
Appendix322

A Implementation Details323

In this section, we delve into the specifics of this study’s implementation. The related source code324

has been provided within the supplementary materials. In case of any remaining uncertainties, please325

refer to the included source code for further clarity.326

A.1 Victim Classifiers327

We utilize two distinct classifiers as the victim classifiers, each with a specific dataset: MadryNet [12]328

with MNIST, and ResNet18 [8] with the SVHN dataset.329

A.1.1 MadryNet330

We utilize MadryNet [12], a convolutional neural network (CNN), as the victim classifier for the331

MNIST dataset. The MadryNet model is trained using the Adam optimizer, with a learning rate332

set at 10−4. Our training regimen comprises 14 epochs, with a batch size of 64. Any additional333

hyperparameters are retained at their default settings as prescribed by PyTorch.334

During adversarial training on MadryNet, we implement a Projected Gradient Descent (PGD)335

untargeted attack on the training data, using the parameters ϵ = 0.3, α = 0.036, and 10 steps.336

A.1.2 ResNet18337

In the case of the SVHN dataset, we employ ResNet18 [8], another well-known architecture. The338

ResNet18 model is trained using the Adam optimizer, with a learning rate set at 10−4. Our training339

regimen comprises 14 epochs, with a batch size of 64. Any additional hyperparameters are retained340

at their default settings as prescribed by PyTorch. Similarly to the MadryNet, adversarial training on341

ResNet18 also involves a PGD untargeted attack on the training data, but with different parameters:342

ϵ = 0.03, α = 0.01, and 10 steps.343

A.2 Energy-based models344

A.2.1 Neural network structure345

For the MNIST dataset, we utilize a specialized convolutional neural network with the undermentioned346

architecture:347

• The model commences with a 2D convolutional layer employing 64 filters of 5x5 kernel348

size, a stride of 2, and a larger padding of 4, effectively augmenting the input image size to349

32x32. A ‘Swish’ activation function is then invoked to incorporate non-linearity.350

• The second layer consists of another convolutional layer using 128 filters of 3x3 size, with a351

stride of 2 and padding of 1, followed by the ’Swish’ activation function.352

• The third layer is a replica of the previous one but escalates the filter count to 256 while353

preserving the filter size, stride, and padding, followed by a ‘Swish’ activation.354

• The fourth convolutional layer utilizes 256 filters, similar to the third layer, with a 3x3 kernel355

size, stride of 2, and padding of 1. This is succeeded by a ‘Swish’ activation function.356

• Post convolution, the output undergoes flattening to eliminate spatial dimensions.357

• The flattened output is then passed through a fully connected layer with 256 units, followed358

by the ‘Swish’ activation function.359

• The architecture culminates with a second fully connected layer mapping the 256 units360

to a determined output size. This size usually correlates to the number of classes in a361

classification task or the desired output size in regression tasks.362

The neural network training employs the Adam optimizer with a learning rate of 10−4, batch size of363

128, and 200 epochs.364
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For the SVHN dataset, we utilize the WideResNet structure, specifically, the WRN-28-10 variant.365

Training the WRN-28-10 also involves the Adam optimizer with a learning rate of 10−4, batch size366

of 128, and spans across 50 epochs.367

A.3 Hardware Specifications368

All of our experiments were conducted on a machine equipped with an Intel E5-2680 v3 CPU and an369

NVIDIA RTX 3090 GPU.370

B Annotator Interface371

Figure 7: Annotator Interface

C Choosing a proper f372

In this section, we propose two additional f functions, where the first is based on predictive entropy373

and the second is rooted in joint-energy.374

The Predictive Entropy based f , denoted as fPE, is formulated as follows:375

fPE(x, ytar) := −cPE

∑

y

σ(gϕ(x))[y] log σ(gϕ(x))[y] + fCE(x, ytar)

Here, cPE is a constant that determines the weight of the predictive entropy.376

On the other hand, the Joint-Energy based f , denoted as fJE, is given by:377

fJE(x, ytar) := −gϕ(x)[ytar] + cJE log
∑

y

exp(gϕ(x)[y])

In this case, cJE is a constant controlling the weight of the logsumexp term. It is worth noting that378

when cJE = 1, fJE simplifies to fCE.379

As shown in Figure 8, when pdis is fixed, choosing fCW results in better generation compared to fCE,380

fPE, and fJE.381
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An interesting visual interpretation of this phenomenon can be found in Figure 9. Here, we draw382

samples from pvic(·; ytar), observing that the samples drawn from the pvic induced by fCW contain the383

least semantic information.384

fCE fCW fPE fJE

75.0 80.5 78.7 78.6 79.2 80.5

77.9 81.3 78.2 75.5 78.4 80.3

77.7 77.5 79.3 73.7 78.1 73.1

82.1 69.6 86.0 63.5 76.4 80.7

77.4 79.9 74.3 83.9 74.6 79.6

78.7 79.2 81.5 84.2 77.0 77.6

22.7 36.9 23.9 38.5 38.6 35.6

35.3 40.5 35.8 24.5 38.6 21.5

26.3 21.9 32.9 43.0 19.9 14.6

30.1 23.6 23.8 16.6 40.3 42.6

22.9 22.9 40.5 24.3 24.1 34.0

35.3 29.1 21.8 35.8 22.2 38.8

47.7 46.0 48.4 47.1 44.8 52.6

44.2 54.1 47.6 44.0 47.5 42.6

44.4 50.3 47.1 50.4 46.5 43.7

45.2 45.0 53.2 42.0 48.8 55.2

46.0 49.3 53.9 53.0 43.7 50.0

49.2 51.4 51.5 54.2 44.4 48.7

40.1 46.6 40.8 42.9 44.6 42.6

45.3 42.4 42.3 38.1 44.4 45.3

45.0 42.9 41.5 44.8 40.3 46.0

46.3 34.2 41.4 36.8 45.0 38.3

42.0 41.0 48.0 44.6 40.4 41.6

43.3 41.5 43.0 49.3 41.8 44.7

Figure 8: Targeted Attack on a Single Image: The source image belongs to class 7, and the target
class is 9. The first row displays samples drawn from padv(·,xori, ytar), where xori is an image from
class 7 and ytar = 9. All cases share the same random seed and the same pdis(·;xori) trained on
augmentations of xori. The key distinction among the plots is the function f used, in this order: fCE,
fCW, fPE, fJE. The second row of plots showcases the predictive probability (softmax probability) of
the target class, corresponding to each digit in the first row on a one-to-one basis. A green border
signifies a successful deception of the victim classifier, while a red border indicates failure.

fCE fCW fPE fJE

98.5 98.4 95.8 97.6 98.4 96.6

98.4 97.8 98.1 98.2 96.7 96.8

98.2 97.8 98.0 98.9 95.3 98.8

93.5 95.7 97.7 95.9 97.9 98.1

97.9 99.0 93.2 97.2 96.7 94.9

99.0 96.3 94.4 98.0 97.5 97.3

23.1 28.7 26.6 22.0 22.0 28.7

35.4 18.7 19.7 22.6 27.1 16.8

25.5 20.0 18.8 30.9 28.1 28.6

32.1 23.8 21.3 25.0 24.1 28.5

18.5 31.8 34.8 18.5 18.0 41.2

33.0 30.9 17.1 28.0 17.9 26.1

48.5 48.9 48.7 47.9 48.6 47.6

48.7 48.7 48.3 48.5 48.8 48.7

48.5 48.7 48.5 49.1 48.9 47.8

48.7 48.6 48.8 48.8 48.5 47.9

48.0 48.8 48.2 47.3 48.4 48.6

48.7 48.6 46.9 48.1 48.5 49.0

54.2 53.5 54.3 54.0 54.0 51.7

53.4 54.6 55.7 54.6 52.7 54.7

55.9 52.8 55.1 53.9 55.0 55.5

50.6 55.6 52.8 56.4 55.2 54.4

54.5 53.5 49.4 50.2 53.7 50.6

54.1 55.5 49.2 54.7 55.4 53.2

Figure 9: Samples drawn from the victim distribution pvic(·; ytar) with randomly sampled ytar. All
four cases share the same random seed. The parameters are consistent with those in Figure 8.
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D Low-visual quality samples with high likelihood385

During our experiments, we observed that high likelihood samples do not invariably exhibit high386

visual quality. This phenomenon is showcased in Figure 10, where, despite being sorted by energy387

(a parameter proportional to likelihood), the earliest samples do not always deliver high visual388

quality. Further, we empirically identified a pattern: high likelihood samples that possess low visual389

quality often correspond to a low softmax probability for class yori (the label of the original image).390

Leveraging this observation, we decided to retain only the top few percentile of samples that have the391

highest softmax probability for class yori within an auxiliary classifier, and then sort the remaining392

samples by energy.393

Figure 10: In this instance, the source image, denoted as xori, represents the digit ‘0’ as displayed
in Figure 1, while the target is class 1. We derived 4641 samples from padv(·; 0, 1) via rejection
sampling. The Left portion of the figure shows the initial 100 samples, ordered by energy. The Right
section, on the other hand, depicts the same initial 100 samples, also sorted by energy, but only after
retaining the top 10 percent of samples with the highest softmax probability of class 0 in the auxiliary
classifier.

E PGD attacks on adversarially trained victim classifiers394

This section is dedicated to showcasing the application of Projected Gradient Descent (PGD) attacks395

on robustly trained classifiers, employing a variety of parameters.396
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Figure 11: Targeted attacks on an adversarially trained MadryNet [12] using Projected Gradient
Descent (PGD) with L∞ norm, α = 0.04, and 100 steps. Left: ϵ = 0.3. Right: ϵ = 0.4.
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Figure 12: Targeted attacks on an adversarially trained MadryNet [12] using Projected Gradient
Descent (PGD) with L2 norm, α = 0.2, and 100 steps. Left: ϵ = 3. Right: ϵ = 4.

So
ur

ce

Target
0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

Target
0 1 2 3 4 5 6 7 8 9

Figure 13: Targeted attacks on an adversarially trained ResNet18 [8] using Projected Gradient
Descent (PGD) with L∞ norm, α = 0.005, and 100 steps. Left: ϵ = 0.1. Right: ϵ = 0.3.
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Figure 14: Targeted attacks on an adversarially trained MadryNet [12] using Projected Gradient
Descent (PGD) with L2 norm, α = 0.1, and 100 steps. Left: ϵ = 1. Right: ϵ = 3.
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F Broader Impacts of this work397

The present study introduces a novel approach: the semantics-aware adversarial attack. This method398

provides significant insights into the resilience and vulnerability of sophisticated classifiers.399

From an advantageous perspective, it highlights the inherent risks associated with robust classifiers.400

By exposing potential weak points in such systems, the study underscores the necessity for further401

improvements in classifier security. This can pave the way for building more resilient artificial402

intelligence systems in the future.403

Conversely, the work also presents potential pitfalls. There is a risk that malicious entities might404

exploit the concepts discussed here for nefarious purposes. It is crucial to take into account the405

potential misuse of this semantics-aware adversarial attack and accordingly develop preventive406

measures to deter its utilization for unethical ends.407
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