
SoLar: Sinkhorn Label Refinery for Imbalanced
Partial-Label Learning

(Appendix)

Haobo Wang1 Mingxuan Xia2 Yixuan Li3 Yuren Mao2
Lei Feng45 Gang Chen1 Junbo Zhao1∗

1Key Lab of Intelligent Computing based Big Data of Zhejiang Province, Zhejiang University
2School of Software Technology, Zhejiang University

3Department of Computer Sciences, University of Wisconsin-Madison
4College of Computer Science, Chongqing University
5Center for Advanced Intelligence Project, RIKEN

{wanghaobo,xiamingxuan,yuren.mao,cg,j.zhao}@zju.edu.cn
sharonli@cs.wisc.edu, lfeng@cqu.edu.cn

Appendix

A Theoretical Proofs

A.1 Proof of Theorem 1

First, we provide the following lemma to show the consistency of the standard cross-entropy loss.

Lemma 1. If the cross-entropy loss is used as loss function, the optimal classifier f∗∗ that minimizes
the population risk RCE(f) = Ex,y[− log(fy(x))] satisfies f∗∗

y (x) = p(y = i|x).

Proof. We provide a proof sketch in the sequel, and a similar result has been shown in [1, 2]. The
cross-entropy loss leads to the following optimization problem,

min
f
−

L∑
i=1

p(y = i|x) log(fi(x)) s.t.
L∑

i=1

fi(x) = 1. (1)

By introducing a multiplier ξ, the corresponding Lagrangian is as follows,

L(f, ξ) = −
L∑

i=1

p(y = i|x) log(fi(x)) + ξ(

L∑
i=1

fi(x)− 1). (2)

Setting the derivative to 0 yields that,

f∗∗
i (x) =

1

ξ
p(y = i|x),

L∑
i=1

f∗∗
i (x) =

1

ξ

L∑
i=1

p(y = i|x) = 1. (3)

We conclude that ξ = 1 and f∗∗
y (x) = p(y = i|x) holds.

Next, we provide the definition of the (theoretical) ambiguity degree [3] to establish the learnability
of the PLL problem.

∗Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Definition 1. Denote the distribution of triplet (x, y, S) by D̂p, We define the ambiguity degree as,

κ = sup
(x,y,S)∼D̂p,p(x,y)>0,ȳ ̸=y

P (ȳ ∈ S|x, y). (4)

We say a data distribution satisfies the small ambiguity degree condition if κ < 1. This is a natural
requirement. If κ = 1, there exists at least one label pair that always co-occur, and thus, it is
impossible to find the optimal hypothesis given partial-labeled data.

Now, we provide the main proof sketch for Theorem 1. Note that we always seek an optimal
joint probability matrix before model training, which is mainly designed for empirical measures
of the data samples. At a population level, we aim to search for an optimal probability mea-
sure that meets the marginal constraints and candidate constraints. Note that we aim to minimize
E(Q,P) = KL(Q||P) +H(Q) where KL(·) is the Kullback–Leibler divergence and H(·) is an
entropy regularizer. This gives rise to our population risk,

R(f) = inf
ϖ∈∆̃

E(x,S)∼Dp
KL(f(x)||ϖ(y|x)). (5)

Here we omit the entropy term H(ϖ) as it serves as a regularizer. As the training labels are
categorical, we may assume H(p(y|x)) = 0, and thus, the infimum still holds. Otherwise, we can
offset it by setting the smoothing parameter λ = 1 in the Sinkhorn-Knopp approximation. When the
pseudo-labels are fixed, this objective is exactly the cross-entropy loss whose target measure is ϖ.

To show the consistency, we first prove that f∗∗ is the minimizer of R(f). Substituting f∗∗ into
R(f) and combining with Lemma 1, we obtain that,

R(f∗∗) = min
ϖ∈∆̃

E(x,S)∼Dp
KL(p(y|x)||ϖ(y|x)) = 0. (6)

It is obvious that ϖ = p(y|x) leads to the minimal KL-divergence.

On the other hand, we show that f∗∗ is the unique solution. We assume there exists another hypothesis
f ′ that minimizes Eq. (5) and holds a different prediction y′ ̸= y from f on at least one instance
(x, y, S). By the deterministic assumption, we haveR(f ′) = 0, which holds only if y′ is invariably
included in the candidate set S, i.e., PD̂p

(y′ ∈ S|x, y) = 1. Clearly, it violates the small ambiguity
degree condition and causes a contradiction. Ignoring all the null set where p(x, y) = 0, we conclude
that the minimizer f∗ of our population risk equals the fully-supervised f∗∗.

The above discussion indicates that our method poses good performance guarantees like existing
PLL methods [4, 2]. A similar loss R(f) = E(x,S)∼Dp

miny∈S − log(fy(x)) is also discussed in
[4], which is known as minimal loss. Its main difference from our objective is that we seek the best
probability measure instead of an example-wise minimum. Our risk preserves the marginal constraint
of the estimated pseudo-labels and is reasonably more favorable in the long-tailed learning setup.

A.2 Derivation of the Sinkhorn-Knopp Iteration

In this section, we briefly introduce the derivation of the Sinkhorn-Knopp algorithm to ensure the
integrity of our work.

Recall that Eq. (1) is a standard linear programming (LP) problem, and can be solved in polynomial
time. But, considering the high volume of data points as well as potential large class space, common
LP solvers typically become time-consuming. To this end, we investigate a smoothed version of
this optimization problem for fast approximation. Technically, we further add a negative entropy
regularization term to obtain the following objective,

min
Q∈∆
⟨Q,− log(P)⟩ − 1

λ
H(Q). (7)

This entropy regularizer is derived from an optimization perspective and is different from the one in
our derivation of E(Q,P) = KL(Q||P) +H(Q). The resulting objective becomes smoothing and
convex, and thus, can be efficiently solved.

It is worth pointing out that in the PLL problem, we have a special constraint that no probability mass
is assigned outside the candidate label sets. To avoid introducing another set of annoying Lagrange

2

multipliers, we transform this constraint to infinity costs on non-candidate labels. That is, we define a
cost matrix T such that Tij = − log(pij)I(j ∈ Si) + inf I(j /∈ Si) and here we assume 0 · inf = 0.
Now, we obtain the Lagrangian of the new optimization problem,

L(Q,u,v) = ⟨Q,T ⟩ − 1

λ
H(Q) + u⊤(Q1L − c) + v⊤(Q⊤1n − r), (8)

where u,v are Lagrange multipliers. As the original optimization is convex, the solution has to
satisfy the Karush-Khun-Tucker (KKT) conditions. Therefore, we have the following equations,

∂L(Q,u,v)

qij
= Tij +

1

λ
(log(qij) + 1) + ui + vj = 0. (9)

Let M be a matrix such that mij = e−λTij = pλijI(j ∈ Si). We can get that,

qij = e−
1
2−λuimije

− 1
2−λvj . (10)

Thereby, solving the primal problem in Eq. (7) equals to finding the multipliers u and v. Again, this is
equivalent to get another two vectors α ∈ Rn,β ∈ RL such that αi = e−

1
2−λui and βj = e−

1
2−λvj ,

which are also known as scaling coefficients vectors. Then, we can get the following equation,

Q = diag(α)Mdiag(β). (11)

Recall that we enforce Q to meet the following constraints,

Q1L = diag(α)Mβ = c,

Q⊤1n = diag(β)M⊤α = r.
(12)

This gives rise to an alternative coordinate descent algorithm for updating the scaling coefficients,

α← c./(Mβ), β ← r./(M⊤α). (13)

It is also known as the Sinkhorn-Knopp fixed point iteration. We refer the readers to [5] for its
convergence properties. Empirically, we find that setting λ = 3 and running 50 steps are enough to
get a satisfactory solution. The final step is to take a re-scaled the minimizer nQ in Eq. (11), since Q
serves as a joint probability matrix and the posterior is calculated by p(x,y)

p(x) = np(x, y). Without loss
of generality, we slightly abuse the notation Q to denote the obtained pseudo-labels.

The core of our algorithm is to replace our zero constraints on non-candidates with infinity cost,
which equals defining log(0) = − inf . These infinity values are then mapped back to 0s in the
Sinkhorn-Knopp iteration, ensuring the feasibility of the calculation.

B Practical Implementation

In this section, we describe several details of the practical implementation of SoLar.

B.1 Details of Representation Enhancement

A recent work PiCO [6] has shown that existing PLL methods are typically trapped in a
disambiguation-representation dilemma, where the low-quality representation and imperfect la-
bel disambiguation mutually deteriorate each other. It can be even worse in the imbalanced setup
because of low-shot examples on the tail. While PiCO pioneers the contrastive learning technique in
PLL for superior performance, we show this can be achieved by a much simpler design. In contrast to
the complicated network architecture in PiCO [6], we involve consistency training regularizer along
with Mixup augmentation to improve the representation quality.

Consistency Regularization. Recently, consistency regularization (CR) has been widely applied
in weakly-supervised learning [7], which assumes that a classifier should produce similar class
probability for a sample and its local augmented copies. Motivated by this, we also incorporated
CR into PLL. Given an image xi, we adopt two data augmentation modules SimAugment [8] and
RandAugment [9] to obtain a weakly augmented image xw

i and strongly augmented counterpart
xs
i . During training, the weak one is utilized to produce pseudo-labels by our Sinkhorn label

3

refinery procedure as well as selecting the reliable subset. Then, we define the the CR loss lcr =

−
∑L

j=1 qij log(fj(x
s
i)) that is the cross-entropy loss on xs

i and qi.

Mixup. We further incorporate mixup training for improved performance. Given a pair of weakly-
augmented examples xw

i and xw
j in the reliable set, we create a virtual training example by linearly

interpolating both,

xm = σxw
i + (1− σ)xw

j ,

qm = σqw
i + (1− σ)qw

j ,
(14)

where σ ∼ Beta(ς, ς) and we simply set ς = 4 without further tuning. Similarly, we define the mixup
loss lmix as the cross-entropy loss on xm and qm.

In our implementation, we add CR and Mixup on reliable examples only. For the remaining examples,
since their pseudo-labels are unreliable, we train them with the classical re-normalized PLL loss lrn
[4]. The final loss is defined by,

lcls = η(lce + lcr + lmix) + (1− η)lrn, (15)

where lce is the original classification loss of weakly-augmented instances. We linearly ramp up η
from 0 to 0.9 in the first 50 epochs, which helps warm up the classifiers.

B.2 Relaxed Solution for the Sinkhorn-Knopp Algorithm

Recall that we start from a uniform class prior. Empirically, most of our experiments run very well.
But, in some cases, it can result in an unsolvable optimal transport objective. For example, if there
are only a few examples holding one specific label as a candidate (≪ n

L), we have no hope to
constrain the sum of pseudo-labels on this label to be the average number of instances. Thus, the
Sinkhorn-Knopp iteration diverges.

In our implementation, once divergence occurs, we return a relaxed solution to the optimal transport
problem. Concretely, we modify the matrix M by adding a small number ϵ = 1e−5 on its zero
entries. In other words, we regard all negative labels as potential candidates but assign them very
large costs. Now, M is an element-wise positive matrix, and the Sinkhorn fixed iteration process
guarantees to converge. We can re-run the Sinkhorn-Knopp iteration to obtain a relaxed solution.
Finally, we set the non-candidate labels as zero again, as they should not be assigned any probability
mass. By then, our algorithm can safely run with a uniform distribution. This procedure is easy to
implement and increases only 1× computation at most. Moreover, as the class prior is estimated
better and better, we typically do not need this relaxed solution anymore.

In practice, it is not likely that we are fully unknowledgeable of the class distribution. Thus, we can
also use a good initialization to avoid the aforesaid problem. Empirically, we find that initializing
with the ratio of candidate label number is also a good choice for SoLar.

C Additional Experimental Results

In this section, we report the additional empirical results of our proposed SoLar framework. All
experiments are conducted on a workstation with 8 NVIDIA A6000 GPUs. The licenses of our
employed datasets are unknown (non-commercial).

C.1 Experimental Setups on Fine-grained Datasets and SUN397

In the sequel, we show the full experimental setups on fine-grained classification datasets. In particular,
on CUB200-LT, we set the batch size as 128, and the length of the queue for Sinkhorn acceleration as
8 times batch size. We train the model for 500 epochs without the pre-estimation training stage. The
ratio parameter ρ ramps up from 0.2 to 0.5 in the first 50 epochs. Other hyper-parameters are the same
as our default setting. On CIFAR100-H-LT, we simply adopt the default parameter configurations.
The baselines are also fine-tuned to achieve their best results.

For the SUN397 dataset, we set the batch size as 128, and the queue length for Sinkhorn acceleration
as 16 times batch size. We train the model for 20/200 epochs for distribution estimation and regular
training. The gamma value is set as 0.1 at the pre-estimation stage. Other parameters are the same as

4

Table 5: Full results on the SUN397 dataset.

Methods
SoLar (ϕ = 0.05) SoLar (ϕ = 0.1)

All Many Medium Few All Many Medium Few

PRODEN 51.14 76.98 58.17 17.61 35.96 76.62 29.48 1.40
PiCO 29.54 57.91 21.27 9.33 12.22 24.17 9.23 3.18
SoLar 61.58 77.36 62.59 44.49 55.64 76.78 57.87 31.86

Table 6: Accuracy comparisons of SoLar and SoLar with logits adjustment (SoLar-LA). The best
results are marked in bold and the second-best marked in underline.

Methods
CIFAR10-LT (ϕ = 0.5, γ = 100) CIFAR100-LT (ϕ = 0.1, γ = 20)

All Many Medium Few All Many Medium Few

SoLar 74.16 96.50 76.01 50.16 53.03 74.33 54.09 30.62

SoLar-LA (ζ = 0.5) 78.23 95.91 78.70 59.94 54.17 73.05 55.75 33.66
SoLar-LA (ζ = 1) 80.88 94.35 79.76 68.90 54.82 71.08 56.90 36.40
SoLar-LA (ζ = 2) 72.48 52.98 78.68 83.71 54.37 64.45 57.70 40.86

the CUB200-LT dataset. As the SUN397 has a much larger scale, we calculate the empirical label
distribution z by recording batch-wise statistics during training. We find this on-the-fly counting
strategy works as well as the default setup but is much faster. As reported in Table 5, SoLar retains
substantial performance advantages in different ambiguity degrees.

C.2 Full Results of SoLar with Logit Adjustment

In Table 6, we report the full results of SoLar-LA with varying ζ values on CIFAR10-LT and
CIFAR100-LT. On CIFAR100-LT, SoLar-LA still outperforms SoLar with a proper ζ. The results
demonstrate that SoLar achieves promising disambiguation ability in the imbalanced PLL setup.
Given well-disambiguated data, SoLar makes it possible to apply off-the-shelf LTL methods for
further improvements.

C.3 Running Time of the Sinkhorn-Knopp Algorithm

Table 7: Total running time (in hours) of the
Sinkhorn-Knopp iterations and model training on
CIFAR10-LT (γ = 100) and CIFAR100-LT (γ = 20).

Dataset CIFAR10-LT CIFAR100-LT

Sinkhorn-Knopp 0.08 0.10
Model Training 1.81 2.33

As we mentioned in Section 3.1, our Sinkhorn-
Knopp algorithm can be efficiently implemented
on GPUs. In Table 7, we report the total run-
ning time (1000 epochs) of the Sinkhorn-Knopp
iterations as well as model training based on our
implementation. We run SoLar with our default
parameter configurations and evaluate using one
NVIDIA A6000 GPU. During training, we main-
tain a queue of size 64×256 to store classifier predictions in previous 64 steps. Then, we concatenate
the prediction in the current batch with the queue to run the Sinkhorn-Knopp algorithm. It can be
shown that the Sinkhorn-Knopp iterations take less than 1/10 time cost than regular model training
(including forward pass and backward propagation). These results clearly validate the efficiency of
our algorithm.

C.4 More Ablation

Effect of selection threshold ρ and τ . We further investigate the effect of the small-loss selection
ratio parameter ρ and the high-confidence threshold τ . Figure 3 (a) shows the performance of
SoLar with varying ρ on CIFAR10-LT (without ramp-up). When ρ = 0, SoLar simply selects
high-confidence samples, which leads to an unsatisfactory performance on few-shot labels. The
performance becomes much better as ρ becomes larger and achieves the best when ρ = 0.4. But,
when ρ becomes too large, the model tends to overfit unreliable labels. Empirically, we find that
SoLar works well in a wide range of ρ and ρ ≈ 0.5 is a good choice.

5

(a) Ablation on ρ (b) Ablation on λ (c) Non-Uniform Case

Figure 3: (a) Performance of SoLar with varying ρ on CIFAR10-LT (ϕ = 0.5, γ = 100). (b) Performance
of SoLar with varying λ on CIFAR10-LT (ϕ = 0.5, γ = 100). (c) Performance comparisons of SoLar and
baselines on CIFAR10-LT with non-uniform generated candidate labels.

Table 8 lists the result of SoLar with varying τ values. With a relatively small τ , SoLar collects too
many unconfident examples, which typically hurts the robustness of model training. When τ = 0.99,
SoLar achieves rather promising results on different groups of labels. A surprising observation is
SoLar without high-confidence selection, i.e., τ = 1, achieves better results than SoLar on few-shot
labels. We find the reason is that those well-disambiguated examples on the majority classes are
overlooked, which poses an effect of down-sampling and benefits learning on the minority classes.
As a negative effect, this sacrifices the performance of many-shot labels, which leads to an interesting
trade-off. We empirically set τ = 0.99 to retain relatively good performance on many-shot labels.

Table 8: Performance of SoLar with varying τ on
CIFAR10-LT (ϕ = 0.5, γ = 100).

τ Values All Many Medium Few

0.9 64.31 96.32 65.96 30.10
0.95 69.00 96.38 70.64 39.76
0.99 74.16 96.50 76.01 49.34
1.0 74.49 93.72 75.08 54.46

Effect of Sinkhorn smooth parameter λ. Next, we
study the effect of the Sinkhorn smooth parameter λ.
The results are shown in Figure 3 (b). In general, a too
small λ results in poor label assignment as the optimal
transport objective becomes hard to be resolved. With
a too large λ, our objective is over-smoothed and thus
the resultant solution may deviate from the true one,
which slightly degrades the performance as well. We
empirically found that λ = 3 is a proper choice.

Table 9: Performance of SoLar without training
with unreliable examples.

Class Prior All Many Medium Few

Oracle 71.75 96.00 76.65 40.97
Estimated 61.85 68.00 72.17 41.94

The role of unreliable examples. In our implementa-
tion, we enable unreliable examples to be trained with
re-normalized PLL loss since their pseudo-labels can
be noisy. This not only improves data utility but also
serves as a warm-up mechanism for SoLar as we aim
to train SoLar without knowledge of the true class
prior. To see the role of unreliable examples, we also
evaluate SoLar without lrn and the results are shown in Table 9. We observe that SoLar w/o lrn obtains
favorable results on tail labels, even trained with only reliable examples. This verifies the importance
of our distribution-preserving sample selection mechanism. Given the oracle class prior, SoLar w/o
lrn obtains competitive performance and matches our main results. In practice, proper utilization of
unreliable samples typically leads to more promising results.

Ablation on representation learning. Here we ablate the contributions of two components in repre-
sentation enhancement: mixup augmentation training and consistency regularization. Specifically,
we compare SoLar with three variants: 1) SoLar w/o MU which removes Mixup augmentation
training; 2) SoLar w/o CR which removes consistency regularization; 3) SoLar w/o MU+CR which
removes both Mixup and consistency parts; 4) PRODEN w/o MU+CR is the PRODEN algorithm
that removes Mixup and consistency parts as well. From Table 10, we can observe that both SoLar
and PRODEN benefit from Mixup and consistency regularization techniques. In contrast to the
relatively complicated contrastive learning modules in PiCO, which may be not directly suitable for
the long-tailed setup, our simpler design can also alleviate the representation dilemma of PLL.

C.5 Results with Non-Uniform Data Generation

In reality, some labels may be more analogous to the ground-truth than others, and CIFAR100-H-LT is
exactly one of the cases. Following [6, 10], we further test SoLar with a non-uniform data generation

6

Table 10: Ablation results on representation learning techniques.

Ablation
CIFAR10-LT CIFAR100-LT

All Many Med. Few All Many Med. Few

SoLar 74.16 96.50 76.01 49.34 53.03 74.33 54.09 30.62

CC w/o MU+CR 36.98 79.38 30.63 3.04 25.96 47.08 23.82 7.04
PRODEN w/o MU+CR 46.61 85.43 44.65 10.40 31.78 55.09 32.38 7.85

SoLar w/o MU 69.40 92.77 72.75 41.58 47.41 71.45 48.06 22.70
SoLar w/o CR 57.97 92.78 61.05 19.05 47.74 70.18 51.85 21.06

SoLar w/o MU+CR 44.83 82.33 40.39 13.25 30.88 50.52 30.53 11.61

Table 11: Characteristics of the real-world partial label datasets. #Avg. Cand. indicates the average
number of candidate labels per sample. Note that some labels in the Lost dataset have no sample at
all and hence, we calculate the imbalanced ratio by using the non-zero minimum label count.

Datasets #Examples #Features #Labels #Avg. Cand.† Imb. Ratio

BirdSong 4,998 38 13 2.18 11.33
Lost 1,122 108 16 2.23 40.00

Soccer Player 17,472 279 171 2.09 954.33
Yahoo! News 22,991 163 219 1.91 308.79

process, with the following flipping matrix:
1 0.5 0.4 0.3 0.2 0.1 0 · · · 0
0 1 0.5 0.4 0.3 0.2 0.1 · · · 0
... · · ·

...
0.5 0.4 0.3 0.2 0.1 0 0 · · · 1

 , (16)

where each entry denotes the probability of a label being a candidate. From Figure 3 (c), we
evaluate SoLar on CIFAR10-LT with an imbalance ratio γ = 100. It can be observed that SoLar still
outperforms the baselines, which further validates its strong disambiguation ability.

C.6 Results on Real-world Partial-Label Learning Datasets

In this section, we test the performance of SoLar on four classical real-world datasets2, including
Lost, Bird Song, Soccer Player and Yahoo!News. As shown in Table 11, these datasets are naturally
imbalanced, which highlights the motivation of our work. In particular, the Soccer Player dataset has
an extremely severe imbalanced ratio of 954.33. Thus, the evaluation protocol of previous works, i.e.,
uniformly splitting a testing set, is unrealistic on these real-world datasets. To this end, we propose a
(roughly) balanced testing set sampling rule as follows: i) if one label is associated with ≥ 200 data
points, we uniformly select 100 samples for testing; ii) otherwise, we uniformly sample half of the
data for testing. For performance comparisons, we additionally compare SoLar with two more PLL
methods that are tailored for tabular data: IPAL [11] is a graph-based PLL method that propagates
candidate labels to recover label confidences; PLDA [12] is a feature-selection-based method that
maximizes the mutual-information-based dependency between features and labels and we choose
PL-SVM [13] as the base learner. We disable mixup training and consistency regularization as
they are not applicable to tabular data. As shown in Table 12, SoLar achieves comparable or better
performance to all the baselines under the conventional uniform testing set splitting setup. When the
testing set is roughly balanced, SoLar obtains the best performance on all four datasets. These results
further highlight the superiority of SoLar on the imbalanced PLL problem.

D Societal Impact

In this section, we briefly discuss several societal impacts of our work. The most obvious merit
of our study is to reduce the cost of annotation by enabling coarse-grained labeling. This is a

2http://palm.seu.edu.cn/zhangml/Resources.htm#data

7

http://palm.seu.edu.cn/zhangml/Resources.htm#data

Table 12: Performance comparisons on real-world partial-label learning datasets.

Methods Lost BirdSong Soccer Player Yahoo!News

Uniform Testing Set

SoLar 77.86±6.36 72.05±1.76 57.94±1.13 67.62±0.64

VALEN 74.11±4.14 71.59±2.08 57.16±0.62 67.93±0.30

PRODEN 77.98±5.83 71.81±1.52 57.12±1.28 67.87±0.87

CC 77.85±5.83 71.86±1.94 56.44±0.90 67.96±0.90

IPAL 72.50±2.92 70.28±1.33 54.79±1.37 66.50±1.05

PLDA 66.07±1.89 67.68±1.94 50.26±0.46 53.66±0.99

(Roughly) Balanced Testing Set

SoLar 70.56±3.25 68.72±1.17 24.97±0.68 58.18±0.68

VALEN 60.95±2.71 67.49±1.22 20.56±0.79 56.30±0.70

PRODEN 68.85±4.17 67.72±1.42 24.22±0.88 55.98±0.67

CC 68.18±3.97 67.78±1.35 23.84±1.01 56.01±0.72

IPAL 64.35±2.50 66.82±1.49 11.34±0.23 54.90±0.53

PLDA 54.28±4.77 53.24±2.08 16.17±0.90 25.50±0.50

two-edged sword for the community. On the one hand, non-expert annotators can be employed for
crowdsourcing labeling. On the other hand, if the partial-label learning paradigm is widely applied,
the need for precisely annotated data would be significantly reduced, which may cause potential
employment destruction as a consequence of reducing the need for human annotators. Another
potential application of our method is data privacy. For instance, we may ask respondents to answer
some private information when collecting some survey data. The candidate set-style labeling enables
the respondents to exclude several wrong answers, which would be more privacy-friendly.

References
[1] Xiyu Yu, Tongliang Liu, Mingming Gong, and Dacheng Tao. Learning with biased comple-

mentary labels. In ECCV, volume 11205 of Lecture Notes in Computer Science, pages 69–85.
Springer, 2018.

[2] Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, and Masashi Sugiyama.
Provably consistent partial-label learning. In NeurIPS, 2020.

[3] Timothée Cour, Benjamin Sapp, and Ben Taskar. Learning from partial labels. J. Mach. Learn.
Res., 12:1501–1536, 2011.

[4] Jiaqi Lv, Miao Xu, Lei Feng, Gang Niu, Xin Geng, and Masashi Sugiyama. Progressive
identification of true labels for partial-label learning. In ICML, volume 119 of Proceedings of
Machine Learning Research, pages 6500–6510. PMLR, 2020.

[5] Philip A. Knight. The sinkhorn-knopp algorithm: Convergence and applications. SIAM J.
Matrix Anal. Appl., 30(1):261–275, 2008.

[6] Haobo Wang, Ruixuan Xiao, Yixuan Li, Lei Feng, Gang Niu, Gang Chen, and Junbo Zhao.
Pico: Contrastive label disambiguation for partial label learning. ICLR, 2022.

[7] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin Raffel,
Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. In NeurIPS, 2020.

[8] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In NeurIPS, 2020.

[9] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical data
augmentation with no separate search. CoRR, abs/1909.13719, 2019.

[10] Hongwei Wen, Jingyi Cui, Hanyuan Hang, Jiabin Liu, Yisen Wang, and Zhouchen Lin. Lever-
aged weighted loss for partial label learning. In ICML, volume 139 of Proceedings of Machine
Learning Research, pages 11091–11100. PMLR, 2021.

8

[11] Min-Ling Zhang and Fei Yu. Solving the partial label learning problem: An instance-based
approach. In IJCAI, pages 4048–4054. AAAI Press, 2015.

[12] Wei Wang and Min-Ling Zhang. Partial label learning with discrimination augmentation. In
SIGKDD, 2022.

[13] Nam Nguyen and Rich Caruana. Classification with partial labels. In SIGKDD, pages 551–559.
ACM, 2008.

9

	Theoretical Proofs
	Proof of Theorem 1
	Derivation of the Sinkhorn-Knopp Iteration

	Practical Implementation
	Details of Representation Enhancement
	Relaxed Solution for the Sinkhorn-Knopp Algorithm

	Additional Experimental Results
	Experimental Setups on Fine-grained Datasets and SUN397
	Full Results of SoLar with Logit Adjustment
	Running Time of the Sinkhorn-Knopp Algorithm
	More Ablation
	Results with Non-Uniform Data Generation
	Results on Real-world Partial-Label Learning Datasets

	Societal Impact

