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Appendix

A Implementation Details

In this section, we delve into the specifics of this study’s implementation. The related source code
has been provided within the supplementary materials. In case of any remaining uncertainties, please
refer to the included source code for further clarity.

A.1 Victim Classifiers

We utilize two distinct classifiers as the victim classifiers, each with a specific dataset: MadryNet [12]
with MNIST, and ResNet18 [8] with the SVHN dataset.

A.1.1 MadryNet

We utilize MadryNet [12], a convolutional neural network (CNN), as the victim classifier for the
MNIST dataset. The MadryNet model is trained using the Adam optimizer, with a learning rate
set at 10~4. Our training regimen comprises 14 epochs, with a batch size of 64. Any additional
hyperparameters are retained at their default settings as prescribed by PyTorch.

During adversarial training on MadryNet, we implement a Projected Gradient Descent (PGD)
untargeted attack on the training data, using the parameters e = 0.3, o« = 0.036, and 10 steps.

A.1.2 ResNetl8

In the case of the SVHN dataset, we employ ResNet18 [8], another well-known architecture. The
ResNet18 model is trained using the Adam optimizer, with a learning rate set at 10~%. Our training
regimen comprises 14 epochs, with a batch size of 64. Any additional hyperparameters are retained
at their default settings as prescribed by PyTorch. Similarly to the MadryNet, adversarial training on
ResNet18 also involves a PGD untargeted attack on the training data, but with different parameters:
e = 0.03,a = 0.01, and 10 steps.

A.2 Energy-based models
A.2.1 Neural network structure

For the MNIST dataset, we utilize a specialized convolutional neural network with the undermentioned
architecture:

* The model commences with a 2D convolutional layer employing 64 filters of 5x5 kernel
size, a stride of 2, and a larger padding of 4, effectively augmenting the input image size to
32x32. A ‘Swish’ activation function is then invoked to incorporate non-linearity.

* The second layer consists of another convolutional layer using 128 filters of 3x3 size, with a
stride of 2 and padding of 1, followed by the *Swish’ activation function.

 The third layer is a replica of the previous one but escalates the filter count to 256 while
preserving the filter size, stride, and padding, followed by a ‘Swish’ activation.

* The fourth convolutional layer utilizes 256 filters, similar to the third layer, with a 3x3 kernel
size, stride of 2, and padding of 1. This is succeeded by a ‘Swish’ activation function.

* Post convolution, the output undergoes flattening to eliminate spatial dimensions.

» The flattened output is then passed through a fully connected layer with 256 units, followed
by the ‘Swish’ activation function.

* The architecture culminates with a second fully connected layer mapping the 256 units
to a determined output size. This size usually correlates to the number of classes in a
classification task or the desired output size in regression tasks.

The neural network training employs the Adam optimizer with a learning rate of 10~4, batch size of
128, and 200 epochs.
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For the SVHN dataset, we utilize the WideResNet structure, specifically, the WRN-28-10 variant.
Training the WRN-28-10 also involves the Adam optimizer with a learning rate of 10~%, batch size

of 128, and spans across 50 epochs.

A.3 Hardware Specifications

All of our experiments were conducted on a machine equipped with an Intel E5-2680 v3 CPU and an

NVIDIA RTX 3090 GPU.

B Annotator Interface

Content
o

00:07 w BE R

o Label ltem ID

Label
A

Please follow these instructions to identify the digit
displayed in the given image: Select the label that is
positioned to the right of the image, outside the
image frame. Choose the option "N/A" only if the
image does not resemble any digit. It is acceptable if

the digit appears blurry, distorted, or artificial

0 1 2 3 4 5 6 7
8 9

Figure 7: Annotator Interface

C Choosing a proper f

In this section, we propose two additional f functions, where the first is based on predictive entropy

and the second is rooted in joint-energy.

The Predictive Entropy based f, denoted as fpg, is formulated as follows:

2GY_969#1
2GY_969#2
7GY_969#3
2GY_969#4
2GY_969#5
2GY_969#6
2GY_969#7
2GY_969#8
2GY_969#9
ZGY_969#10
2GY_969#11
2GY_969#12
ZGY_969#13
2GY_969#14
ZGY_969#15
2ZGY_969#16
ZGY_969#17
2ZGY_969#18
2GY_969#19
2GY_969#20
2GY_s6at21
2GY_969#22
2GY_969#23

ZGY_969#24

foe (%, yiar) = —cpe Y 0(94(x))[y] log o (g9 (x))[y] + for(X, Yuar)

Here, cpg is a constant that determines

the weight of the predictive entropy.

On the other hand, the Joint-Energy based f, denoted as fjg, is given by:

fJE(Xa ytar) =

In this case, ¢jg is a constant controlling the weight of the logsumexp term. It is worth noting that

when cjg = 1, fig simplifies to fcg.

As shown in Figure 8, when pgs is fixed, choosing fcw results in better generation compared to fc,

fPE, and fJE-

96 (%) [Yar] + cielog Y _ exp(gy(x)[y])
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An interesting visual interpretation of this phenomenon can be found in Figure 9. Here, we draw
samples from pyic(; Yrar), Observing that the samples drawn from the py;c induced by fcw contain the

least semantic information.

Jee

45.0

48.0 44.6 404 41.6

43.0 49.3 41.8 44.7

Figure 8: Targeted Attack on a Single Image: The source image belongs to class 7, and the target
class is 9. The first row displays samples drawn from p.qy (-, Xori, Ytar ), Where Xq is an image from
class 7 and yi,r = 9. All cases share the same random seed and the same pgis(+; Xori) trained on
augmentations of x;. The key distinction among the plots is the function f used, in this order: fcg,
fews fre, fig- The second row of plots showcases the predictive probability (softmax probability) of
the target class, corresponding to each digit in the first row on a one-to-one basis. A green border
signifies a successful deception of the victim classifier, while a red border indicates failure.
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97.3
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fCW fPE

48.6

48.8

3 48.2

6 46.9 48.1

Figure 9: Samples drawn from the victim distribution pyic(-; yar) With randomly sampled i, All
four cases share the same random seed. The parameters are consistent with those in Figure 8.
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D Low-visual quality samples with high likelihood

During our experiments, we observed that high likelihood samples do not invariably exhibit high
visual quality. This phenomenon is showcased in Figure 10, where, despite being sorted by energy
(a parameter proportional to likelihood), the earliest samples do not always deliver high visual
quality. Further, we empirically identified a pattern: high likelihood samples that possess low visual
quality often correspond to a low softmax probability for class y, (the label of the original image).
Leveraging this observation, we decided to retain only the top few percentile of samples that have the
highest softmax probability for class y.; within an auxiliary classifier, and then sort the remaining
samples by energy.
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Figure 10: In this instance, the source image, denoted as X, represents the digit ‘0’ as displayed
in Figure 1, while the target is class 1. We derived 4641 samples from p,q,(+; 0, 1) via rejection
sampling. The Left portion of the figure shows the initial 100 samples, ordered by energy. The Right
section, on the other hand, depicts the same initial 100 samples, also sorted by energy, but only after
retaining the top 10 percent of samples with the highest softmax probability of class 0 in the auxiliary
classifier.

E PGD attacks on adversarially trained victim classifiers

This section is dedicated to showcasing the application of Projected Gradient Descent (PGD) attacks
on robustly trained classifiers, employing a variety of parameters.

Source

O 00 1 O i W NN —= O
QNN EewWwN—~0

Figure 11: Targeted attacks on an adversarially trained MadryNet [12] using Projected Gradient
Descent (PGD) with L., norm, o = 0.04, and 100 steps. Left: ¢ = 0.3. Right: ¢ = 0.4.
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Figure 12: Targeted attacks on an adversarially trained MadryNet [12] using Projected
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Descent (PGD) with Ly norm, o = 0.2, and 100 steps. Left: e = 3. Right: € = 4.
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Figure 13: Targeted attacks on an adversarially trained ResNet18 [8] using Projected Gradient
Descent (PGD) with L., norm, a = 0.005, and 100 steps. Left: ¢ = 0.1. Right: ¢ = 0.3.
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Figure 14: Targeted attacks on an adversarially trained MadryNet [12] using Projected Gradient
Descent (PGD) with Ly norm, o = 0.1, and 100 steps. Left: ¢ = 1. Right: € = 3.
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F Broader Impacts of this work

The present study introduces a novel approach: the semantics-aware adversarial attack. This method
provides significant insights into the resilience and vulnerability of sophisticated classifiers.

From an advantageous perspective, it highlights the inherent risks associated with robust classifiers.
By exposing potential weak points in such systems, the study underscores the necessity for further
improvements in classifier security. This can pave the way for building more resilient artificial
intelligence systems in the future.

Conversely, the work also presents potential pitfalls. There is a risk that malicious entities might
exploit the concepts discussed here for nefarious purposes. It is crucial to take into account the
potential misuse of this semantics-aware adversarial attack and accordingly develop preventive
measures to deter its utilization for unethical ends.
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