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Appendix for ”DeepGRAND: Deeper Graph Neural Diffusion”

A TECHNICAL PROOFS

Consider the dynamic given by equation 3 and equation 4. We say that a matrix is postitive if and
only if all of its entries are positive. Clearly, A is a postive right-stochastic matrix. We recall the
well-known Perron-Frobenius theorem

Theorem 1 (Perron-Frobenius). Let M be a positive matrix. There is a positive real number r,

called the Perron–Frobenius eigenvalue, such that r is an eigenvalue of M and any other eigenvalue

� (possibly complex) in absolute value is strictly smaller than r , |�| < r. This eigenvalue is simple

and its eigenspace is one-dimensional.

Proof of Proposition 1. Since A is right-stochastic, its Perron-Frobenius eigenvalue is ↵1 = 1. Its
eigenspace has the basis u1 = {1, 1, . . . , 1}. Suppose {↵1,↵2, . . . ,↵k} is the complex spectrum of
A. That is, they are all complex eigenvalues of A. The matrix A� I has eigenvalues �i = ↵i � 1
for all i = 1, k, so �1 = 0 and Re�i < 0 for all i = 2, k. There exists a basis containing u1 of Cn

comprising of generalized eigenvectors of A. By rearranging the vectors if needed, the transition
matrix P from the standard basis to this basis satisfies

P
�1(A� I)P =

0
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0 0 . . . 0
0 J1 . . . 0
...

...
. . .

...
0 0 . . . Jm

1

CCCA
,

where each Ji is a Jordan block associated with some eigenvalue �i.

Proof of Proposition 2. Let J = P
�1

AP and Z(t) = P
�1

X(t) as in Proposition 1, we can
rewrite equation 4 as

@Z

@t
(t) = JZ(t),

The solution to this matrix differential equation is

Z(t) = exp(tJ)Z(0),

where

exp(tJ) =

0
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.

Let Z be the matrix with the same size as Z(0) obtained by setting every entry in all but the first
row of Z(0) be equal to 0. We have

Z(t)�Z = Z(t)�

0
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0 0 . . . 0

1

CCCA
Z(0) =
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Z(0).
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Denote the size of each Jordan block Ji as ni, we have well-known equality

exp(tJi) = e�it

0
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Hence, every non-zero entry of Z(t)�Z has the form e�itP (t) for some �i < 0 and polynomial P .
Each entry can thus be bounded above in norm by an exponential term of the form c1e�c2t for some
c1, c2 > 0. A simple calculation shows that kX(t) � PZk1 = kP (Z(t) � Z)k1 would also be
bounded by an exponential term. That is, there exists some C1, C2 > 0 such that

kX(t)� PZk1  C1e
�C2t. (12)

Recall that the first column of P is u> = (1, 1, . . . , 1)>, so that

PZ =

0

BBB@

Z(0)1,1 Z(0)1,2 . . . Z(0)1,d
Z(0)1,1 Z(0)1,2 . . . Z(0)1,d

...
...

. . .
...

Z(0)1,1 Z(0)1,2 . . . Z(0)1,d

1
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.

Let v = (Z(0)1,1,Z(0)1,2, . . . ,Z(0)1,d)> and V = (v,v, . . . ,v)>. We can rewrite equation 12
as

kX(t)� V k1  C1e
�C2t. (13)

The claim that v 2 Rd follows from the fact that it is the limit of real-valued vectors with regards to
the k · k1 norm.

Proof of Proposition 3. Let Yi(t) = kXi(t)k4, we have

Y
0
i (t) = 4kXi(t)k2hX 0

i(t),Xi(t)i
= 4kXi(t)k2h(A� (1 + ✏)I)Xi(t)kXik↵,Xi(t)i
= 4kXi(t)k2+↵h(A� (1 + ✏)I)Xi(t),Xi(t)i
= 4kXi(t)k2+↵hAXi(t),Xi(t)i � 4(1 + ✏)kXi(t)k4+↵

Since A is a right-stochastic and radial matrix, we have
hAXi(t),Xi(t)i  kAkkXi(t)k2 = kXi(t)k2,

and
�hAXi(t),Xi(t)i  kAkkXi(t)k2 = kXi(t)k2,

so that
�kXi(t)k2  hAXi(t),Xi(t)i  kXi(t)k2.

Hence, we deduce that
4kXi(t)k4+↵(�2� ✏)  Y

0
i (t)  4kXi(t)k4+↵(�✏). (14)

Multiply both sides of equation 14 with �↵
4 kXi(t)k�4�↵ = �↵

4Yi(t)�1�↵/4, and by noting that
�↵

4Y
0
i Y

�1�↵/4
i = (Y �↵/4

i )0, we have

↵(2 + ✏) � (Y �↵/4
i )0 � ↵✏.

Integrate from 0 to T and rearranging the appropriate terms, we get

(2 + ✏)↵T + Yi(0)
�↵/4 � Yi(T )

�↵/4 � ✏↵T + Yi(0)
�↵/4.

Finally, by noting that Y
�↵
4

i = kXik�↵, we easily get the bound equation 10
�
(2 + ✏)↵T + kXi(0)k�↵

��1
↵  kXi(T )k 

�
✏↵T + kXi(0)k�↵

��1
↵ .
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B PHYSICAL INTERPRETATION OF GRAND

Informally, diffusion describes the process by which a diffusing material is transported from a region
of higher to lower density through random microscopic motions. A natural example is the process
of heat diffusion, which occurs when a hot object touches a cold object. Heat will diffuse between
them until both objects are of the same temperature.

GRAND approaches deep learning on graphs as a continuous diffusion process and treat GNNs as
discretisations of an underlying PDE. In doing so, the dynamic in GRAND is the same as that in
(heat) diffusion problems. We use this viewpoint to consider the over-smoothing issue.

Consider each node in a given graph as a point in space containing some amount of thermal energy.
Each pair of points is connected through a heat pipe. The thermal conductivity (also known as the
diffusivity) of each pipe is specific to each pair of points. A thermal conductivity of 0 represents two
points that are not connected in the graph. The exact formulation of graph diffusion up to equation 4
represents a closed system. That is, the total amount of energy in all nodes is invariant of time.

In node classification problems, nodes within the same class are often hypothesized as sharing strong
connection with each other. This is known as the homophily assumption, i.e. ’like attracts like’. For
example, friends are more likely to share an interest, and papers from the same research area tends to
cite each other. Homophily is a key principle of many real-world networks, and its effect on GNNs
has gained traction as a research direction (Zhu et al., 2020; Yan et al., 2021; Chen et al., 2022; Luan
et al., 2022; Ma et al., 2022).

In the context of GRAND, we can assume nodes within the same class as sharing a highly conductive
heat pipe. As such, thermal energy is transferred effectively between them, quickly bridging any
gap in temperature. This allows for rapid clustering of nodes into classes of different thermal energy
levels, which can then be passed into a fully connected layer to perform classification.

This interpretation gives a surprising intuitive explanation to the occurrence of the over-smoothing
issue in GRAND. If the dynamic carries on for too long, the energy level of every node will exponen-
tially converge to the average thermal energy, given that the graph is sufficiently connected. Hence,
we argue that GRAND (and more generally, any GNN based purely on diffusion) is inherently prone
to suffer from over-smoothing.

C ON NEURAL ODES

Traditional neural networks such as residual neural networks, normalizing flows, recurrent-neural-
networks (RNNs) learn complicated mappings via the composition of multiple transformations to the
hidden states. For example, the residual network updates the future hidden state using the following
equation:

ht+1 = ht + f(ht, t, ✓) (15)

Where t 2 {1, . . . , T} is the layer index of the neural network and ht is the hidden state at layer t.
This iterative update rule can be seen as the Euler discretisation of a continuous transformation.

Neural ODEs (Chen et al., 2018) are a class of continuous-depth (or continuous-time) neural net-
works where the transformation step t is infinitesimally small. Specifically, the hidden state ht is
parameterized using a continuous dynamics with respect to time t:

dht

dt
= f(ht, t, ✓) (16)

Where f(ht, t, ✓) is specified by a neural network parameterized by ✓. Starting from the initial state
h(0), Neural ODEs learn the final representation h(T ) by solving 16 using a numerical integrator
(often with an adaptive step-size solver or an adaptive solver for short) given an error tolerance.
Integrating 16 from 0 to T in a single forward pass requires the adaptive solver to evaluate f(ht, t, ✓)
at multiple time-steps. The computational complexity of the forward pass is determined by the
number of function evaluations.

The only problem with updating the hidden state by solving 16 numerically is that the black-box
ODE solver is not a differentiable operation. Therefore, the usual back-propagation method for
optimizing traditional neural networks does not work for Neural ODEs.
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The adjoint sensitivity method (or adjoint method) is a memory-efficient alternative of the traditional
back-propagation method for training Neural ODEs. We denote h(T ) as the prediction of Neural
ODEs and the loss between h(T ) and the ground truth is L. Then, we define the adjoint state as
a(t) = @L/@h(t), we have:

dL
d✓

=

Z T

0
a(t)T

@f(h(t), t, ✓)

@✓
dt (17)

Where the adjoint state a(t) satisfies the following dynamics:
da(t)

dt
= �a(t)T

@f(h(t), t, ✓)

@h(t)
(18)

Since the adjoint state in 18 can be solved numerically using an ODE solver, the gradient of the loss
function L with respect to ✓ in 17 can be evaluated. The computational complexity of the backward
pass is determined by the number of function evaluations used by the ODE solver to solve for the
adjoint state.

D EULER DISCRETIZATION OF GRAND ALSO SUFFERS FROM
OVER-SMOOTHING

Recall that the forward Euler discretization of the GRAND dynamic was given by Thorpe et al.
(2022) as

X(k�t) = X((k � 1)�t) + �t(A� I)X((k � 1)�t), (19)
where 1 > �t > 0 is the fixed step size, k = 1, 2, . . . ,K denotes the layers from 1 to K and
Xk := X(k�t) is the node feature at the k-th layer.

We mirror our analysis as in Section 3 almost completely. Some calculations will be omitted for
clarity. First, we give an analogous definition to 1 for discrete GNNs.
Definition 2. Let Xk 2 Rn⇥d

denote the feature representation at the k-th layer of some discrete

GNN dynamic. (Xk) is said to experience over-smoothing if there exists a vector v 2 Rd
and

constants C1, C2 > 0 such that for V = (v,v, . . . ,v)>

kXk � V k1  C1e
�C2k. (20)

Utilising Proposition 1, we can show that
Proposition 4. With the dynamic given by equation 5 and equation 19, (Xk) experiences over-

smoothing.

Proof. Let J = P
�1

AP and Zk = P
�1

Xk as in Proposition 1, we can rewrite equation 19 as

Zk = Zk�1 + �t(J � I)Zk�1 = ((1� �t)I + �tJ)Zk�1 = ((1� �t)I + �tJ)
k
Z0, (21)

where

((1� �t)I + �tJ)
k =

0

BBBBBB@

1 0 . . . 0

((1� �t)I + �tJ1)
k . . .

...
. . .

...
0

((1� �t)I + �mJ)k

1

CCCCCCA
.

Let Z be the matrix with the same size as Z0 obtained by setting every entry in all but the first row
of Z0 be equal to 0. We have

Zk �Z =

0

BBBBBB@

0 0 . . . 0

((1� �t)I + �tJ1)
k . . .

...
. . .

...
0

((1� �t)I + �mJ)k

1

CCCCCCA
Z0.
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Each block (1��t)I+�tJ1 has spectral radius lesser than 1. Hence, every non-zero entry of Zk�Z

can be bounded above in norm by an exponential term of the form c1e�c2t for some c1, c2 > 0. We
can deduce that there exists some C1, C2 > 0 such that

kXk � PZk1  C1e
�C2k. (22)

Recall that the first column of P is u> = (1, 1, . . . , 1)>. Set v to be the first row of Z0. We can
rewrite equation 22 as

kXk � V k1  C1e
�C2k.

The claim that v 2 Rd follows from the fact that it is the limit of real-valued vectors with regards to
the k · k1 norm.

E DEEPGRAND PERFORMANCE ON DIFFERENT NUMBERS OF LABELLED
NODES PER CLASS

In this section, we provide additional experiment results to complement Table 3. Apart from the
test accuracies of DeepGRAND ran on optimal T values, we add an additional column showing
DeepGRAND’s results when trained with identical T values as were used in the GRAND paper
(Chamberlain et al. (2021b)). The experiments suggest that with the same T values, DeepGRAND
already outperforms GRAND on most of the benchmarks with limited number of labeled nodes. We
observe that with optimal T values, DeepGRAND has much less test accuracy variances compared
to all other designs.

Table 4: The means and standard deviations of test accuracies of DeepGRAND-l and other variants
of GRAND experimented with different number of labelled nodes per class. Best results are written
in bold (Note: The results for GRAND++-l were imported from Thorpe et al. (2022)).

Dataset # labelled GRAND-l GRAND-nl GRAND++-l DeepGRAND-l (GRAND setting) DeepGRAND-l (optimal T)

Cora

20
10
5
2
1

82.86 ± 1.12
80.67 ± 2.19
77.09 ± 3.05
74.23 ± 5.58
57.93± 8.09

82.72±2.45
80.51 ± 1.11
77.68 ± 2.85
69.44 ± 4.27

55.86 ± 10.04

82.95 ± 1.37
80.86 ± 2.99
77.80 ± 4.46
66.92 ± 10.04
54.94 ± 16.09

83.87 ± 0.49
82.47 ± 1.11
79.00 ± 1.87
67.57 ± 8.02
63.79 ± 7.14

84.20 ± 0.71

82.88 ± 0.78

80.85 ± 1.08

76.49 ± 1.97

70.15 ± 3.25

Citeseer

20
10
5
2
1

71.74 ± 2.94
66.26 ± 4.19
69.00 ± 3.74
58.35 ± 8.98
49.65 ± 8.67

73.16 ± 3.09
67.84 ± 3.96
66.90 ± 4.62
56.35 ± 5.54
47.32 ± 6.66

73.53 ± 3.31
72.34 ± 2.42
70.03 ± 3.63
64.98 ± 8.31
58.95 ± 9.59

73.64 ± 1.73
72.87 ± 2.29
70.84 ± 3.04
63.26 ± 3.89
53.06 ± 8.49

74.67 ± 0.78

73.45 ± 0.84

71.97 ± 1.03

69.74 ± 2.97

58.35 ± 2.51

Pubmed

20
10
5
2
1

78.42 ± 0.46
74.10 ± 1.88
71.05 ± 1.87
71.44 ± 3.85
62.41 ± 7.59

75.19 ± 1.77
74.18 ± 1.99
72.07 ± 2.15
65.50 ± 9.49
63.47 ± 5.47

79.16 ± 1.37
75.13 ± 3.88
71.99 ± 1.91
69.31 ± 4.87
65.94 ± 4.87

79.23 ± 1.23
76.95 ± 3.24
73.37 ± 2.26
70.75 ± 3.86
64.96 ± 7.08

79.50 ± 0.64

78.93 ± 1.48

77.09 ± 1.12

72.32 ± 1.82

70.03 ± 1.84

Computers

20
10
5
2
1

84.04 ± 0.98
82.34 ± 2.18
78.69 ± 0.79

66.21 ± 11.26
49.80 ± 14.97

83.28 ± 1.24
81.27 ± 3.02
79.65 ± 2.02
65.11 ± 8.31

47.26 ± 11.23

85.73 ± 0.50
82.99 ± 0.81
82.64 ± 0.56

76.47 ± 1.48
67.65 ± 0.37

87.27 ± 1.45
83.79 ± 1.45
82.06 ± 2.02
75.26 ± 2.20
65.35 ± 6.65

87.12 ± 0.45

85.73 ± 1.11

82.42 ± 0.33
76.57 ± 1.44

69.33 ± 2.71

Photo

20
10
5
2
1

93.22 ± 0.44
90.80 ± 1.37
88.06 ± 2.59
82.60 ± 2.96
75.05 ± 5.44

91.76 ± 1.51
89.02 ± 2.54
88.31 ± 1.63
80.61 ± 4.43
76.33 ± 4.79

93.55 ± 0.38

90.65 ± 1.19
88.33 ± 1.21
83.71 ± 0.90
83.12 ± 0.78

93.52 ± 0.40
90.59 ± 2.27
87.75 ± 1.59
84.59 ± 1.80
73.50 ± 5.06

93.46 ± 0.66
92.29 ± 0.42

90.45 ± 0.99

85.09 ± 0.32

83.27 ± 1.88

CoauthorCS

20
10
5
2
1

90.99 ± 0.56
89.00 ± 2.08
84.19 ± 3.59
75.19 ± 3.84
56.58 ± 8.44

90.59 ± 0.97
89.95 ± 0.68

87.01 ± 1.97
76.66 ± 6.85
66.44 ± 8.17

90.80 ± 0.34
86.94 ± 0.46
84.83 ± 0.84
76.53 ± 1.85
60.30 ± 1.50

91.53 ± 0.33
89.39 ± 0.89
86.05 ± 4.64
79.25 ± 3.89
65.15 ± 6.34

91.66 ± 0.59

89.80 ± 0.70
88.24 ± 0.68

82.08 ± 3.39

71.14 ± 1.66

Table 5: T values of DeepGRAND used for different benchmarks.

Cora Citeseer Pubmed CoauthorCS Computers Photo

DeepGRAND (GRAND setting) 18.29 7.87 12.94 3.12 3.24 3.58
DeepGRAND (optimal T) 20.29 9.87 14.94 6.58 6.25 8.58
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