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1 Method Details1

1.1 Audio Latency Calibration2

3.4s

3.46s

Fig 1

Similar to using a clapperboard in film production, we tap on the contact3

microphone and match the time between the frame when the finger is observed4

to be in contact with the microphone and the corresponding audio signal5

captured by the contact microphone. A visual illustration is shown in Fig. 1.6

The audio is received about 0.06s after the image is received, as a result the7

total audio latency is 0.17 + 0.06 = 0.23s, where 0.17s is the calibrated image8

latency following the approach in [1].9

1.2 Model Details10

Image Augmentation. Each image is randomly cropped with a 95% ratio and then resized to its original11

resolution in the replay buffer. To make the learned model more robust to different lighting conditions at test12

time, we apply ColorJitter augmentation with brightness 0.3, contrast 0.4, saturation 0.5, and hue 0.08.13

Transformer Encoder. We use one transformer encoder layer with 8 heads to fuse the vision and audio14

features. We set feedforward dimension to 2048 and dropout ratio to 0.0.15

End-to-End Training Details. For each task, the entire model is end-to-end trained on 2 NVIDIA GeForce16

RTX 3090 GPUs for 60 epochs, with a batch size of 64. We use the AdamW optimizer with lr=1e-4,17

betas=[0.95, 0.999], eps=1.0e-8, weight decay=1.0e-6, and apply EMA (Exponential Moving Average)18

on the weights.19

2 Evaluation Details20

2.1 In-the-Wild Data Collection21

We collect 274 in the wild data for the bagel flipping task in total, including 52 in a conference room, 37 and22

44 in two kitchens, 46 in an office, 76 on lounge tables, and 19 in a cafe, using 4 different pans. Examples of23

the environments are shown in Fig. 2.24

2.2 Result Details25

2.2.1 Pouring Task26

Grasp Pour Place
OURS 90 100 90

Vision only 100 0 8.3
1s audio 91.7 30 0
10s audio 100 60 16.7

Table 1: Success Rate Breakdown.

A breakdown of the success rate for each substep in the pouring27

task is shown in Tab. 1. ‘Grasp’ is successful if the robot grasps28

the white cup stably in its end effector, ‘Pour’ is successful if29

the robot pours all objects in the white cup to the pink cup on30

the table, ‘Place’ is successful if the robot places the white cup31

on the table after pouring. By using audio feedback to infer the32
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Fig 2: Example Scenes in the In-the-Wild Dataset.

(a) Training signal (b)     Real time signal (c)    Signal after noise reduction

Fig 3: Spectrogram Visualization.

object state (whether there’s object in the cup or not), our method is able to reliably guide the policy to pour33

objects and place the cup, whereas the baselines either never executes the pour action or the place action,34

resulting in low substep success rate. Videos of the policy rollouts can be found on the project website.35

2.2.2 Taping Task36

Touch Sense Pick Place
OURS 90 90 80 80

Vision only 80 30 90 80
Env Mic 80 30 90 40

Noise Reduction 80 40 90 90

Table 2: Success Rate Breakdown.

A breakdown of the success rate for each sub-37

step in the taping task is shown in Tab. 2.38

‘Touch’ is successful if the robot slides along39

the tape while maintaining contact, ‘Sense’ is40

successful if the robot chooses the correct tape,41

‘Pick’ is successful if the robot successfully42

grasps the tape. ‘Place’ is successful if the43

robot successfully places the tape on top of the wires. By leveraging audio feedback to infer the object surface44

material (whether the tape is a ‘hook’ or ‘loop’), our method is able to reliably guide the policy to choose the45

correct tape whereas the baselines make random decisions, as shown in the ‘Sense’ step success rate. Videos46

of the policy rollouts can be found on the project website.47

Noise Reduction Algorithm. We use the non-stationary noise reduction method introduced in [2]. The48

algorithm computes a spectrogram from the audio waveform, and then apply IIR filter forward and backward49

on each frequency channel to obtain a time-smoothed version of the spectrogram. A mask is then computed50

base on the spectrogram from estimating a noise threshold for each frequency band of the signal/noise. And51

finally, a smoothed, inverted version of the mask is applied on the original spectrogram to cancel noise. In our52

experiments, we apply this algorithm directly on the real time audio signals before feeding it to the model53

for inference. In Fig. 3, we show spectrogram visualization of the real time signal (b) and the signal after54

reduction (c). Even though the noise reduction seems to successfully remove most of the robot noises and55

some other background noises, it does not preserve the original signal well, and still result in domain gap as56

comparing to the training signal (a).57
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2.2.3 Wiping Task58

We listed out each test scenario in the wiping task evaluation and success (1) / failure (0) for each method.59

Test Scenario OURS Vision only MLP fusion Noise masking No noise aug
0 T1 (square) 1 1 0 (incomplete) 0 (press) 1
1 T1 (heart) 1 1 0 (incomplete) 1 0 (press)
2 T1 (circle) 1 0 (incomplete) 1 1 1
3 T3 (star) 1 1 1 0 (press) 0 (press)
4 T3 (+1 inch) 1 0 (float) 0 (incomplete) 1 0 (incomplete)
5 T3 (+5 inch) 1 0 (press) 0 (incomplete) 0 (press) 0 (press)
6 T3 (changing height) 1 0 (float) 0 (float) 0 (press) 1
7 T3 (changing height) 1 0 (press) 0 (incomplete) 0 (press) 0 (press)
8 T2 (white noise) 1 1 0 (press) 1 1
9 T2 (white noise) 1 1 1 1 1
10 T2 (construction noise) 1 1 1 0 (press) 0 (press)
11 T2 (music) 0 (float) 1 0 (incomplete) 1 0 (incomplete)
12 T1 (board orientation) 0 (float) 0 (float) 0 (float) 0 (float) 0 (incomplete)
13 T1 (board position) 1 1 0 (incomplete) 1 1
14 T3 (unseen eraser) 1 0 (float) 0 (press) 0 (press) 0 (press)
15 T3 (unseen eraser) 1 0 (incomplete) 1 1 0 (press)
16 T3 (-1 inch) 1 0 (float) 1 1 0 (float)
17 T3 (-1 inch) 1 0 (float) 0 (incomplete) 0 (press) 0 (press)
18 T3 (-2 inch) 0 (float) 0 (float) 1 1 0 (float)
19 T3 (-2 inch) 1 0 (float) 0 (incomplete) 0 (press) 1

Success rate 85% 40% 35% 50% 35%

Table 3: Wiping Test Scenario Breakdown.

‘Float’ means the robot keeps floating above the board without contacting the board before it wipes off the shape.60

‘Press’ means the robot exerts too much force downward and causes the gripper to bend against the board.61

‘Incomplete’ means the robot fails to follow the shape, either stops wiping early or wipes in wrong location.62

Fig 4: Camera view in the wiping task.

As we can see from Tab. 3, ‘Float’ and ‘Press’ are most63

common in the [Vision only] baseline especially when the64

table height is different than training, likely due to the fact65

that it’s insufficient to infer contact from the top-down view66

wrist-mount camera image alone (as shown on the right).67

The most common failure case in [MLP fusion] is ‘incomplete’,68

where the robot stops wiping and releases the eraser before69

the shape is completely wiped off. We hypothesize that this70

is because simply fusing vision and audio features with MLP71

layers lose information that’s crucial for inferring the stage of72

the task.73

Without noise augmentation, the policy exhibits various unex-74

pected behaviors including ‘press’, ’incomplete’, and ‘float’,75

because of the big domain gap between training and testing. The policy achieves better performance by simply76

masking out the robot noise frequency range in the [Noise masking] baseline, however, it still fails half of the77

time and most of the failure cases are ‘pressing’ too hard against the board.78

2.2.4 Flipping Task79

We listed out each test scenario in the bagel flipping task evaluation and success (1) / failure (0) for each method.80
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Test Scenario OURS Vision only MLP policy ResNet AVID
0 T1 1 0 (lose) 1 0 (poke) 1
1 T1 1 0 (lose) 0 (displace) 1 0 (lose)
2 T1 1 0 (poke) 1 0 (displace) 0 (displace)
3 T1 1 0 (lose) 0 (poke) 1 1
4 T1 1 1 1 1 0 (lose)
5 T1 0 (lose) 0 (lose) 1 0 (displace) 1
6 T1 1 0 (lose) 1 1 1
7 T1 1 0 (poke) 0 (displace) 0 (poke) 1
8 T1 1 1 1 0 (displace) 0 (poke)
9 T1 1 1 0 (lose) 1 1
10 T1 1 1 1 0 (displace) 1
11 T1 1 0 (poke) 0 (poke) 0 (displace) 1
12 T1 1 0 (poke) 1 1 1
13 T1 1 0 (lose) 0 (lose) 0 (poke) 1
14 T2 (clap) 1 0 (poke) 1 1 0 (displace)
15 T2 (construction noise) 1 0 (poke) 1 0 (stuck) 1
16 T3 (unseen height) 1 1 1 1 0 (displace)
17 T3 (unseen height) 0 (lose) 0 (poke) 0 (lose) 0 (displace) 0 (lose)
18 T3 (unseen height) 1 0 (lose) 1 0 (poke) 0 (displace)
19 T3 (unseen height) 1 0 (displace) 0 (lose) 0 (displace) 0 (displace)

Success rate 90% 25% 60% 35% 55%

Table 4: Flipping Test Scenario Breakdown.

‘Poke’ means that the robot pokes the spatula on the side of the bagel instead of inserting the spatula between81

the pan and the bottom of the bagel. ‘Lose’ means the robot loses contact with the bagel before it is flipped,82

as a result, the bagel falls back to its original side. ‘Displace’ means that the spatula is displaced in the robot83

end effector as comparing to its initial pose, as a result of the robot keeps moving down instead of switching84

to slide the spatula along the bottom of the pan.85

For all T1 scenarios, we randomize the robot initial pose and object positions (e.g. bagel and pan). We can86

observe that the [Vision only] policy does not generalize well across initial configurations and most failure87

cases are either poking on the side of the bagel (since it’s hard to infer from the image alone if the spatula is88

contacting the bottom of the pan), or losing contact with the bagel early before it can be flipped.89

Using a [ResNet] and [AVID] audio encoder results in the spatula to ‘displace’ most of the times, likely90

because the model is not sensitive enough to the sound feedback of spatula touching the bottom of the pan,91

and as a result keeps moving downward and causes the spatula to displace.92
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