
For details on reproducing all our experiment results, including hardware and software requirements,
please consult the README.txt file in the root folder of the included code.

A MDP with stationary and Markov CVaR-optimal policy

We compare the actual performance of our proposed distributional Bellman operator T̃ψ against that
of the Markov action-selection strategy T̃ Dα on the MDP in Figure 1(c), repeated here for reference:

𝑋2 1 − 𝑝; 1
1; 0

1; 𝜖 𝐴1
𝐴2

𝐴1, 𝐴2

Probability; Reward

𝑋1

1 − 𝑝; 1

𝑝; 0 𝑝; 0

As shown in the proof of Proposition 1, T̃ Dα converges to a suboptimal α-CVaR policy if we choose
p, ε, α such that 0 < ε < p < 1− ε and p2 + ε < α < p. We now test both T̃ Dα and T̃ψ on this MDP
using quantile-regression distributional RL.

For this simple MDP, we use a linear neural network with one-hot encoding of the state, equivalent
to a tabular representation. The hyperparameters such as the learning rate for Adam, schedule for
exploration, buffer size for the examples etc can be found in the included source code to reproduce the
results presented here. We observe that the results are not overly sensitive to these hyperparameters,
although we did not perform an extensive hyperparameter search.

We fix ε = 0.01 and choose α = 0.9p for p from 0.1 to 0.8, which satisfies the conditions above.
Figure 6 shows the performance of the policies throughout the training period in terms of their α-level
CVaR for each p. Clearly, we can see that the proposed T̃ψ is able to learn the optimal CVaR policy
across all p while T̃ Dα as predicted by Proposition 1 failed to do so.

B MDP with non-stationary CVaR-optimal policy

Figure 5 shows an example MDP where the optimal CVaR policy is non-stationary and non-Markov.

𝑋2 1 − 𝑝; 2
1; 0

1; 1

𝐴1
𝐴2

𝐴1, 𝐴2

Probability; Reward

𝑋1

1 − 𝑝; 1
𝑝; 0𝑝; 0

Figure 5: MDP with non-stationary optimal CVaR policy

There are two stationary policies here: always choosing A1 or A2 in X2. There are also two non-
stationary policies, corresponding to choosing a different action in X2 based on the outcome at X1,
i.e. whether the reward received is 1 or 0. For 0 < p < 1/2, and let α = p, the optimal α-CVaR
policy is to choose A1 if 0 reward is received at X1 and A2 otherwise. The reader can easily verify
this by examining the return distribution for each of the four policies and computing their respective
α-CVaR.

As in the previous section, we compare the performance of T̃ Dα against that of T̃ψ. We use the
same representation and the same set of hyperparameters for training. Again, the complete code to
reproduce the results can be found in the supplementary material.

14

10000 20000 30000 40000 50000
training steps

0.0

0.5

CV
aR

p = 0.1
Markov action-selection
Proposed
Optimal

10000 20000 30000 40000 50000
training steps

0.0

0.5

CV
aR

p = 0.2

10000 20000 30000 40000 50000
training steps

0.0

0.5

CV
aR

p = 0.3

10000 20000 30000 40000 50000
training steps

0.0

0.5

CV
aR

p = 0.4

10000 20000 30000 40000 50000
training steps

0.0

0.5

CV
aR

p = 0.5

10000 20000 30000 40000 50000
training steps

0.0

0.2

CV
aR

p = 0.6

10000 20000 30000 40000 50000
training steps

0.0

0.2

CV
aR

p = 0.7

10000 20000 30000 40000 50000
training steps

0.05
0.10
0.15

CV
aR

p = 0.8

Figure 6: Evaluation results over the training period for the MDP in Figure 1(c). Each point represents
the estimated α-level CVaR using 1000 independent evaluation episodes. The optimal CVaR is shown
in green, dashed lines.

Figure 7 shows the results for p from 0.1 to 0.4. While T̃ Dα converges to a stationary and therefore
suboptimal policy, we observe that T̃ψ converges to the optimal policy. This shows that our proposed
Algorithm 1 and 2 can learn, extract and execute non-stationary policies that are CVaR-optimal.

15

10000 20000 30000 40000 50000
training steps

1.0

1.5
p-

CV
aR

p = 0.1

Markov action-selection
Proposed
Optimal

10000 20000 30000 40000 50000
training steps

1.00

1.25

1.50

p-
CV

aR

p = 0.2

10000 20000 30000 40000 50000
training steps

1.0

1.2

1.4

p-
CV

aR

p = 0.3

10000 20000 30000 40000 50000
training steps

1.0

1.1

1.2

p-
CV

aR

p = 0.4

Figure 7: Evaluation results over the training period for the MDP in Figure 5. Each point represents
the estimated p-level CVaR using 1000 independent evaluation episodes. The optimal CVaR is shown
in green, dashed lines.

Figures 8 and 9 show how the distributions for each state-action pair change during the training
process for T̃ Dα and T̃ψ respectively, for the case p = 0.2. Similar patterns can be observed for other
p.

16

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

0.0
0.5

State X1, # steps=500

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

0.0

0.5
State X2, # steps=500

0.0 0.2 0.4 0.6 0.8 1.0
0

1
State X1, # steps=1000

0.0 0.2 0.4 0.6 0.8 1.0
0

1
State X2, # steps=1000

0.0 0.2 0.4 0.6 0.8 1.0
0
1

State X1, # steps=1500

0.0 0.2 0.4 0.6 0.8 1.0
0
1

State X2, # steps=1500

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X1, # steps=2000

0.0 0.2 0.4 0.6 0.8 1.0
0

2 State X2, # steps=2000

0.0 0.2 0.4 0.6 0.8 1.00

2
State X1, # steps=2500

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=2500

0.0 0.2 0.4 0.6 0.8 1.0

1
2

State X1, # steps=3000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=3000

0.0 0.2 0.4 0.6 0.8 1.0

1
2

State X1, # steps=3500

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=3500

0.0 0.2 0.4 0.6 0.8 1.0

1
2

State X1, # steps=4000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=4000

0.0 0.2 0.4 0.6 0.8 1.0
1

2
State X1, # steps=4500

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=4500

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

1

2
State X1, # steps=5000

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

0

2
State X2, # steps=5000

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

1

2
State X1, # steps=5000

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

0

2
State X2, # steps=5000

0.0 0.2 0.4 0.6 0.8 1.0
1

2
State X1, # steps=10000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=10000

0.0 0.2 0.4 0.6 0.8 1.0
1

2
State X1, # steps=15000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=15000

0.0 0.2 0.4 0.6 0.8 1.0
1

2
State X1, # steps=20000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=20000

0.0 0.2 0.4 0.6 0.8 1.0
1

2
State X1, # steps=25000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=25000

0.0 0.2 0.4 0.6 0.8 1.0
1

2
State X1, # steps=30000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=30000

0.0 0.2 0.4 0.6 0.8 1.0
1

2
State X1, # steps=35000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=35000

0.0 0.2 0.4 0.6 0.8 1.0
1

2
State X1, # steps=40000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=40000

0.0 0.2 0.4 0.6 0.8 1.0
1

2
State X1, # steps=45000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=45000

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

1

2
State X1, # steps=50000

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

0

2
State X2, # steps=50000

Figure 8: Learning progress for T̃ Dα , showing θi(x, a) for each state-action pair. First 2 columns: the
initial 5000 steps, at 500-step intervals. Last 2 columns: 50000 steps, at 5000-step intervals. Action
A1 in blue while Action A2 in orange.

17

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

0.0
0.5

State X1, # steps=500

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

0.0

0.5
State X2, # steps=500

0.0 0.2 0.4 0.6 0.8 1.0
0

1
State X1, # steps=1000

0.0 0.2 0.4 0.6 0.8 1.0
0

1
State X2, # steps=1000

0.0 0.2 0.4 0.6 0.8 1.0
0
1

State X1, # steps=1500

0.0 0.2 0.4 0.6 0.8 1.0
0
1

State X2, # steps=1500

0.0 0.2 0.4 0.6 0.8 1.0
0
1

State X1, # steps=2000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=2000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X1, # steps=2500

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=2500

0.0 0.2 0.4 0.6 0.8 1.0

1
2

State X1, # steps=3000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=3000

0.0 0.2 0.4 0.6 0.8 1.0
1
2

State X1, # steps=3500

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=3500

0.0 0.2 0.4 0.6 0.8 1.0
1
2
3

State X1, # steps=4000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=4000

0.0 0.2 0.4 0.6 0.8 1.0
1
2
3

State X1, # steps=4500

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=4500

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

1
2
3

State X1, # steps=5000

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

0

2
State X2, # steps=5000

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

1
2
3

State X1, # steps=5000

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

0

2
State X2, # steps=5000

0.0 0.2 0.4 0.6 0.8 1.0
1
2
3

State X1, # steps=10000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=10000

0.0 0.2 0.4 0.6 0.8 1.0
1
2
3

State X1, # steps=15000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=15000

0.0 0.2 0.4 0.6 0.8 1.0
1
2
3

State X1, # steps=20000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=20000

0.0 0.2 0.4 0.6 0.8 1.0
1

2
State X1, # steps=25000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=25000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X1, # steps=30000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=30000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X1, # steps=35000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=35000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X1, # steps=40000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=40000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X1, # steps=45000

0.0 0.2 0.4 0.6 0.8 1.0
0

2
State X2, # steps=45000

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

0

2
State X1, # steps=50000

0.0 0.2 0.4 0.6 0.8 1.0
Quantile level

0

2
State X2, # steps=50000

Figure 9: Learning progress for T̃ψ , showing θi(x, a) for each state-action pair. First 2 columns: the
initial 5000 steps, at 500-step intervals. Last 2 columns: 50000 steps, at 5000-step intervals. Action
A1 in blue while Action A2 in orange.

18

C Modified Puddle World

The original Puddle World (Sutton and Barto, 2018) is a continuous-state 2D navigation task within
a unit square filled with “puddles”. The 4 actions correspond to moving in the 4 directions, with a
Gaussian noise added to each step. While each step has a cost of 1 (i.e. reward -1), stepping into a
puddle will result in an additional penalty with magnitude that scales with how close the player is
to the center of the puddle. We modify the task such that the in-puddle penalty only happens with
probability 0.1. Stepping into the puddles is therefore an uncertain and risky move. The objective is
to reach a goal region (upper right corner) from the initial state (upper left corner) with as little cost
as possible.

We compare the Markov action-selection strategy T̃ Dα (labeled “Dynamic”) with our proposed T̃ψ
(labeled “Static”) using quantile-regression distributional RL. Figure 10 shows the results for CVaR
at α = 0.2 after 1 million training steps, on 5 random seeds. The best checkpoint is selected for each
seed and the policy is evaluated for 1000 episodes, each episode ends after the player reaches the goal
state or after 100 steps, whichever happens earlier. Each plot shows the histogram for the returns over
the 1000 episodes. The first column (labeled “Expectation”) shows performance of the best policy
that optimizes for the expected return. The second and the third column show results for T̃ Dα and T̃ψ
respectively.

While the “Expectation” policies achieve that best expected returns, we see that the proposed approach
learns better CVaR-optimized policies. Figures 11, 12 and 13 show sample trajectories for the learned
policies from the first 3 random seeds, for each of the strategies. The gray-color regions are the
puddles, the green cross marks the start state while the goal region is in yellow.

The complete code to reproduce all our results here can be found in the supplementary material.

19

100 80 60 40 20
Return

0

200

0.2-CVaR: -55.4, Avg: -30.3
Risk-neutral seed 1

100 80 60 40 20
Return

0

100

200

0.2-CVaR: -57.1, Avg: -30.3
Risk-neutral seed 2

100 80 60 40 20
Return

0

200

0.2-CVaR: -57.3, Avg: -30.7
Risk-neutral seed 3

100 80 60 40 20
Return

0

100

200

0.2-CVaR: -56.5, Avg: -30.4
Risk-neutral seed 4

100 80 60 40 20
Return

0

100

200

0.2-CVaR: -57.2, Avg: -30.7
Risk-neutral seed 5

70 60 50 40 30
Return

0

100

200
0.2-CVaR: -55.0, Avg: -39.7

Markov seed 1

70 60 50 40 30
Return

0

100

200
0.2-CVaR: -42.4, Avg: -40.5

Markov seed 2

70 60 50 40 30
Return

0

100

200

0.2-CVaR: -46.2, Avg: -42.3
Markov seed 3

70 60 50 40 30
Return

0

200

0.2-CVaR: -44.3, Avg: -40.8
Markov seed 4

70 60 50 40 30
Return

0

200

0.2-CVaR: -44.0, Avg: -40.7
Markov seed 5

55 50 45 40
Return

0

100

200
0.2-CVaR: -41.5, Avg: -40.0

Proposed seed 1

55 50 45 40
Return

0

200

0.2-CVaR: -41.6, Avg: -40.2
Proposed seed 2

55 50 45 40
Return

0

200

0.2-CVaR: -41.7, Avg: -40.5
Proposed seed 3

55 50 45 40
Return

0

100

200

0.2-CVaR: -41.5, Avg: -40.1
Proposed seed 4

55 50 45 40
Return

0

200

0.2-CVaR: -41.9, Avg: -40.6
Proposed seed 5

Figure 10: Histograms for returns over 1000 episodes for the best policy of each random seed. First
column: policies optimized for the expected return. Middle column: Markov action-selection. Right
column: the proposed algorithm.

20

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 0.2-CVaR: -55.4, Avg: -30.3

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 0.2-CVaR: -57.1, Avg: -30.3

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 0.2-CVaR: -57.3, Avg: -30.7

Figure 11: 100 random trajectories from policies optimizing the expected return, for 3 random seeds.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 0.2-CVaR: -55.0, Avg: -39.7

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 0.2-CVaR: -42.4, Avg: -40.5

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 0.2-CVaR: -46.2, Avg: -42.3

Figure 12: 100 random trajectories from policies optimizing the CVaR using T̃ Dα , for 3 random seeds.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 0.2-CVaR: -41.5, Avg: -40.0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 0.2-CVaR: -41.6, Avg: -40.2

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 0.2-CVaR: -41.7, Avg: -40.5

Figure 13: 100 random trajectories from policies optimizing the CVaR using T̃ψ , for 3 random seeds.

21

D Lunar Lander with Noisy Observation

Lunar Lander is a standard OpenAI gym environment with 8-dimensional continuous state space and
4 discrete actions. To add uncertainty to the environment, we add Gaussian noise to the observations
of the lander location. Figure 14 shows the results after running each algorithm for 1 million steps,
with γ = 0.99. We observe that the performance of the proposed approach is more consistent across
the 3 random seeds and achieve better 0.25-CVaR overall.

100 50 0 50 100
0

10

20

Co
un

t

Random seed 1, 1Mil steps
Risk-neutral

100 50 0 50 100
0.0

2.5

5.0

7.5

10.0

Co
un

t

Markov

100 50 0 50 100
Total discounted return

0.0

2.5

5.0

7.5

10.0

Co
un

t

Proposed

75 50 25 0 25 50 75
0

2

4

6

Random seed 2, 1Mil steps
Risk-neutral

75 50 25 0 25 50 75
0

5

10
Markov

75 50 25 0 25 50 75
Total discounted return

0

5

10

15

20 Proposed

150 100 50 0 50 100
0

5

10

Random seed 3, 1Mil steps
Risk-neutral

150 100 50 0 50 100
0

5

10
Markov

150 100 50 0 50 100
Total discounted return

0

5

10
Proposed

Figure 14: Results on noisy Lunar Lander after training for 1 million steps. Each plot is a histogram
of the discounted returns over 100 evaluation episodes.

E Additional Results on Atari Games

Figure 15 shows results for the game Qbert, using the exact same settings for the game Asterix.
Again, we run each algorithm for 30 million steps and evaluate the final policies for 100 episodes
each.

100 150 200 250 300 350
0

10

20

30

Co
un

t

Random seed 1, 30Mil steps
Risk-neutral

100 150 200 250 300 350
0

10

20

Co
un

t

Markov

100 150 200 250 300 350
Total discounted return

0

5

10

15

20

Co
un

t

Proposed

100 150 200 250 300 350
0

10

20

Random seed 2, 30Mil steps
Risk-neutral

100 150 200 250 300 350
0

10

20

Markov

100 150 200 250 300 350
Total discounted return

0

10

20
Proposed

50 100 150 200 250 300 350
0.0

2.5

5.0

7.5

10.0

Random seed 3, 30Mil steps
Risk-neutral

50 100 150 200 250 300 350
0

5

10

15

20 Markov

50 100 150 200 250 300 350
Total discounted return

0

5

10

15

20 Proposed

Figure 15: Results on Atari game Qbert after training for 30 million steps. Each plot is a histogram
of the discounted returns over 100 evaluation episodes.

22

	Introduction
	Related Works

	Problem Setup and Main Results
	Static and Dynamic CVaR
	Distributional RL
	Distributional RL for CVaR

	Algorithm
	Empirical Results
	Synthetic Data
	Option Trading
	Atari Games

	Conclusion and Future Work
	MDP with stationary and Markov CVaR-optimal policy
	MDP with non-stationary CVaR-optimal policy
	Modified Puddle World
	Lunar Lander with Noisy Observation
	Additional Results on Atari Games

