on the attention maps with the “double diagonal” structure (e.g., depth 4, head
0): we see that (a) original datapoints attend to the duplicate points and (b) duplicates also attend
to duplicate datapoints. Behavior (a) makes sense: NPT needs to attend to the duplicates from the
originals to look up the target values. This behavior in turn minimizes loss. Behavior (b) is irrelevant
to loss, because NPT does not need to predict anything for the duplicates, and no loss is computed.
However, (b) suggests that the query embeddings learned by the self-attention ignore the masked
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Figure B.1: Visualizations of NPT attention maps for Attention Between Datapoints (ABD) for the
semi-synthetic experiment at all model depths, a selection of heads, and a single batch of input data.
Evidently, not all attention maps need to perform a “lookup” for the model to solve the task. In fact,
some heads appear to learn almost query-independent behavior (e.g., heads 0, 1, and 2 at depth 0).

out label column in the input. Hence, the resulting queries for the originals and the duplicates would
be identical – both leading to high attention values for the keys of the duplicates – and ultimately
resulting in the double diagonals in Fig. B.1.

B.1.2 Modified Semi-Synthetic Experiments

Setup. In Section 4.2, we mention that with some concessions the original lookup task can also be
solved by standard non-parametric models. However, we also mention that simple modifications to
the task make it, again, unsolvable for any model of which we are aware other than NPT. We here
demonstrate these hypotheses for two non-parametric models: k-Nearest Neighbors (k-NN) and Deep
Kernel Learning (DKL).
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Table 3: Variations of the semi-synthetic dataset that require learning of between-datapoint inter-
actions more complex than simple lookups. While NPTs can learn complex interactions between
datapoints, conventional non-parametric approaches lack flexibility and fail.

Test RMSE ↓ Original Synthetic Random Feats. Add One Random Feats. + Add One

1-NN 0.00 7.19 6.11 7.80
k-NN 0.00 5.42 5.18 5.64
DKL 0.00 5.94 6.31 6.36
NPT 0.34 0.24 0.46 0.75

First, we apply k-NN and DKL to the original duplication tasks. As mentioned in the main text, this
already requires us to make some concessions: we now need to explicitly split the input data into a
global training set (all duplicated datapoints) as well as a test set (all original datapoints). That is,
if all duplicate datapoints make up the training set, then non-parametric models are able to predict
perfectly on the original datapoints, because most non-parametric models rely on distances in some
manner, and here, distances in input feature space are sufficient to successfully match entries. This is
trivially true for k-NN but also for DKL, where the RBF kernel of the GP will lead to the desired
“matching behavior” as long as the learned neural network embedding does not collapse distances.

In other words, NPTs would ideally learn a k-NN-style prediction for the semi-synthetic dataset.
Crucially, while non-parametric models predict based on distances because of fixed design choices,
NPTs learn this behavior and can just as well learn other more complicated relations between
datapoints.

We now present two modifications to the semi-synthetic dataset; NPT can accommodate them because
the model learns the nature of interactions, but they significantly affect the performance of the fixed
kernel methods.

• Random Features: A subset of the features are randomized across both original and
duplicate datapoints independently. Specifically, we overwrite the entries of the last three
features with noise drawn independently from a Gaussian distribution N (1, 1). To solve the
task, matches between datapoints must now be computed using the subset of non-randomized
features only.

• Add One: We add 1 to all target regression values only for the duplicate datapoints. Matches
can still be made based on all features, but now a 1 must be subtracted from the lookup
value to solve the task.

As in the original setting, we train the models on the modified semi-synthetic datasets and check with
novel test data whether they have learnt the correct relational mechanism underlying the experiment.

Note that the Random Features and Add One settings also distinguish our setup from prompting in
natural language processing literature [12, 72] because the original datapoints are no longer “correct”
input-output pairs; the model must use an underlying relational structure instead of memorization to
solve the task.

Results. Table 3 presents RMSE values obtained by the models when trained on the original
duplication task, the two modifications separately, as well as both modifications applied.

Evidently, for NPTs, the different scenarios do not lead to a large difference in performance; in
all instances, they achieve near-perfect loss because their predictions leverage attention between
datapoints. Careful optimization of NPT training convergence would likely lead to a further reduction
in loss. Nevertheless, the achieved losses by NPT are more than a magnitude lower than those
on the original data and correspond to a near-perfect Pearson-correlation with the target values of
r > 99.9%. We conclude that NPTs successfully learn to attend to the correct subset of features, to
subtract 1 from the lookup target values, or to do both at the same time.

Next, we consider the non-parametric models. First, we confirm in Original Synthetic that the
non-parametric models can indeed solve the original lookup task. However, we find that neither DKL
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nor k-NN can accommodate any of the modifications, reverting to an RMSE that is worse than the
performance of all baselines on the original Protein dataset, see Table 11.5

For k-Nearest Neighbor, k = 1 is clearly optimal in the original semi-synthetic setup. However,
k-NN cannot learn to ignore certain attributes (Random Features) and or to modify looked-up values.
Setting k > 1 actually improves prediction because it considers other matching points in addition to
the (now misleading) duplicates for prediction. However, even with k > 1, k-NN does not achieve
much better than guessing performance on the modified tasks.

DKL also fails to accommodate any of the presented task modifications. We suspect that DKL, in
theory, should be able to solve the Random Features task. That is, DKL should be able to use the
neural network to learn a representation that discards any information from the randomized columns.
We were unable to achieve this, but it may be possible with additional adaptations to the model.
Ideally, we would condition the GP on new “test data” (the duplicates) in each minibatch during
training. This was not easily possible with the GPyTorch codebase.6 At test time however, we did
directly reconstruct an exact GP using embedded inputs and RBF scale parameters learned during
training.

In any case, DKL can never solve the Add One scenario because, after independently transforming
features with a neural network, DKL simply applies a GP in embedding space. This means that it
will always naively interpolate target values between training data (duplicates) and test data (features)
in embedding space, and cannot learn interactions between points, such as subtracting 1 from all
duplicate targets.

Even further, there is another easy option of how to construct this experiment such that only NPT
will be able to solve it: we could randomly sample the attribute for which we mask out the entry,
i.e., all columns can now be target columns. All non-parametric models presented here rely on a
fixed set of features as input to predict for a fixed target column. They are not compatible with
this style of “imputation” problem, i.e., there is no way to even take as input data like this in such
models. NPTs, however, take both features and targets as input, only using the masking mechanism
to distinguish between features and targets as well as train and test data. Hence, they can easily adapt
to this scenario.

The bad results for the non-parametric models also highlight that these models must predict non-
parametrically, unlike NPT, which could always fall back to parametric prediction if it cannot learn
the interactions required for a task.

(k)-NN Hyperparameter details. We use the scikit-learn [69] implementation of (k)-Nearest Neigh-
bors, where we exhaustively search for neighbors by setting algorithm=brute and otherwise use
default parameters. For 1-NN, we set k = 1, for k-NN we sweep over k ∈ [1, . . . , 10] and report
results for the k that achieved the best performance.

DKL Hyperparameter details. We use the GPyTorch implementation of Deep Kernel Learning. We
perform a non-exhaustive random sweep over a selection of hyperparameters and select those with
best validation performance. This results in the following changes from the default hyperparameter
values: for the Original Synthetic and Add One scenario we disable dropout, use hidden layers
[100, 100], a learning rate of 0.0001, train for a maximum of 30000 epochs, with 256 inducing points,
8 features, batch size of 128, and early stopping patience on the validation loss of 20 epochs. For the
Random Features and the Random Features + Add One scenarios, we arrive at the same configuration,
except that we train with 64 inducing points.

5In fact, the RMSEs are about equal to the standard deviations of the target values in the Protein dataset,
6.11, such that the values obtained by the models on the modified setups amount to random guessing. We further
note that we apply all modifications to the standardized input data, such that the Add One setting adds a full
standard deviation for the final evaluation in Table 3.

6Gardner, Jacob R., et al. "Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu accelera-
tion." NeurIPS 2018.
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B.2 Attention Between Datapoints on Real Data

B.2.1 Corruption Experiments

In our Data Corruption experiments in Section 4.3, we make use of Algorithm 1 below. When
predicting for a datapoint k, this algorithm completely destroys information from all other datapoints
i 6= k in the batch b by randomly permuting attribute values across all other datapoints. Therefore, if
NPT’s loss increases after corruption, it must meaningfully rely on attention between datapoints for
prediction.

Algorithm 1: Data Corruption

Input: list of masked minibatches B = [X(b) ∈ RK×d | b ∈ 1 . . . B], unmasked label column
X:,d, trained model f : X(b) →X(b), batch size K, loss function L, number of
attributes (including features and target) d

Returns: test loss under data corruption Lcorr

Lcorr ← 0

forX(b) in B do
for k in 1 . . .K do

X(b,k) ←X(b) // initialize batch to be corrupted
for j in 1 . . . d do

X
(b,k)
i 6=k,j ← permuteaxis=i(X

(b,k)
i 6=k,j) // permute each attr. column indep.

end
Lcorr += L(f(X(b,k))k,d,Xk,d) // compute loss w/ unmasked label column

end
end
return Lcorr

Alternatively, we could also input datapoints individually, i.e., decrease the minibatch size to 1, to test
if NPT depends on attention between datapoints. Indeed, we find that performance also deteriorates
in this scenario. However, we believe that the Data Corruption experiment provides stronger evidence
because it preserves batch statistics across attributes. This makes sure that performance deterioration
is not caused by spurious factors, such as a decreased batch size that was not encountered in training.
While NPT is generally compatible with varying batch sizes, we leave a thorough investigation of
this for future work.

B.3 Real Data – To Which Other Points Does NPT Attend?

B.3.1 Attention Maps on Real Data

In Fig. B.2, we display ABD attention maps of NPT for the Protein regression dataset in addition to
the one shown in Section 4.4. For visualization purposes, we sort the input datapoints with respect to
their feature space distance to an arbitrary test datapoint. This is to ensure that the global structure of
the attention maps in Fig. B.2 has meaning. Specifically, nearby entries in the attention maps belong
to input datapoints that are close in input space. With this transformation, the diagonal patterns
appearing in Fig. B.2 clearly suggest that our model is attending more strongly between datapoints
that are similar in input space. Similar to the semi-synthetic experiments, some but not all attention
heads display this pattern of interest.
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Figure B.2: Visualizations of the Attention Between Datapoints (ABD) attention maps for real data
– here, the Protein regression dataset – for all depths and a selection of heads. Input to the model
is sorted such that datapoints that are similar in input space have nearby indices. The diagonal
pattern (e.g., depth 2 and head 1) indicates that the model attends to similar inputs more strongly. For
illustration purposes, we here plot the log of the attention values.
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Algorithm 2: Data Deletion

1 Input: Masked dataX ∈ Rn×d, active sample index i∗.

2 ŷ ← NPT(X)i∗,d // original NPT prediction at active datapoint
3 ∆max ← 0.1 // maximum allowed change in prediction
4 ∆it ← 0.01 // initialize maximum change per deleted datapoint
5 Nmax-retry ← 50 // maximum number of retries before increasing ∆it
6 ε← 0.02 // fraction of points remaining at which we break
7 R ← {1, . . . , n} \ {i∗} // initialize remaining set
8 Nretry ← 0 // initialize no. of retries

9 while True do
10 c =random_choice(R) // random proposal for data deletion
11 ŷproposal = NPT(X(R\{c})∪{i∗})i∗,d // predict without proposed datapoint

12 ∆proposal =
|ŷproposal−ŷ|

ŷ // change in pred. when deleting proposal
13 if ∆proposal < ∆it then
14 if ∆proposal < ∆max then
15 R ← R \ {c} // delete datapoint from input
16 Nretry ← 0
17 else
18 break // exceeded maximum change

19 else
20 Nretry ← Nretry + 1 // candidate change was too large, try again

21 if Nretry ≥ Nmax-retry then
22 ∆it ← 1.1 ·∆it // increase allowed change per iteration
23 Nretry ← 0

24 if |R|< ε · n then
25 break // less than ε% of original datapoints remaining

end
26 returnR

B.3.2 Data Deletion Experiment

We here give full details on the Data Deletion experiment presented in Section 4.4. To recap, we
consider the prediction of NPT for a single test sample i∗. We then iteratively delete other datapoints
from the input if they do not significantly change the prediction of NPT on i∗. Algorithm 2 describes
this in detail. We are then interested in differences between the deleted and the kept datapoints.
Specifically, we compare the average feature space distance in input space between the active
datapoint i∗ and either the kept datapointsR or deleted datapoints {1, . . . , n}\ ({i∗}∪R), obtaining
average distances Di∗,kept, Di∗,deleted. We break out of the deletion algorithm if less than ε% of the
original points remain, to reduce variance in our estimates of the kept statistic. We repeat Algorithm 2
for all 5567 test points i∗ ∈ Dtest in the Protein regression dataset.

We perform a Wilcoxon signed-rank test on the pairs {Di∗,kept, Di∗,deleted}i∗∈Dtest
to determine if the

median of the kept datapoints is less than the median of the deleted ones. The test is highly significant
at p ≈ 0, i.e., smaller than the floating point precision of SciPy Stats allows. The raw Wilcoxon
statistic is 3125889.5.

To make sure the difference is not an effect of sample size, we also construct a set of average
differences to a set of randomly drawn datapoints.7 That is, instead of using Algorithm 2 for targeted
deletion, we randomly construct R, essentially only applying lines 10 and 15 of Algorithm 2. For

7There are many fewer kept than deleted datapoints. Further, there are outliers in the dataset, and these affect
the deleted datapoints more often than the kept datapoints. We find that the average distance between a random
subset and the deleted (not the kept!) datapoints also becomes statistically significantly smaller at large sample
sizes. Hence, we compare the deleted datapoints to a random subset to control for size effects.
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Figure B.3: When predicting for any given datapoint, NPT prefers to keep similar datapoints around.
Displayed are average feature space differences and their standard errors between the active datapoint
and the sets of kept, random, and deleted datapoints for a single batch.

each active test row i∗, we randomly delete as many datapoints as were deleted in targeted fashion. A
Wilcoxon signed-rank test between the distances for the random and kept subset is likewise significant
at p ≈ 8.77 · 10−130. This is the value we report in the main body.

We also run a computationally more demanding version of the algorithm with ∆it ← 0.005, ε← 0.01
to see how many points we can successfully delete. This version of the algorithm requires more
computation which is why we limit execution to the test datapoints of a single batch. The results are
statistically significant at 5.26 · 10−49 for kept < deleted and 8.38 · 10−39 for kept < random for a
Wilcoxon signed-rank test. We illustrate the differences between the distances in Fig. B.3. We further
note that using Algorithm 2, we are able to reduce the set of datapoints present in the input to 1% of
the original n for 79.5% of active test datapoints and to 10% in 99.5% of cases. Percentages refer to
n = 2048 datapoints in total, of which 398 were test datapoints.

All in all, these experiments strongly suggest that NPT relies on interactions between similar data-
points for prediction.

B.4 Ablation Study 1: NPT Hyperparameters

We conduct an ablation study on the Protein and Boston Housing datasets (Table 4). For Protein, the
same 0.7/0.1/0.2 train/validation/test split is used for all model configurations. Boston Housing uses
a 0.7/0.2/0.1 train/validation/test split with 10-fold cross-validation.

Despite the significant difference in dataset sizes between Boston Housing (n = 506) and Protein
(n = 45730), and the fact that Boston Housing includes both categorical and continuous variables,
the base models used for each dataset are nearly identical.

On both datasets, we use an NPT model with 8 layers, 8 heads, per-attribute hidden dimension
e = 128, feature and target masking with p = 0.15 for each, a cosine annealing schedule for the
loss tradeoff λ, the LAMB [98] optimizer with Lookahead [99], a flat-then-anneal learning rate
schedule with cosine decay and base learning rate 0.001, dropout with rate 0.1 on the attention
weights and after linear layers, and gradient clipping at 1. This configuration is essentially the same
as the NPT-Base configuration described in Appendix C.1, which we use with minimal per-dataset
modifications for all other results in this work.

Different in our base models between the two datasets are the following settings. The Boston Housing
model takes as input the full dataset (i.e., batch size = 507) and Protein uses minibatching with batch
size = 2048. Boston Housing trains for 20 000 steps, and Protein for 400 000. The learning rate is
constant for the first 70 % of steps for Protein, but only for the first 50 % of steps for Boston, starting
the learning rate annealing earlier to defend against overfitting on the small dataset.These changes
directly result from the different dataset sizes.

As Table 4 shows, the performance of NPT is robust to a variety of significant hyperparameter choices.
This illustrates that practitioners will likely not need to spend much time tuning hyperparameters
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Table 4: NPT ablation study: test root mean-squared error (RMSE) on the Protein and Boston
Housing regression datasets.

Test RMSE (± Std Err) ↓ Protein Boston

Base NPT 3.41 3.00± 0.23
No Semi-Supervision 3.38 3.38± 0.46
No Target Masking 3.32 2.93± 0.18
No Feature Masking 3.56 2.95± 0.21
No Feature Masking, No Target Masking 3.58 3.20± 0.26
Feature Mask p = 0.15→ p = 0.5 3.87 3.39± 0.23
Target Mask p = 0.15→ p = 0.5 3.37 3.11± 0.28
8→ 4 Layers 3.43 3.30± 0.41
8→ 16 Layers 3.36 3.05± 0.24
8→ 4 Heads 3.42 3.25± 0.30
8→ 16 Heads 3.37 3.20± 0.39
Tradeoff λ = 0.5 3.50 2.96± 0.25

when applying NPT to novel datasets. We now give results for the ablation study on the Protein and
Boston datasets separately.

Protein Dataset. See Table 4 for results and performed ablations. It is computationally too
expensive for us to perform full cross-validation over all ablations for the Protein regression dataset.
Instead, we report the results of a single 5-fold cross-validation for the Base NPT configuration on
Protein (also varying the model random state). This results in an RMSE of 3.40 ± 0.05 (σ). The
standard deviation of the 5-fold cross-validation allows us to roughly gauge which ablations have
significant effect. Given the results in Table 4, we find that the majority of ablations do not lead to
meaningful changes in performance. Only the somewhat dramatic changes to the optimization of
NPT result in its performance falling from the top rank on the Protein Dataset (second rank CatBoost
has RMSE = 3.51): removing stochastic feature masking (pfeature = 0), removing both stochastic
feature masking (pfeature = 0) and stochastic target masking (ptarget = 1, training targets are always
masked out at training time and NPT therefore cannot learn to attend to training targets at test time),
or changing pfeature to 0.5 (meaning that 50% of all input features are masked out). NPT appears to be
particularly robust to changes in model complexity, e.g., depth and number of heads, although the
results suggest that we could have further increased the size of Base NPT to achieve slightly higher
performance.

Boston Dataset. See Table 4 for results and performed ablations. For the Boston dataset, we repeat
ablations over all 10 CV splits. Similarly, ablations on the Boston dataset are largely inconsequential;
none of them result in a statistically significant change in performance from the base model. The
second rank performer on Boston is MLP, at RMSE = 3.32. Only ablation of semi-supervision or
changing pfeature to 0.5 result in a change in the top ranking of NPT among the baselines.

Altogether, the ablation study supports the claim that NPT can be applied successfully with very little
tuning to datasets of vastly different sizes and feature types. Changes in model depth and number of
heads do not appear significant, but using a reasonably low feature masking probability (e.g., 15%, as
has been commonly used in the literature [24]) may be important to stable training.

Supported by these ablations, we sweep over only a small selection of configurations for our main
benchmark comparison in Section 4.1. And indeed, it seems that NPT is robust to hyperparameter
changes, given that these configurations perform well across vastly different settings (binary and
multi-class classification, datasets with millions of datapoints, etc.) than those explored in the
ablations. See Appendix E for details.

We speculate that NPT’s robustness stems from (a) being a relatively overparametrized architecture
that is powerful enough to model a wide variety of datasets and (b) from the effective regularization
introduced by the feature masking mechanism. Finally, we emphasize that the aim of this work is to
introduce the NPT architecture and examine its properties, not to spend significant effort and compute
resources on achieving top performance across all benchmarks.
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Table 5: Additional ablation studies. We study ablations of NPT (a) without ABA layers and (b)
without stochastic feature masking. In both cases, performance tends to decrease. These results
suggest that both ABA layers and stochastic feature masking contribute positively to the performance
of NPTs. For the small datasets, we report mean values and standard errors over 10 CV splits.

NPT without ABA NPT without Feature Masking Default NPT

Classification

Poker Hand (Acc. ↑) 57.4 69.7 99.3
Forest Cover (Acc. ↑) 95.5 96.0 96.7
Higgs Boson (AUC ↑) 0.859 0.871 0.892
Income (AUC ↑) 0.952 0.952 0.952
Kick (AUC ↑) 0.767 0.766 0.770
Breast Cancer (AUC ↑) 0.992± 0.008 0.996± 0.006 0.997 ± 0.001
Regression

Boston Housing (RMSE ↓) 3.22± 0.25 3.18± 0.35 2.92 ± 0.15
Yacht (RMSE ↓) 1.15± 0.11 0.50 ± 0.06 1.27± 0.15
Concrete (RMSE ↓) 4.79 ± 0.12 5.37± 0.20 5.21± 0.20
Protein (RMSE ↓) 3.29 3.59 3.41

B.5 Ablation Study 2: NPT without ABA and NPT without Feature Masking

We next present an additional ablation study targeting two core components of NPTs across all
datasets: the Attention Between Attributes (ABA) layer and the stochastic feature masking.

ABA Layer. First, we perform an ablation to test if ABA layers are beneficial in practice. For this,
we simply leave out the ABA layers, such that the MLP at the end of the ABD layers (see “rFF” in
Eq. (5)) is now the only way for the model to independently transform the features of input datapoints.

Our results, given in Table 5, show that, generally, ABA is a useful component of the NPT architecture.
Leaving out ABA increases performance only for 3/10 datasets. Interestingly, all three of these
datasets are regression tasks, which may warrant further investigation. We observe the largest
difference for the Poker Hands dataset, which requires complex reasoning between input features: in
the same number of training steps, the ablation only achieves 57.4% accuracy compared to 99.3% for
full NPT. These results support our hypothesis that ABA is useful when the dataset requires complex
transformations of the features. Our most general recommendation would be to default to using NPTs
with ABA layers, as they boost performance on the majority of datasets we examine. However, if
practitioners can spend the extra compute, exploring NPTs without ABA can be worthwhile.

Stochastic Feature Masking. We perform an ablation to test if the stochastic feature masking
objective (cf. §2.6) is beneficial in practice. For this, we simply disable all stochastic masking of
input features by setting pfeatures = 0.

Our results, also in Table 5, show that for 9/10 datasets, enabling feature masking yields at least a
small improvement in performance. Disabling feature masking is detrimental to the performance on
the Poker Hands dataset, leading to a 30% drop in accuracy. Again, our general recommendation
would be to use NPTs with feature masking by default, as it rarely seems to decrease performance
and sometimes helps significantly, but to explore NPTs without feature masking if feasible.

B.6 Computational Cost of Non-Parametric Transformers

We next compare the computational requirements of NPT against the various baselines. More
specifically, we compare experiment runtimes and maximum memory usage on the Protein and Higgs
datasets. We choose these datasets because they are representative of medium and large datasets
in terms of computational requirements, with 45 730 and 11 000 000 datapoints respectively. Note
that, while we re-use hyperparameter configurations across datasets for NPTs, the baselines require a
novel hyperparameter search to be performed for each dataset (cf. Appendices C and E). Below, we
include the cost of hyperparameter optimization for the baselines.
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Note that these numbers only provide a rough ordering of the compute and memory costs of the
various methods. We did not optimize the baselines or NPT for memory usage, training time, or
prediction speed. Additionally, while NPTs rely on GPU-accelerated PyTorch code, many of the
baselines are CPU-only: therefore, the results depend on our particular CPU and GPU choices.

We also give the number of CPUs used in each experiment for each baseline. Here, we maximize the
number of CPUs used in parallel execution in order to speed up training. This is mainly limited by the
memory used per process: e.g., if we list # CPUs as 1, this does not mean that we used a machine with
only 1 CPU, but rather that each process used a significant amount of the total available memory and
hence we could not increase the number of CPUs used in parallel. Note that, additionally, for the CPU
baselines, we made use of high-memory instances when this was necessary to avoid out-of-memory
issues.

In summary, the numbers we give are a rough indication of the computational cost that a practitioner
should expect to require in order to reproduce our results. It is likely that by tuning aspects of our
setup, both for NPTs and the baselines, memory usage and/or runtimes could be improved.

We display the observed computational costs in Tables 6 and 7 for the Protein and Higgs datasets. As
of now, NPTs do generally require longer training times than the non-neural baselines. For example,
for the Protein dataset, the selected hyperparameter configuration of NPT trains in 11 hours, while
all boosting methods finish their runs in less than 1 hour, including the hyperparameter tuning. The
exception to this rule is given by some of the baselines, e.g., Random Forests, which do not scale
well to large datasets such as Higgs. On Higgs, the NPT run takes 5d 22h compared to 13d 13h for
Random Forests.

With NPTs, we want to store as much data as possible in addition to the network weights; recall that
this is done to improve the quality of the minibatch approximation of the full dataset. Therefore, as
expected, NPT is much more GPU-memory intensive during training than TabNet, the only other
baseline with a GPU-based implementation, for which maximizing minibatch size is not desirable. In
particular, the peak GPU memory usage on Higgs for NPTs is 19.18 GB and 1.18 GB for TabNet.
However, we note that other methods are often also memory-intensive on larger datasets. For example,
Random Forest with 1 process uses 189.18 GB peak CPU memory.

We next give a rough indication of prediction time behavior of NPT and the baselines. For the
same reason as above, NPT is expected to have high memory usage at prediction time. In terms of
prediction speed, we suspect that our ability to scale NPT to large batch sizes, e.g., 4096 on the Higgs
dataset, might give us an advantage in comparison to those baselines that cannot be parallelized well
and/or lack GPU support. We leave a detailed investigation of prediction time behavior to future
work.

Finally, as discussed in §5, we note that by incorporating recent tools for sparse and efficient attention
[5, 18, 19, 47, 84], future research could significantly improve the scalability of NPTs.

B.7 Extended Results for Tabular Data Benchmarks

See Table 8 (Table 9) for test accuracies (negative log-likelihood scores) on the UCI classification
datasets and additionally Table 10 for AUROC results on the binary classification datasets. For the
regression datasets, see Table 11 for RMSE scores and Table 12 for MSE scores.

8Out-of-memory on the Higgs Boson dataset when attempting approximate 3-NN on an Azure D64 v3
instance with 256 GB RAM.

9TabNet had notably lower accuracy in our setup on the Poker Hand dataset (which has a fixed test set) than
that the 99.2% reported in the original work [2]. We are in communication with the authors, attempting to improve
these results. However, our results on Higgs Boson match the reported performance more closely (78.44%
(theirs) vs 77.1% (ours)). Further, we note that our other baselines achieve significantly better performance on
the same datasets than those reported in [2]; e.g., our MLP achieves 99.5% accuracy on Poker Hand dataset
while they report 50.0%; our XGBoost achieves 97.1% on Forest Cover while they report 89.34%. However,
we note that some of the datasets – such as Forest Cover – do not have fixed test sets. Therefore, we cannot
exclude the possibility that the performance differences are due to differently chosen train-test splits.

10See above note on out-of-memory.
11See above note on out-of-memory.
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Table 6: Protein dataset (45,730 datapoints): compute and memory requirements of hyperparameter
tuning for baselines and training time of the selected hyperparameter configuration for NPTs. We
report the number of CPUs used in execution, execution time, and peak memory usage, where the
relevant bottleneck is main memory usage for CPU-based methods and GPU memory usage for
GPU-based methods (i.e., TabNet and NPT).

Metric # CPUs Execution Time Peak Main Memory (GB) Peak GPU Memory (GB)

Random Forest 8 13h 33m 58s 7.82 –
Gradient Boosting 1 47m 51s 11.17 –
XGBoost 8 10m 31s 2.94 –
CatBoost 1 8m 33s 11.27 –
LightGBM 8 21s 1.65 –
MLP 64 42m 14s 8.96 –
k-NN 8 1m 8s 40.47 –
TabNet 1 1h 33m 35s 16.00 3.72
NPT 4 11h 51m 25s 4.42 6.17

Table 7: Higgs dataset (11,000,000 datapoints): compute and memory requirements of hyperparameter
tuning for baselines and training time of the selected hyperparameter configuration for NPTs. We
report the number of CPUs used in execution, execution time, and peak memory usage, where the
relevant bottleneck is main memory usage for CPU-based methods and GPU memory usage for
GPU-based methods (i.e., TabNet and NPT).

Metric # CPUs Execution Time Peak Main Memory (GB) Peak GPU Memory (GB)

Random Forest 1 13d 13h 5m 6s 189.18 –
Gradient Boosting 1 3d 19h 45m 56s 26.65 –
XGBoost 8 23h 26m 17s 108.54 –
CatBoost 8 2h 6m 35s 78.34 –
LightGBM 8 55m 57s 35.13 –
MLP 6 12h 54m 7s 34.41 –
k-NN 1 4d 22h 12m 20s 16.26 –
TabNet 1 2d 5h 2m 43s 16.00 1.18
NPT 4 5d 22h 12m 7s 37.79 19.18

Table 8: UCI classification datasets: test accuracy. Standard error reported for datasets with multiple
cross-validation splits.

Test Accuracy ↑ Higgs Boson Poker Hand Forest Cover Income Kick Breast Cancer

Random Forest 76.2 71.5 94.8 95.4 90.1 94.20± 0.70
Gradient Boosting 76.5 94.1 96.7 95.8 90.2 94.03± 0.90
XGBoost 77.0 95.9 97.1 95.6 90.3 94.91± 0.68
CatBoost 76.6 99.2 95.7 95.8 90.1 95.61 ± 0.75
LightGBM 75.9 92.8 85.0 95.8 90.3 95.26± 0.82
MLP 78.3 99.5 95.2 95.4 90.0 94.73± 0.89
k-NN8 — 50.4 90.7 94.8 87.7 95.26± 0.79
TabNet9 77.1 53.3 94.2 95.5 89.5 94.91± 0.76
NPT 80.7 99.3 96.7 95.6 90.0 94.73± 0.69
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Table 9: UCI classification datasets: negative log-likelihood (NLL). Standard error reported for
datasets with multiple cross-validation splits.

Test NLL ↓ Higgs Boson Poker Hand Forest Cover Income Kick Breast Cancer

Random Forest 0.489 0.843 0.191 0.126 0.305 0.142± 0.012
Gradient Boosting 0.477 0.379 0.109 0.111 0.296 0.185± 0.024
XGBoost 0.471 0.178 0.080 0.147 0.293 0.143± 0.025
CatBoost 0.476 0.065 0.120 0.109 0.296 0.124 ± 0.024
LightGBM 0.486 0.420 0.361 0.109 0.294 0.163± 0.034
MLP 0.452 0.028 0.131 0.118 0.333 0.545± 0.254
k-NN10 — 0.975 0.274 0.139 0.333 0.466± 0.167
TabNet 0.469 0.973 0.151 0.119 0.314 0.233± 0.036
NPT 0.412 0.119 0.087 0.115 0.299 0.137± 0.026

Table 10: UCI classification datasets: test area under the receiver operating characteristic curve
(AUROC) on binary classification tasks. Standard error reported for datasets with multiple cross-
validation splits.

Test AUROC ↑ Higgs Boson Income Kick Breast Cancer

Random Forest 0.847 0.947 0.759 0.989± 0.003
Gradient Boosting 0.850 0.955 0.769 0.987± 0.004
XGBoost 0.854 0.946 0.775 0.989± 0.003
CatBoost 0.851 0.956 0.773 0.992± 0.003
LightGBM 0.843 0.956 0.776 0.992± 0.003
MLP 0.867 0.949 0.739 0.982± 0.007
k-NN11 — 0.932 0.747 0.980± 0.005
TabNet 0.857 0.948 0.745 0.978± 0.005
NPT 0.892 0.952 0.770 0.997 ± 0.001

Table 11: UCI regression datasets: test root mean-squared error (RMSE). Standard error reported for
datasets with multiple cross-validation splits.

Test RMSE ↓ Protein Concrete Boston Housing Yacht

Random Forest 3.57 5.48± 0.18 3.78± 0.33 0.91± 0.13
Gradient Boosting 3.61 4.70± 0.18 3.44± 0.22 0.85 ± 0.12
XGBoost 3.60 4.68± 0.15 3.39± 0.29 0.88± 0.13
CatBoost 3.51 4.28 ± 0.16 3.44± 0.34 1.05± 0.16
LightGBM 3.65 4.64± 0.18 3.86± 0.27 13.60± 0.73
MLP 3.62 5.53± 0.20 3.32± 0.39 0.91± 0.13
k-NN 3.77 8.51± 0.30 4.27± 0.37 12.02± 0.65
TabNet 3.59 5.85± 0.15 3.88± 0.34 3.41± 1.12
NPT 3.41 5.21± 0.20 2.92 ± 0.15 1.27± 0.15
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Table 12: UCI regression datasets: test mean-squared error (MSE). Standard deviation reported for
datasets with multiple cross-validation splits.

Test MSE (± Std Dev) ↓ Protein Concrete Boston Yacht

Random Forest 12.8 30.4± 6.4 15.4± 9.5 0.986± 0.818
Gradient Boosting 13.0 22.4± 5.2 12.3± 4.9 0.867 ± 0.779
XGBoost 13.0 22.1± 4.2 12.3± 7.6 0.939± 0.881
CatBoost 12.3 18.6 ± 4.3 13.0± 9.8 1.36± 1.12
LightGBM 13.3 21.9± 5.3 15.6± 7.6 190.0± 65.1
MLP 13.1 31.0± 6.9 12.6± 11.0 0.994± 0.937
k-NN 14.2 73.3± 16.0 19.6± 11.0 149.0± 52.6
TabNet 12.9 34.4± 5.8 16.2± 11.0 24.1± 54.3
NPT 11.6 27.6± 7.6 8.77 ± 2.60 1.80± 1.49

B.8 Image Classification Results

We explore two different setups for applying NPTs to high-dimensional image data: (1) using a CNN
encoder based on the ResNet-18 architecture, followed by ABD layers, and (2) using a linear patching
encoder that is then followed by ABD and ABA layers. We present results using (1) for CIFAR-10
and (2) for MNIST in the main paper, and additionally provide results using (2) on CIFAR-10 below.

Note that the aim of our image classification experiments is not to match the performance of a
pretrained Transformer image classifier. Rather, we hope to demonstrate that NPTs can readily learn
interactions between datapoints on a wide variety of data modalities and tasks, including image
classification, while achieving reasonable performance.

(1) CNN Encoder. In this setup, we replace our linear encoder with a CNN, which is then folowed
by several rounds of Attention Between Datapoints (ABD) on the CNN encodings. We apply this
setup to CIFAR-10.

In detail, we use a ResNet-18 encoder followed by 4 blocks of ABD (as we have in a default 8 layer
NPT, cf. Appendix C.1.1) with 8 heads. Because we do not use Attention Between Attributes (ABA)
the output of the encoder corresponds to the dimensions h = d · e = 128. We train in a supervised
manner (without test inputs available at training time) with a training batch size of 128 and evaluation
batch size of 480, for a fixed 100 epochs.

As reported in the main text, we achieve a test accuracy of 93.7% on CIFAR-10 with this architecture.
We find that the data corruption test (cf. Section 4.3) decreases accuracy by 1.2%, which suggests
that NPT meaningfully relies on other datapoints for prediction on CIFAR-10. The ResNet-18 alone
achieves a test accuracy of 93.9%.

We further note that with a ResNet-18 encoder pretrained on ImageNet, our ResNet + NPT ar-
chitecture achieves a test accuracy of 94.7% on CIFAR-10, and loses 0.7% in the data corruption
experiment, whereas the pretrained ResNet-18 alone achieves a lower 94.2% accuracy. We believe
that an exploration of how pretraining might affect the performance of NPT and the extent to which
predictions rely on other datapoints is interesting future work.

(2) Linear Patching Encoder. We additionally consider an image classification setup using a linear
patching encoder, which we apply to both MNIST and CIFAR-10.

In detail, we append the mask dimension as an extra channel and apply image patching with linear
embeddings as in [25]. Further following [25], we use a learned position embedding for each patch
and the class token. We use 7× 7 = 49 patches on MNIST and 8× 8 = 64 patches on CIFAR-10.
On both datasets, for this linear patching setup, we begin with the NPT-Base architecture described
in C.1.1. On MNIST, we use batch size 512, train for 500,000 steps, use hidden dimensions e = 16,
ptarget = 0.15, and use 7× 7 = 49 patches. On CIFAR-10, we use batch size 512, train for 1,000,000
steps, use random crops and horizontal flips for data augmentation, use 8× 8 = 64 patches of each
image, and do not use target masking due to constraints on compute time.
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With this setup, NPT achieves 98.3% accuracy on MNIST and 68.2% accuracy on CIFAR-10. We
additionally find in the data corruption experiment (detailed in Section 4.3) that after destroying
information from other datapoints, the change in accuracy is -0.4% on MNIST and -5.1% on CIFAR-
10, demonstrating that NPTs learn to make use of interactions between images.

However, we did not find that this sufficiently demonstrated that NPTs make use of datapoint
interactions in achieving reasonable performance on CIFAR-10, and hence conducted the experiment
on CIFAR-10 using the CNN encoder setup above.

We expect that the relatively low performance in the linear patching setup on CIFAR-10 was due
to a number of differences between our setup and other works, which report state-of-the-art results
on image classification using Transformers and linear patching. Most importantly, previous works
[25, 46] either consider only, or pretrain on, large or huge datasets; for example, ImageNet [23,
46, 86], ImageNet-21k [75], or JFT-300M, with over 375 million labeled datapoints [25, 83]. We
perform no pretraining, and therefore a direct comparison of these results to this line of work is
inappropriate. Additionally, previous works use significantly more patches (e.g., 256 in [25]) and use
higher resolutions, including during fine-tuning by upscaling from 32× 32 to 224× 224 resolution
[25, 46, 54, 85].

C Additional Details on the NPT Architecture

C.1 NPT Training and Hyperparameters

C.1.1 NPT-Base Architecture

Below, we outline the NPT-Base model configuration. The final configurations used for each
dataset are essentially the same as NPT-Base, with minor alterations in parameters such as hidden
dimension size, learning rate warmup, batch size, and number of training steps. Given our limited
memory and compute time budget, these changes directly result from differences in number of
datapoints/attributes between the datasets. We divide the NPT-Base configuration into architectural
details and optimization details.

NPT-Base Architecture

• 8 layers, alternating Attention Between Datapoints and Attention Between Attributes.
• 8 heads.
• Row-wise feed-forward (rFF) networks with one hidden layer, 4x expansion factor, and

GeLU activation (standard in Transformer literature [66, 90]).
• Attention weight and hidden layer dropout with p = 0.1 (cf. Appendix C.2.1).
• Per-attribute hidden dimension e = 64.

NPT-Base Optimization

• LAMB [98] optimizer with β = (0.9, 0.999) and ε = 1e−6, and a Lookahead [99] wrapper
with slow update rate α = 0.5 and k = 6 steps between updates.

• Stochastic feature masking probability pfeature = 0.15.
• Anneal the tradeoff λ between feature and target loss with a cosine schedule, starting at 1

(all feature loss) to 0 (all target loss) over the course of training.
• Flat-then-anneal learning rate schedule: flat at the base learning rate for 70% of steps, and

then anneals following a cosine schedule to 0 by the end of training.
• Base learning rate 1e-3.
• Gradient clipping at 1.

On all datasets with minibatching, we approximately maintain relative train, validation, and test
datapoint proportions in each batch. We train NPT in semi-supervised mode (cf. Appendix C.4.2) but
have found that this does not consistently improve performance compared to conventional training
because the amount of unlabeled test data is usually comparatively small.

C.1.2 NPT Training on Small Data

Here we describe the hyperparameter sweep details for small datasets – Breast Cancer, Boston,
Concrete, and Yacht.
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Base Hyperparameter Configurations. Across these small datasets, we make a few minor adjust-
ments to the NPT-Base architecture and optimization to obtain the NPT-Small configuration: we
increase the default number of hidden dimensions to e = 128, fix the flat-then-anneal schedule to be
flat for 50% instead of 70% of steps, and train with the entire dataset as input, i.e., no minibatching.
We set stochastic target masking probability to ptarget = 1 by default, i.e., deterministically mask out
train labels as would be done in a normal supervised setting, and then introduce modifications in our
sweep.

Note that the vast majority of hyperparameters such as the number of layers and heads, optimizer,
pfeature, tradeoff annealing schedule, learning rate schedule, and gradient clipping are exactly the same
between NPT-Base and NPT-Small.

We would like to keep the base configuration for each of the small datasets exactly the same.
However, we need to slightly vary the learning rate and number of epochs per dataset to optimize
loss convergence across datasets. We use a base learning rate 5e-4 on Breast Cancer and 1e-3 on the
other small datasets. We train for 2000 epochs on Breast Cancer and Boston, and 10 000 epochs on
Yacht and Concrete. On Breast Cancer, we additionally drop e = 32 due to memory constraints (it
has more attributes than other small datasets).

Small Data Sweep. Based on these configurations, we sweep over the following 8 configurations
of the model on each dataset.12

• Vanilla NPT-Small model for given dataset.
• Increase number of layers 8→ 16.
• Increase number of heads 8→ 16.
• Increase number of layers 8→ 16, and number of heads 8→ 16.
• Stochastic target masking with probability ptarget = 0.1.
• Stochastic target masking with probability ptarget = 0.5.
• Increase stochastic feature masking probability from 0.15 to pfeature = 0.2.
• Use a cosine cyclic learning rate scheduler with two cycles, initial learning rate 1e-7, final

learning rate 1e-7, and max learning rate given by the base model learning rate.

For the stochastic target masking variants, we proportionally increase the number of epochs (e.g.,
with ptarget = 0.5, half as many targets are observed in a given epoch, so we double the total number
of epochs).

Small Data Variant Rank Orders. We report the rank order (± standard error) of these variants
in Table 13. A notable trend is that the target masking configurations perform particularly well.
One of the two configurations with target masking is the top performer on each of the four datasets.
This could be attributed to some combination of the representational advantage of label masking (cf.
Section 2.6), an additional regularization effect akin to dropout, or stabler convergence over a greater
number of epochs.

Other configurations did not display similarly obvious trends in performance. This is in concordance
with the ablation study (Appendix B.4) and supports the claim that NPT is robust to changes in
hyperparameters.

C.1.3 NPT Training on Medium and Large Data

For the medium and large datasets, we again adopt the NPT-Base architecture and optimization
hyperparameters, and make minor manual changes on a per-dataset basis to account for differences
in number of datapoints and attributes across the datasets. No more than 3 manual iterations are
performed to find these adaptations. We generally attempt to maximize batch size given a fixed
memory budget. Given the rank order results on small data (cf. Table 13) we use target masking on
the medium and large datasets whenever computationally feasible.13. These per-dataset alterations
are reported below.

12Note that we do not search a 28 grid over these modifications. We only try out these 8 distinct models.
13Training is slower as only a ptarget proportion of training labels are used for backpropagation in each epoch.

Therefore, target masking may increase training time beyond our budget.

33



Table 13: Average rank order of variants of NPT-Small (± standard error) across 10 cross-validation
splits on each small dataset. We determine rank using negative log-likelihood and sort methods by
ascending rank for each metric.

Dataset Boston

ptarget = 0.5 2.50± 0.73
ptarget = 0.1 2.50± 0.83
8→ 16 Layers, 8→ 16 Heads 2.60± 0.65
Cosine Cyclic LR Schedule 3.10± 0.75
Base NPT-Small 3.70± 0.84
8→ 16 Layers 4.30± 0.67
8→ 16 Heads 4.40± 0.60
pfeature = 0.2 4.90± 0.46

Dataset Breast Cancer

ptarget = 0.1 2.60± 0.92
Base NPT-Small 2.70± 0.65
8→ 16 Heads 3.00± 0.49
pfeature = 0.2 3.20± 0.68
ptarget = 0.5 3.50± 0.56
Cosine Cyclic LR Schedule 4.10± 0.89
8→ 16 Layers, 8→ 16 Heads 4.40± 0.70
8→ 16 Layers 4.50± 0.81

Dataset Concrete

ptarget = 0.5 2.30± 0.76
Cosine Cyclic LR Schedule 2.50± 0.69
8→ 16 Heads 2.60± 0.62
Base NPT-Small 2.70± 0.52
ptarget = 0.1 3.10± 0.64
8→ 16 Layers 3.90± 0.80
8→ 16 Layers, 8→ 16 Heads 5.10± 0.66
pfeature = 0.2 5.80± 0.39

Dataset Yacht

ptarget = 0.1 1.20± 0.53
ptarget = 0.5 2.70± 0.52
8→ 16 Heads 2.80± 0.66
Cosine Cyclic LR Schedule 3.10± 0.69
Base NPT-Small 3.60± 0.54
8→ 16 Layers 4.10± 0.74
pfeature = 0.2 5.20± 0.47
8→ 16 Layers, 8→ 16 Heads 5.30± 0.83

UCI Datasets. We report results for Protein using the Base NPT configuration in the ablation
study (cf. Table 4). On Kick, we use batch size 4096, train for 250 000 steps, and use ptarget =
0.5. On Income, we use batch size 2048, train for 2 000 000 steps, use no feature masking (and
correspondingly fix the tradeoff parameter λ = 0), and use ptarget = 0.15. On Poker Hand, we use
batch size 4096, train for 200 000 steps, use ptarget = 0.5, and stratify by class (i.e., compose training
datapoints in each minibatch proportionally to the empirical label distribution of the training set to
account for significant class imbalance). On Forest Cover, we use batch size 1800, train for 800 000
steps, use a polynomial decay learning rate scheduler with warmup over the first 1% of steps, use
base learning rate 0.005, ptarget = 0.5, and class balancing as above. The changes to learning rate
scheduling were made to speed up training and hence save compute resources. On Higgs, we use
batch size 4096, train for 500 000 steps, and do not use target masking due to constraints on compute
time.

Image Data (CIFAR-10 and MNIST). See Appendix B.8 for details on the image data architecture
and setup.

Again, we stress that the vast majority of hyperparameters used on all datasets (small, medium, and
large benchmarks from UCI as well as the image benchmarks) are identical; configurations follow
NPT-Base (cf. Appendix C.1.1) very closely and changes usually affect NPT optimization rather
than architecture.

C.2 Further Details on ABD and ABA Layers

C.2.1 Dropout

In practice, we apply elementwise dropout on the attention scores exp(QK>/
√
h), as well as on the

input/output embeddings and the output of the MHSelfAtt(·) function (often referred to as attention
and hidden dropout).
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C.3 Input and Output Embdedings

C.3.1 Input Embedding

At a high-level, we embed inputs by encoding categorical attributes as one-hot vectors and stan-
dardizing continuous attributes, followed by a learned linear embedding for each attribute to obtain
InputEmbed(X) = H(0) ∈ Rn×d×e.
More specifically, we perform the following sequence of steps: Attributes X:,j , j ∈ {1, . . . , d}
of the input matrix can be either continuous or categorical. We first apply a function Encode(·)
to each attribute X:,j . This “encodes” categorical attributes with a one-hot representation and
standardizes continuous attributes to zero mean and unit standard deviation. Each encoded attribute
j has (potentially unique) dimensions n× ej . Then, we concatenate this encoded attribute with its
respective column of the masking matrix M:,j along the second dimension to produce a column
encoding of dimensions n × (ej + 1). We learn separate embedding weights for each attribute
W in

j ∈ R(ej+1)×e that embed all attributes to a common hidden dimension e. Altogether, we can
state the embedding of a single attribute columnX:,j as

H
(0)
:,j = concat

axis=e
(Encode(X:,j),M:,j)W

in
j +H Index

:,j +HType
:,j , (22)

where H Index
:,j ∈ Rn×e is a learnt embedding for the index and HType

:,j ∈ Rn×e for the type (either
continuous or categorical) of attribute j.

Finally, we write the full NPT input embedding layer as

InputEmbed(X) = stack
axis=d

(H
(0)
:,1 , . . . ,H

(0)
:,d ) = H(0) ∈ Rn×d×e. (23)

The stack operation constructs H(0) ∈ Rn×d×e from d attribute embeddings H(0)
:,j ∈ Rn×e, j ∈

{1, . . . d}.

C.3.2 Output Embedding

For an NPT withL layers, we obtain an output prediction by applying a learnt linear output embedding
(that closely mirrors the process of the input embedding) to the output of the last attention layerH(L).
We write the output embedding layer as

OutputEmbed(H(L)) = [Z:,1, . . . ,Z:,d] = Z, (24)

where Z:,j = H
(L)
:,j,:W

out
j . (25)

Our prediction Z is a list of d attribute predictions Zj ∈ Rn×ej . We learn output embedding weights
W out

j ∈ Re×ej which are applied on attribute slices H(L)
:,j,: ∈ Rn×e of the output of the Lth layer

H(L) ∈ Rn×d×e. Note that the second dimension of each attribute prediction Zj is determined
by the encoding size (i.e., ej = 1 for continuous attributes, ej is the number of categories for a
categorical attribute) as in the input embedding. Note also that we do not predict a mask value (i.e.,
we do not predict to dimensions n× (ej + 1) for each attribute). To obtain the final prediction matrix
X̂ ∈ Rn×d we take the arg max over the categorical predictions.

C.4 NPT Masking

C.4.1 Handling Missing Values

Real-world data – particularly tabular data – often contains missing entries. Many popular models
for supervised prediction on tabular data cannot accommodate missing values as input. Instead they
require that missing features are imputed, i.e., an additional model predicts a surrogate value for what
the missing values could have been, such that the supervised model then receives a “clean” dataset as
input which no longer overtly contains missing values.

For example, all scikit-learn [69] predictors, including Gradient Boosting and Random Forests,
require an explicit imputation step before training. Often, extremely simple imputation methods are
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used in practice. For example, TabNet [2] drops datapoints with >10% missing entries and otherwise
applies univariate mean imputation as part of a Google AI Platform pipeline [70]; and CatBoost [71]
treats a missing continuous entry as the minimum or maximum of that feature (univariate min/max
imputation), or raises an error. While more complex imputation methods could in theory be applied
as pre-processing [43, 50, 81, 82, 88], there will always remain a separation between the imputation
step and the prediction model. Additionally, more complex imputation methods often require training
and hyperparameter selection, such that the combined imputation and prediction process becomes
cumbersome. Both for practical as well as performance reasons, it is desirable to have a single model
that can directly handle missing data, learn complex internal imputation operations from the data, and
at the same time learn the desired predictive function from features to target.

This is exactly what NPTs achieve. They are able to accommodate inputs with missing values
gracefully without requiring any imputation pre-processing steps, therefore modeling data with
missing values end-to-end. We can explicitly indicate that a valueXi,j is missing by simply setting
the mask tokenMi,j = 1. Already in standard NPTs, the stochastic feature masking during training
teaches NPTs to predict values for which Mi,j = 1 while ignoring the value of their entry Xi,j

at input. Further, no choice of fixed imputation algorithm has to be made with NPTs. Instead,
NPTs learn directly from the data how to make predictions given missing values. Attention between
datapoints might be particularly useful for learning a general mechanism of how to impute missing
values by attending to other datapoints. We therefore suspect that NPTs could be a strong contender
for predicting on data with missing values. Further, unlike common imputation pre-processing, NPTs
do not discard the information of which attributes were missing. Future work could also explore the
ability of NPT to model arbitrary correlations underlying the pattern of which data is missing, i.e.,
datasets where values are not missing at random.

C.4.2 Masking Encompasses Many Common Machine Learning Settings

The flexible masking mechanism of NPTs can be used to accommodate a variety of common machine
learning settings.

Multi-Target Prediction. In multi-target classification or regression, more than one column of the
dataset contains targets. Standard supervised models often do not support multi-output settings and
must resort to training multiple models, one for each target. NPTs can accommodate multi-target
prediction trivially, since they learn to make predictions at any masked input entry. For prediction in
a multi-target setting, we simply apply target masking on all columns with targets.

Self-Supervision. In self-supervised learning, we are often interested in learning a generative model
or useful encoding from unlabeled data. The reconstruction of corrupted input features as part of
stochastic feature masking can already be seen as self-supervised learning. The stochastic masking
mechanism allows NPTs to learn to predict masked out values anywhere in the input. In theory, NPTs
should be able to learn a fully generative model of the dataset in this manner.

Semi-Supervision. In semi-supervised learning, we hope to use large quantities of unlabeled data to
aid in learning a predictive function on a small set of labeled data. Often, this involves a two-step
process, such as learning a powerful autoencoder from all data and then training a predictor using the
learnt encoder and the small set of labeled data. NPTs can accommodate semi-supervised learning
without changes to the architecture. Specifically, we can include large amounts of unlabeled data by
simply appending those feature values to the labeled input dataset. We indicate that no labels are
available for all unlabeled datapoints i′ by setting their mask token at the target columnXi′,d = 1.
NPTs can use attention between datapoints to make use of information from the features of the
unlabeled datapoints.

Imputation. With imputation, we refer to scenarios where the main task is to predict missing values
for arbitrary attributes and datapoints. Similar to self-supervision, NPTs already learn how to do this
from the stochastic masking mechanism that is enabled by default. (Unlike for the self-supervision
category, the imputation scenario assumes that there are actually some missing values that we would
like to predict.)

C.4.3 Stochastic Masking: Details

For stochastic masking, a specified proportion of training entries (we default to 15% following [24])
are selected for masking at the start of each epoch. Among those entries chosen, we mask out the

36



value with 90% probability and randomize it with 10% probability. “Masking out” means that the
original valueXi,j is overwritten with zeros and the mask token is set to 1. Randomization is done
for categorical targets by sampling a new class uniformly at random. Continuous targets are sampled
from a standard Normal N (0, 1).

This sampling scheme is applied for both stochastic feature masking and stochastic target masking,
where we allow for different masking proportions between the two (pfeature and ptarget). During
training, a loss is backpropagated on the masked entries.

C.5 NPT Optimization

Each of the losses LFeatures (feature loss) and LTargets (target loss) is normalized by the number of
entries on which it is evaluated.

As described in Appendix C.1.1: we anneal the λ parameter in the NPT objective using a cosine
schedule, i.e., starting with full weight on the feature loss term at epoch 0 and annealing to full
weight on the target loss term by the end of training. We use LAMB [98] with Lookahead [99]
for optimization, which we find to perform well with large minibatches. We use a flat-then-anneal
learning rate schedule with cosine decay, notable as Transformer works [24, 90] often report that a
linear learning rate warmup is necessary for training stability. Our placement of Layer Normalization
before self-attention (“pre-LayerNorm” [3, 16]) may contribute to our not needing this.

D Related Work – Continued

D.1 Tree-Based Baselines

Tree-based approaches in machine learning have been popular for over half a century [11, 62, 64].
Each node of a tree splits the data into smaller subsets, and predictions are made at each of the leaves.
The splits are learned from a set of training data by minimizing some objective function. Many
established methods combine predictions of multiple trees through bagging [9] and/or boosting [78].
Bagging uses an ensemble of trees, each learned by training on a random subsample of the data.
This approach is most popularly used in Random Forests [10]. Boosting learns a sequence of trees,
conditioning the learning of each additional model on the predictions of previous models, with the
aim of reducing overall prediction error.

Popular examples of tree-based boosting models include AdaBoost [31], XGBoost [17], CatBoost
[71], and LightGBM [48]. To date, boosting arguably comprises the most popular approach for tabular
data prediction. These models often rely on careful tuning of a large variety of hyperparameters.
However, training cost is often cheap compared to neural network architectures, and therefore, so is
hyperparameter optimization. This balance is slightly offset for NPTs, which seem largely robust to
hyperparameter tuning. Hence, the training of a single NPT is often competitive to a grid search over
hyperparameters for a tree-based model.

E Classification and Regression Benchmark Details

E.1 General Setup

For certain datasets we use a canonical fixed test set. Otherwise, we default to 10-fold cross
validation with 0.7/0.2/0.1 splits on smaller datasets and a single 0.7/0.1/0.2 split on larger datasets,
where the exact split indices are always consistent across baselines. The full details on all UCI
benchmark datasets are given in Tables 14 and 15. Note the variety of the datasets across number
of instances, number of features, composition (categorical or continuous) of features, and task
(multi-class classification, binary classification, and regression).

E.2 Hyperparameter Tuning

E.2.1 Overview

Table 16 lists the number of unique hyperparameter configurations swept over for each baseline and
classification/regression dataset.
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Table 14: UCI classification dataset statistics and experimental setup details.

Dataset Higgs Boson Poker Hand Forest Cover Income Kick Breast Cancer

# Instances 11,000,000 1,025,010 581,012 299,285 72,983 569
# Features 28 10 54 42 32 31
# Categorical Features 0 10 44 36 18 0
# Continuous Features 28 0 10 6 14 31
# Classes 2 10 7 2 2 2
Train/Val/Test Split 0.84/0.12/0.05 0.017/0.003/0.98 0.7/0.1/0.2 0.57/0.1/0.33 0.7/0.1/0.2 0.7/0.2/0.1
Fixed Test Set Yes Yes No Yes No No (10-Fold CV)
Uses Minibatching Yes Yes Yes Yes Yes No

Table 15: UCI regression dataset statistics and experimental setup details.

Dataset Protein Concrete Boston Yacht

# Instances 45,730 1030 506 308
# Features 9 9 13 6
# Categorical Features 0 0 2 5
# Continuous Features 9 9 11 1
Train/Val/Test Split 0.7/0.1/0.2 0.7/0.2/0.1 0.7/0.2/0.1 0.7/0.2/0.1
Fixed Test Set No No (10-Fold CV) No (10-Fold CV) No (10-Fold CV)
Uses Minibatching Yes No No No

Table 16: Number of unique hyperparameter configurations swept over for each model class and
dataset. Here we shorten Boston Housing to BH, Breast Cancer to BC, Poker Hand to PH, Forest
Cover to FC, and Higgs Boson to HB. Datasets are ordered by increasing number of datapoints (n)
from left to right.
* TabNet on Protein, Kick, and Income is tuned by sweeping over all 6 configurations listed in the
original paper [2] in addition to the default configuration. Note that these configs include one tuned
on Income.
† TabNet on Poker Hand, Forest Cover, and Higgs Boson use precisely the configuration specified for
those datasets in the original paper [2].
‡ For some of these, we manually optimized convergence of the validation loss by adjusting non-
architectural parameters such as learning rate (schedule), batch size, or number of steps in at most 3
iterations. See C.1.3.

Dataset Yacht BH BC Concrete Protein Kick Income PH FC HB

Random Forest 24 24 24 24 24 24 24 24 24 24
Gradient Boosting 48 48 48 48 48 48 48 48 48 48
XGBoost 48 48 48 48 48 48 48 48 48 48
CatBoost 48 48 48 48 48 48 48 48 48 48
LightGBM 48 48 48 48 48 48 48 48 48 48
MLP 11,340 11,340 11,340 11,340 270 270 270 270 270 6
k-NN 480 480 480 480 40 40 40 40 40 -
TabNet 48 48 48 48 7* 7* 7* 1† 1† 1†

NPT 8 8 8 8 1‡ 1‡ 1‡ 1‡ 1‡ 1‡
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All details on the NPT hyperparameter setup are given in Appendix C.1. Note that for any given
dataset, NPT is tuned over fewer configurations than the baselines: we fix a base model configuration
with minimal data-dependent tuning of hyperparameters such as learning rate, scheduler, number of
steps, and target masking percentage pfeature, and choose the largest batch size viable for our hardware.
On small datasets, we then sweep over 8 variants, and on medium and large datasets (including image
data) use only the fixed variant with minor modifications.

In the case of TabNet, the configurations used for Poker Hand, Forest Cover, and Higgs Boson are
those reported by the original authors for these datasets [2]; for Income, we performed a sweep over
configurations including one reported for that dataset in the original publication. All deep learning
approaches (MLP, TabNet, and NPT) use early stopping on the validation target loss.

E.2.2 Baseline Sweep Details

We report hyperparameter sweep details for baselines below. The associated tables for each baseline
give the bounds of the search space for numerical hyperparameters and all values for categorical
hyperparameters. We clarify specific hyperparameters and provide context where helpful.

Random Forest (Tables 17, 18). criterion refers to the split criterion. max_features is the
number of features to consider when looking for the best split.

Gradient Boosting, XGBoost, LightGBM, and CatBoost (Table 19). See D.1 for background
on tree-based baselines.

MLP (Tables 20, 21, 22). The invscaling learning_rate scheduler scales with αt = α0/t
0.5

where t is the step, α0 the initial learning rate, and αt the learning rate at step t. The adaptive
learning_rate divides the current learning rate by 5 when two consecutive epochs fail to decrease
training or validation log loss by a tolerance 1e-4. Due to compute constraints, we decreased the size
of the search space as the dataset size increased by focusing on 3-layer networks, lower L2 penalties,
and higher batch sizes.

k-NN (Tables 23, 24, 25). weights describes the weight function applied to the neighborhood,
i.e., “distance” means that closer neighbors of a query point have greater influence than those further
away. algorithm specifies the underlying k-NN algorithm, where KD Tree [7] and Ball Tree [60]
are approximations of brute-force search. The “auto” setting determines an appropriate algorithm
based on the input data [69]. leaf_size is a hyperparameter of KD Tree and Ball Tree. p is the
power parameter for the distance metric, i.e., p = 1 yields Manhattan and p = 2 Euclidean distance.
It was computationally infeasible for us to obtain reasonable results on the 11M instance Higgs Boson
dataset. Even when attempting approximate 3-NN on an Azure D64 v3 instance with 256 GB RAM,
we encountered an out-of-memory error.
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Table 17: Random Forest classification hyperparameters.

Hyperparameter criterion n_estimators max_features

Setting gini, entropy [50, 1000] auto, sqrt, log2

Table 18: Random Forest regression hyperparameters.

Hyperparameter criterion n_estimators max_features

Setting mae, mse [50, 1000] auto, sqrt, log2

Table 19: Gradient Boosting, XGBoost, LightGBM, and CatBoost hyperparameters (for both regres-
sion and classification).

Hyperparameter learning_rate max_depth n_estimators

Setting [1e-3, 0.3] [3, 10] [50, 1000]

Table 20: MLP hyperparameters for small datasets (Boston Housing, Breast Cancer, Concrete, and
Yacht).

Hyperparameter hidden_layer_sizes l2_penalty

Setting [(25)-(500), (25,25)-(500,500), (25,25,25)-(500,500,500)] [0, 1]

Hyperparameter batch_size learning_rate learning_rate_init

Setting [32, 256] constant, invscaling, adaptive [1e-5, 1e-1]

Table 21: MLP hyperparameters for medium and large datasets other than Higgs Boson (Protein,
Kick, Income, Poker Hand, Forest Cover).

Hyperparameter hidden_layer_sizes l2_penalty

Setting [(25,25,25)-(500,500,500)] [0, 1e-2]

Hyperparameter batch_size learning_rate learning_rate_init

Setting [128, 256] constant, invscaling, adaptive [1e-5, 1e-1]

Table 22: MLP hyperparameters for the Higgs Boson dataset.

Hyperparameter hidden_layer_sizes l2_penalty

Setting (500,500,500) 0

Hyperparameter batch_size learning_rate learning_rate_init

Setting [512, 1024] constant [1e-4, 1e-2]

Table 23: k-NN hyperparameters for small datasets (Boston Housing, Breast Cancer, Concrete, and
Yacht).

Hyperparameter n_neighbors weights algorithm leaf_size p

Setting [2, 100] uniform, distance ball_tree, kd_tree, brute [10, 100] 1, 2
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Table 24: k-NN hyperparameters for medium-large datasets (Protein, Kick, Income, Poker Hand).

Hyperparameter n_neighbors weights algorithm leaf_size p

Setting [2, 1000] distance auto [10, 100] 2

Table 25: k-NN hyperparameters for Forest Cover.

Hyperparameter n_neighbors weights algorithm leaf_size p

Setting [2, 25] distance auto [10, 100] 2

F Societal Impacts of NPT

We have introduced Non-Parametric Transformers, a novel deep learning architecture that predicts by
including learned interactions between points of the dataset. In this work, we take first steps towards
exploring NPTs and their properties. We do not recommend that NPTs are carelessly applied in
production settings, because we do not yet know enough about them. We now list common concerns
in applying machine learning models, discuss how they may apply to NPTs, and how to potentially
mitigate them.

Many countries of the world, such as the US, UK, and the countries of the EU, are implementing
“Right to Explanation”-schemes that grant those affected by autonomous decisionmaking the right to
an explanation of why and how decisions were made. In general, Transformer-based architectures
such as NPT have been shown to be amenable to explanations, see e.g., [90]. One could argue that our
experiments in §4.4 move in an explanatory direction. However, we have not sufficiently investigated
the explanations of individual NPT decisions, and believe this to be exciting future work.

Machine learning models are increasingly used in autonomous decision making that affects human
beings in some capacity, e.g., clinical diagnosis, autonomous driving, and detection of toxic comments
online.14 It is of great importance that those decisions are fair, i.e., that they do not discriminate
against underrepresented groups in some manner. We have not yet investigated how NPTs respond to
common techniques of calibrating machine learning models to fulfil some definition of fairness. We
believe that their special predictive behavior from similar datapoints likely poses both challenges and
opportunities in this domain. For example, instead of needing to retrain the model to elicit changes in
prediction – which could be infeasible in a real-world deployment – NPT could be “prompted” with a
different set of context datapoints to modify its predictive behavior towards a more socially desirable
response.

In large architectures based on Transformers, the memorization of training data is a common concern.
If the model memorizes training data, adversarial attacks can be used to extract training data from
the model weights, see e.g., [14]. This can lead to violations of privacy if, for example, a publicly
available model was trained on data that must remain private. This can also cause more subtle
problems; for example, if training data “lives on” in the model but must be deleted at some point
in time to comply with privacy regulations. As NPT directly relies on training data as input for
prediction, NPT is not a “private” model per definition. However, we can imagine future work
tackling this question; for example, by learning to predict from a set of anonymous representative
points instead of the training data directly.

At the model sizes presented in the paper, the environmental impact of training and using NPT
is relatively small compared to some of the large architectures currently in fashion, see e.g., [12].
However, NPT could be scaled up to larger sizes at which point the energy used for training and
prediction would become a serious concern. When considering tabular data, training a single NPT
model is expensive compared to training a single one of our tree-based baselines such as XGBoost.
However, we find that such baselines are often more sensitive to correctly tuned hyperparameters
than NPT, such that the total compute including hyperparameter tuning of NPT and the baselines

14For example, see [28, 63, 87].
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is actually often similar, particularly on larger datasets. Sparse approximations as referenced in
Section 5 may further reduce the computational impact of NPT.

NPT is a new – and exciting – architecture. Therefore, in applications where explanations, fairness,
or privacy are desired or legally required, we do not recommend that NPT be used at this stage.

G Code, Computational Resources, and License

Code. We release code for NPTs at github.com/OATML/Non-Parametric-Transformers. The code-
base relies on PyTorch [68] and NumPy [40], and we use Scikit-Learn [69] for many of the baseline
experiments.

Computational Resources. For the experiments we mainly rely on a shared internal cluster that
has both NVIDIA Titan RTX GPUs (24 GB memory) as well as NVIDIA GeForce RTX 2080 Tis
(12 GB memory). For tuning baselines, which are often compute-heavy workloads, we use Azure
D-series compute-optimized VMs. For small datasets (< 1000 datapoints) such as Breast Cancer,
training and evaluation of a single NPT model takes about 10 minutes. For larger datasets such as
Protein (< 100 000 datapoints), training and evaluation of NPT takes about 10 hours. For the largest
datasets, e.g., Higgs Boson with 11 million datapoints, training and evaluation of NPT takes about
5 days. We did not optimize NPT for efficiency or training speed in this paper and suspect that
convergence could be drastically improved with relatively little effort. The total amount of compute
used for this paper is given by all NPT and baseline runs with repetitions for cross-validation, which
amounts to more than 30 GPU days.

License Agreements.
License agreement of the CIFAR-10 dataset: CIFAR-10 is published under MIT license.

License agreement of the MNIST dataset: License: Yann LeCun and Corinna Cortes hold the copyright
of MNIST dataset, which is a derivative work from original NIST datasets. MNIST dataset is made
available under the terms of the Creative Commons Attribution-Share Alike 3.0 license.

UCI Machine Learning Repository: Licenses for all datasets can be found at
archive.ics.uci.edu/ml/.
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