
Under review as a conference paper at ICLR 2023

GRAPHCG: UNSUPERVISED DISCOVERY OF
STEERABLE FACTORS IN GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep generative models have been widely developed for graph data such as molec-
ular graphs and point clouds. Yet, much less investigation has been carried out
on understanding the learned latent space of deep graph generative models. Such
understandings can open up a unified perspective and provide guidelines for essen-
tial tasks like controllable generation. To this end, this work develops a method
called GraphCG for unsupervised discovery of steerable factors in latent space of
deep graph generative models. We first examine the representation space of the
recent deep generative models trained for graph data, and observe that the learned
representation space is not perfectly disentangled. Thus, our method is designed for
discovering steerable factors of graph data in a model-agnostic and task-agnostic
manner. Specifically, GraphCG learns the semantic-rich directions via maximizing
the corresponding mutual information, where the edited graph along the same direc-
tion will possess certain steerable factors. We conduct experiments on two types of
graph data, molecular graphs and point clouds. Both the quantitative and qualitative
results show the effectiveness of GraphCG for discovering steerable factors.

1 INTRODUCTION

Graph is a general format for many real-world data. For instance, molecules can be treated as
graphs [10, 14] where the chemical atoms and bonds correspond to the topological nodes and edges
respectively. Processing point clouds as graphs is also a popular strategy [53, 58], where points
are viewed as nodes and edges are built among the nearest neighbors. Many existing works on
deep generative models (DGMs) focus on modeling the graph data and improving the synthesis
quality. However, understanding DGMs on graph and their learned representations has been much
less explored, which may hinder the development of important applications like the controllable
generation (also referred to as the data editing) and the discovery of interpretable data structure.

The graph controllable generation task refers to modifying the steerable factors of graph so as to obtain
graphs with desired properties [9, 43]. This is an important task in many applications, but traditional
methods (e.g., manual editing) possess certain inherent limitations under certain circumstances. A clas-
sic example is molecule editing, which aims at modifying the substructures of molecules [38] and can
relate to some key tactics in drug discovery like functional group change [13] and scaffold hopping [2,
23]. This is a routine task in pharmaceutical companies, yet, relying on domain experts for manual edit-
ing can be subjective or biased [9, 15]. Different from previous works, this paper aims to explore the
unsupervised graph editing with DGMs. It can act as a good complementary module to conventional
methods and bring many crucial benefits: (1) It enables the efficient graph editing in the large-scale set-
ting. (2) It alleviates the requirements for extensive domain knowledge for factor change labeling. (3)
It provides another perspective for editing preference, which reduces biases from the domain experts.

One core property relevant to the general unsupervised data editing using DGMs is the disen-
tanglement. While there does not exist a widely-accepted definition of disentanglement, the key
intuition [36] is that a disentangled representation should separate the distinct, informative, and
steerable factors of variations in the data. Thus, the controllable generation task would become trivial
with the disentangled DGMs as the backbone. Such a disentanglement assumption has been widely
used in generative modeling on the image data, e.g., β-VAE [19] learns disentangled representation
by forcing the representation to be close to an isotropic unit Gaussian. However, it may introduce
extra constraints on the formulations and expressiveness of DGMs [11, 19, 47, 60].

1

Under review as a conference paper at ICLR 2023

(a) Training phase of GraphCG. (b) Test phase of GraphCG.
Figure 1: (a) The training phase. Given two latent codes zu and zv , we edit the four latent representations
along i-th and j-th direction with step size α and β respectively. The goal of GraphCG is to align the positive
pair (z̄u

i,α and z̄v
i,α), and contrast them with z̄u

j,β and z̄v
j,β respectively. (b) The test phase. We will first

sample an anchor molecule, and adopt the learned directions in the training phase for editing. With step size
α ∈ [−3, 3], we can generate a sequence of molecules. Specifically, after decoding, there is a functional group
change shown up: the number of hydroxyl groups decreases along the sequence in the decoded molecules.

For graph data, one crucial question remains: is the latent representation space learned from DGMs
on graph data disentangled? In image generation, prior work [36] shows that without inductive
bias, the latent space learned by VAEs is not guaranteed to be disentangled. However, the disen-
tanglement property of graph DGMs is much less explored. In Sec. 3, we first study the latent
space of DGMs on two typical graph data (molecular graphs and point clouds), and empirically
illustrate that the learned space is not perfectly disentangled. This observation then raises the second
question: Given a pretrained DGM with not perfectly disentangled latent space, is there a flexible
framework enabling the graph controllable generation in an unsupervised manner? To tackle this,
we propose a model-agnostic and task-agnostic framework called GraphCG for unsupervised graph
controllable generation. GraphCG has two main phases, as illustrated in Fig. 1. During the training
phase (Fig. 1(a)), GraphCG starts with the assumption that the steerable directions can be learned
by maximizing the mutual information (MI) among the semantic directions. We formulate GraphCG
with an energy-based model (EBM), which provides a large family of solutions. Then during the test
phase, with the learned semantic directions, we can carry out the editing task by moving along the
direction with certain step sizes. As the example illustrated in Fig. 1(b), the molecular structure (hy-
droxyl group) changes consistently along the editing sequence. For evaluation, we visually verify the
learned semantic directions on both types of graph data. Further for the molecular graphs, we propose
a novel evaluation metric called sequence monotonic ratio (SMR) to measure the output sequences.

We summarize our contributions as follows: (1) We conduct an empirical study on the disentanglement
property of three pretrained deep generative models (DGMs) on two types of graph data, molecular
graphs and point clouds. We find that the latent space of these pretrained graph DGMs is not perfectly
disentangled. (2) We propose a model-agnostic and task-agnostic method called GraphCG for the
unsupervised graph controllable generation. GraphCG aims at learning the semantic directions by
maximizing their corresponding mutual information, and its outputs are sequences of graphs. (3) We
qualitatively evaluate the proposed methods on two types of graph data, molecular graphs and point
clouds. Besides, the quantitative results further show the clear improvement over the baselines.

Related work. Recent works leverage the DGMs for various controllable generation tasks [5, 61],
where the inherent assumption is that the learned latent representations encode rich semantics, and
thus traversal in the latent space can help steer factors of data [17, 26, 52]. Among them, one research
direction [40, 52] is using supervised signals to learn the semantic-rich directions, and most works
on editing the graph data focus on the supervised setting [27, 57, 64]. However, these approaches can
not be applied to many realistic scenarios where extracting the supervised labels is difficult. Another
research line [17, 45, 51] considers discovering the latent semantics in an unsupervised manner, but
most unsupervised methods are designed to be either model-specific or task-specific, making them
not directly applicable to the graph data. More comprehensive discussion is in Appendix B.

2 BACKGROUND AND PROBLEM FORMULATION

Graph and deep generative models (DGMs). Each graph data (including nodes and edges) is
denoted as x ∈ X , where X is the data space, and DGMs learn the data distribution, i.e., p(x). Our

2

Under review as a conference paper at ICLR 2023

proposed graph editing method (GraphCG) is model-agnostic, so we briefly introduce the mainstream
DGMs for graph data as below. Variational auto-encoder (VAE) [19, 31] measures a variational
lower bound of p(x) by introducing a proposal distribution; flow-based model [8, 46] constructs
revertible encoding functions such that the data distribution can be deterministically mapped to a prior
distribution. Note that these mainstream DGMs, either explicitly or implicitly, contain an encoder
(f(·)) and a decoder (g(·)) parameterized by neural networks as:

z = f(x), x′ = g(z), (1)

where z ∈ Z is the latent representation, Z is the latent space, and x′ is the reconstructed output
graph. Since in the literature [51, 52], people also call latent representations as latent codes or latent
vectors, in what follows, we will use these terms interchangeably.

Semantic direction and step size. In the latent space Z , we assume there exist D semantically mean-
ingful direction vectors, i.e., di with i ∈ {0, 1, . . . , D−1}. There is also a scalar variable, step size α,
which controls the degree to edit the sampled data with desired steerable factors (as will be introduced
below), and we follow the prior work [51] on taking α ∈ [−3, 3]. Each direction corresponds to
one or multiple factors, such that by editing the latent vector z with direction di and step size α, the
reconstructed graph will be augmented with the desired factors, leading to certain structural changes.

Steerable factors. The steerable factors are attributes of DGMs, which usually refer to the semantic
information of data that we can explicitly discover from the pretrained DGMs. In this work, we focus
on the steerable factors of graph data, which are data- and task-specific. Yet, there is one category of
factors that is commonly shared among all the graph data: the structure information. Concretely,
these steerable factors can be the functional groups or fragments in molecular graphs and shapes or
sizes in point clouds. In Appendix C, we provide a detailed description of these steerable factors.

Problem formulation: graph controllable generation. Given a pretrained DGM (i.e., the encoder
and decoder are fixed), our goal is to learn the most semantically rich directions (di) in the latent
space Z . Then for each latent code z, with the i-th semantic direction and a step size α, we can get
an edited latent vector z̄i,α and edited data x̄′, as:

z = f(x), z̄i,α = h(z,di, α), x̄′ = g(z̄i,α), (2)

where di and h(·) are the edit direction and edit function that we want to learn. We expect that z̄i,α can
inherently possess certain steerable factors, which can then be reflected in the graph structure of x̄′.

Energy-based model (EBM). EBM is a flexible framework for distribution modeling:

p(x) =
exp(−E(x))

A
=

exp(−E(x))∫
x
exp(−E(x))dx

, (3)

where E(·) is the energy function and A is the partition function. In EBM, the bottleneck is the
estimation of partition function A: it is commonly intractable due to the high cardinality of X .
Various methods have been proposed to handle this issue, including but not limited to contrastive
divergence [20], noise-contrastive estimation [4, 16], and score matching [24, 54, 56].

3 DISENTANGLEMENT OF LATENT REPRESENTATION

In this section, we quantify the degree of disentanglement of the existing DGMs for graph data. In
specific, we adopt six disentanglement measures, and the observed low disentanglement scores show
that compared to DGMs for image data, such as StyleGANs [28, 29], the attributes in latent space of
graph DGMs are not well disentangled.

The key intuition [36] behind disentanglement is that a disentangled representation space should
separate the distinct, informative, and steerable factors of variations in the data. In other words, each
latent dimension of the disentangled representation corresponds to one or multiple factors. Therefore,
the change of the disentangled dimension can lead to the consistent change in the corresponding
factors of the data. This good property has become a foundational assumption in many existing
controllable generation methods [17, 51, 52].

Is the latent space of graph DGMs disentangled? In image generation, [36] shows that without
inductive bias, the representation learned by VAEs is not perfectly disentangled. To verify if this
claim is also valid for the mainstream DGMs on graphs, we conduct the following experiment.

3

Under review as a conference paper at ICLR 2023

Table 1: The six disentanglement metrics on three pretrained DGMs and two graph types. All measures range
from 0 to 1, and higher scores mean more disentangled representation.

Graph Type Model Dataset BetaVAE ↑ FactorVAE ↑ MIG ↑ DCI ↑ Modularity ↑ SAP ↑

Molecular Graph MoFlow ZINC250K 0.260 0.175 0.031 0.953 0.620 0.009
HierVAE ChEMBL 0.178 0.165 0.022 0.114 0.606 0.026

Point Cloud PointFlow Airplane 0.022 0.025 0.029 0.160 0.745 0.022

Steerable factors and experiments on disentanglement measure. There have been a series of
works exploring the disentanglement of the latent space in DGMs, and here we take six widely-used
ones: BetaVAE [19], FactorVAE [30], MIG [6], DCI [11], Modularity [47], and SAP [32]. Each
measure has its own bias, and we put a detailed comparison in Appendix C. Meanwhile, they all share
the same high-level idea: given the latent representation from a pretrained DGM, they are proposed
to measure how predictive it is to certain steerable factors.

To adapt them to our setting, first we need to extract the steerable factors in graph, which requires
the domain knowledge. For instance, in molecular graphs, we can extract some special substructures
named fragments or functional groups. These substructures can be treated as steerable factors
since they are the key components of the molecules and are closely related to certain molecular
properties [50]. We use RDKit [33] to extract 9 most distinguishable fragments as steerable factors
for disentanglement measurement. For point clouds, we use PCL tool [48] to extract 75 VFH
descriptors [49] as steerable factors, which depicts the geometries and viewpoints accordingly.

Then for measuring the disentanglement, we consider six metrics on two data types with three
backbone models. All the metric values range from 0 to 1, and the higher the value, the more
disentangled the DGM is. According to Table 1, We can observe that the most of disentanglement
scores are quite low, except the DCI [11] on MoFlow. Thus, we can draw the conclusion that generally
these graph DGMs are not perfectly disentangled. More details of this experiment (the steerable
factors on two data types and six disentanglement metrics) can be found in Appendix C.

4 OUR METHOD

The analysis in Sec. 3 naturally raises the next research question: given a not well-disentangled
representation space, is there a flexible way to do the graph data editing? The answer is positive. We
propose GraphCG, a flexible model-agnostic and task-agnostic framework to learn the semantic di-
rections in an unsupervised manner. It starts with the assumption that the latent representations edited
with the same semantic direction and step size should possess similar information (corresponding
to the factors) to certain degree, thus by maximizing the mutual information them, we can learn the
most semantic-rich directions. Then we formulate this editing task as a density estimation problem
with the energy-based model (EBM). As introduced in Sec. 2, EBM covers a broad range of solutions,
and we further propose GraphCG-NCE by adopting the noise-contrastive estimation (NCE).

4.1 GRAPH CONTROLLABLE GENERATION WITH MUTUAL INFORMATION

The mutual information (MI) measures the non-linear dependency between variables. To adapt
it to our setting, we set the editing condition as containing both the semantic directions and step
sizes, and we assume that maximizing the MI between different conditions can maximize the shared
information within each condition. The pipeline is as follows.

We first sample two codes in the latent space, zu and zv . Then we pick up the i-th semantic direction
and one step size α to obtain the edited latent points in Z . The corresponding points are as

z̄u
i,α = h(zu,di, α), z̄v

i,α = h(zv,di, α). (4)

Under our assumption, we expect that these two edited points share certain information with respect
to the steerable factors. Thus, we want to maximize the MI between z̄u

i,α and z̄v
i,α. Since the MI is

intractable to compute, we adopt the EBM lower bound [35] as:

LMI(z̄
u
i,α, z̄

v
i,α) =

1

2
Ep(z̄u

i,α,z̄v
i,α)

[
log p(z̄u

i,α|z̄v
i,α) + log p(z̄v

i,α|z̄u
i,α)

]
. (5)

The detailed derivation is in Appendix D. Till this step, we have transformed the graph data editing
task into the summation of two conditional log-likelihoods estimation problem.

4

Under review as a conference paper at ICLR 2023

4.2 GRAPHCG WITH ENERGY-BASED MODEL

Following Eq. (5), maximizing the MI between I
(
z̄u
i,α; z̄

v
i,α

)
is equivalent to estimating the summa-

tion of two conditional log-likelihoods. We then model them using two conditional EBMs. Because
these two views are in the mirroring direction, we may as well take one for illustration. For example,
for the first conditional log-likelihood, we can model it with EBM as:

p(z̄u
i,α|z̄v

i,α) =
exp(−E(z̄u

i,α, z̄
v
i,α))∫

exp(−E(z̄u′
i,α, z̄

v
i,α))dz̄

u′
i,α

=
exp(f(z̄u

i,α, z̄
v
i,α))

Aij
, (6)

where E(·) is the energy function, Aij is the intractable partition function, and f(·) is the negative
energy. The energy function can be quite flexible, and for simplicity, we use the dot-product:

f(z̄u
i,α, z̄

v
i,α) = ⟨h(zu,di, α), h(z

v,di, α)⟩, (7)

where h(·) is the editing function introduced in Eq. (2). Similarly for the other conditional log-
likelihood term, and the objective becomes:

LGraphCG = E
[
log

exp(f(z̄u
i,α, z̄

v
i,α))

Aij
+ log

exp(f(z̄v
i,α, z̄

u
i,α))

Aji

]
. (8)

With Eq. (8), we are able to learn the semantically meaningful direction vectors. We name this unsu-
pervised graph controllable generation framework as GraphCG. In specific, GraphCG utilizes EBM
for estimation, which yields a wide family of solutions. Next we will introduce an intuitive solution.

4.3 GRAPHCG WITH NOISE CONTRASTIVE ESTIMATION

We solve Eq. (8) using the noise contrastive estimation (NCE) [16]. The high-level idea of NCE is to
transform the density estimation problem into a binary classification problem that distinguishes if the
data comes from the introduced noise distribution or from the true distribution. NCE has been widely
explored for solving EBM [55], and we adopt it as GraphCG-NCE by optimizing:

LGraphCG-NCE = −
(
Epn(z̄u

j,β
|z̄v

i,α
)

[
log

(
1− σ(f(z̄u

j,β , z̄
v
i,α))

)
] + Epdata(z̄

u
i,α

|z̄v
i,α

))[log σ(f(z̄
u
i,α, z̄

v
i,α)))

]
+ Epn(z̄v

j,β
|z̄u

i,α
)

[
log

(
1− σ(f(z̄v

j,β , z̄
u
i,α)))

)
] + Epdata(z̄

v
i,α

|z̄u
i,α

))[log σ(f(z̄
v
i,α, z̄

u
i,α)))

])
,

(9)

where pdata is the data distribution and pn is the noise distribution (derivations are in Appendix D).
Recall that the latent pairs are given, and the noise distribution is on the semantic directions and step
sizes. In specific, the step sizes (α ̸= β) are randomly sampled from [-3, 3], and the latent direction
indices (i ̸= j) are randomly sampled from {0, 1, ..., D-1}. The objective Eq. (9) is for one latent
code pair, and we will take the expectation of it over all the pairs from the dataset. Besides, we would
like to consider extra similarity and sparsity constraints as:

Lsim = Ei,j [sim(di, dj)], Lsparsity = Ei[∥di∥], (10)

where sim(·) is the similarity function between two latent directions, and we use the dot product. By
minimizing these two regularization terms, we can make the learned semantic directions more diverse
and sparse. Putting them together, the final objective function is:

L = c1 · Eu,v[LGraphCG-NCE] + c2 · Lsim + c3 · Lsparsity, (11)

where c1, c2, c3 are coefficients, and we treat them as three hyperparameters (check Appendix E).
The above pipeline is illustrated in Fig. 1, and for the next we will discuss certain key modules.

Latent pairs, positive and negative views. We consider two options in designing the latent pairs.
(1) Perturbation (GraphCG-P) is that for each latent variable z ∈ Z , we apply 2 perturbations (e.g.,
adding Gaussian noise) on z to get 2 perturbed latent codes as zu and zv respectively. (2) Random
sampling (GraphCG-R) is that we encode two randomly sampled data points from the empirical
data distribution as zu and zv respectively. Perturbation is one of the widely-used strategies [28] for
data augmentation, and random sampling has been widely used in the NCE [55] literature. Then we
can define the positive and negative pairs in GraphCG-NCE, where the goal is to align the positives
and contrast the negatives. As described in Eq. (9), the positive pairs are latent pairs moving with
the same semantic direction and step size, while the negative pairs are the edited latent codes with
different semantic directions and/or step sizes.

5

Under review as a conference paper at ICLR 2023

Semantic direction modeling. We first randomly draw a basis vector ei, and then model the semantic
direction di as di = MLP(ei), where MLP(·) is the multi-layer perceptron network.

Design of editing function. Given the semantic direction and two views, the next task is to design
the editing function h(·) in Eq. (2). Since our proposed GraphCG is flexible, and the editing function
determines the energy function Eq. (7), we consider both the linear and non-linear editing functions as:

z̄i = z + α · di, z̄i = z + α · di + MLP(z ⊕ di ⊕ [α]), (12)

where ⊕ is the concatenation of two vectors. Noticing that for the non-linear case, we are adding
an extra term by mapping from the latent code, semantic direction, and step-size simultaneously.
We expect that this could bring in more modeling expressiveness in the editing function. For more
details, e.g., the ablation study to check the effect on the design of the views and editing functions,
please refer to Appendices F and G, while more potential explorations are left for future work.

4.4 IMPLEMENTATIONS

Algorithm 1 Training Phase of GraphCG
1: Input: Given a pretrained generative model, f(·) and g(·).
2: Output: Learned direction vector di and function h(·).
3: Select two data points, zu,zv ∈ Z .
4: for each step size α and each direction i do
5: Set z̄u

i,α = h(zu,di, α).
6: Set z̄v

i,α = h(zv,di, α).
7: Assign positive to pair (z̄u

i,α, z̄
v
i,α).

8: for step size β ̸= α and direction j ̸= i do
9: Set z̄u

j,β = h(zu,dj , β).
10: Set z̄v

j,β = h(zv,dj , β).
11: Assign negative to pair (z̄u

i,α, z̄
v
j,β).

12: Assign negative to pair (z̄u
j,β , z̄

v
i,α).

13: end for
14: Do SGD w.r.t. GraphCG in Eq. (11).
15: end for

During training, the goal of GraphCG
is to learn semantically meaningful di-
rection vectors together with an edit-
ing function in the latent space, as
in Algorithm 1. Then we need to man-
ually annotate the semantic directions
with respect to the corresponding fac-
tors, using certain post-training eval-
uation metrics. Finally for the test
phase, provided with the pretrained
DGM on graph and a selected seman-
tic direction (together with a step size),
we can sample a molecule and use
GraphCG for editing, as described
in Eq. (2). The detailed algorithm is
illustrated in Algorithm 2. Next, we
highlight several key concepts in GraphCG and briefly discuss the differences to other related methods.

Algorithm 2 Test Phase of GraphCG
1: Input: Given a pre-trained generative model (f(·) and g(·)), a

learned direction vector d.
2: Output: A sequence of edited graphs.
3: Sample a molecule with DGM or from a large molecule pool.
4: Encode the molecule to get a latent code z.
5: for step size α ∈ [−3, 3] do
6: Do graph edit in the latent space to get z̄i,α = h(z,d, α).
7: Decode to the graph space with x̄′ = g(z̄i,α).
8: end for
9: Output is thus a sequence of edited graphs, {x̄′}.

NCE and contrastive representation
learning. GraphCG-NCE is apply-
ing EBM-NCE, which is essentially
a contrastive learning method, and
another dominant contrastive loss is
the InfoNCE [42]. We summarize
their relations as below. (1) Both con-
trastive methods are doing the same
thing: align the positive pairs and con-
trast the negative pairs. (2) EBM-
NCE [18, 35] has been found to out-
perform InfoNCE on the certain graph
applications like representation learning. (3) What we want to propose here is a flexible framework.
Specifically, EBM provides a more general framework by designing the energy functions, and EBM-
NCE is just one effective solution. Other promising directions include the denoising score matching
or denoising diffusion model [56], while InfoNCE lacks such nice extensibility attribute.

GraphCG and self-supervised learning (SSL). GraphCG shares certain similarities with the self-
supervised learning (SSL) method, however there are some inherent differences, as summarized
below. (1) SSL aims at learning the data representation by operating data augmentation on the
data space, such as node addition and edge deletion. GraphCG aims at learning the semantically
meaningful directions by editing on the latent space (the representation function is pretrained and
fixed). (2) Based on the first point, SSL aims at using different data points as the negative samples.
GraphCG, on the other hand, is using different directions and step-sizes as negatives. Namely, SSL is
learning data representation in the inter-data level, and GraphCG is learning the semantic directions
in the inter-direction level.

6

Under review as a conference paper at ICLR 2023

Output sequence in the discrete space. Recall that during inference time (Algorithm 2), GraphCG
takes a DGM and the learned semantic direction to output a sequence of edited graphs. Comparing
to the vision domain, where certain models [51, 52] have proven their effectiveness in many tasks,
the backbone models in the graph domain have limited discussions. This is challenging because
the graph data is in a discrete and structured space, and the evaluation on such space is non-trivial.
Meanwhile, GraphCG essentially provides another way to testify the quality of graph generation
models. We would like to leave this for future exploration.

5 EXPERIMENTS

In this section, we show both the qualitative and quantitative results of GraphCG on two types of
graph data: molecular graphs and point clouds. Due to the page limit, We put the experiment and
implementation details in Appendix E. For reproducibility, the code will be public in the near future.

5.1 GRAPH DATA: MOLECULAR GRAPHS

Backbone DGMs. We consider two state-of-the-art DGMs for molecular graph generation.
MoFlow [65] is a flow-based generative model on molecules which adopts an invertible mapping
between the input molecular graphs and a latent prior. HierVAE [27] is a hierarchical VAE model
which encodes and decodes molecule atoms and motifs in a hierarchical manner. Besides, the
pretrained checkpoints are also provided, on ZINC250K [25] and ChEMBL [37] dataset respectively.

Editing sequences and anchor molecule. As discussed in Sec. 4, the output of the inference in
GraphCG is a sequence of edited molecules with the i-th semantic direction, {x̄′}i. We first randomly
generate a molecule using the backbone DGMs (without the editing operation), and we name such
molecule as the anchor molecule, x̄∗. Then we take 21 step sizes from -3 to 3, with interval 0.3, to
obtain a sequence of 21 molecules following Eq. (2). Note that the edited molecule with step size 0
under the linear editing function is the same as the anchor molecule, i.e., x̄∗.

Change of structure factors and evaluation metrics. We are interested in the change of the graph
structure (the steerable factors) along the output sequence edited with the i-th semantic direction. To
evaluate the structure change, we apply the Tanimoto similarity between each output molecule and the
anchor molecule. Besides, for the ease of evaluating the monotonicity, we apply a Tanimoto similarity
transformation on the output molecules with positive step sizes by taking the deduction from 2. We
call this calibrated Tanimoto similarity (CTS) sequence, marked as {s(x̄′)}i. An illustration is shown
in Fig. 2. Further, we propose a metric called Sequence Monotonic Ratio (SMR), ϕSMR(γ, τ)i, which
measures the monotonic ratio of M generated sequences edited with the i-th direction. It has two
arguments: the diversity threshold γ constrains the minimum number of distinct molecules, and the
tolerance threshold τ controls the non-monotonic tolerance ratio along each sequence.

Evaluating the diversity of semantic directions. SMR can evaluate the monotonic ratio of output
sequences generated by one direction. To better illustrate that GraphCG is able to learn multiple
directions with diverse semantic information, we also consider taking the average of top-K SMR to
reveal that all the best K directions are semantically meaningful, as in Eq. (15).

ϕSMR
(
{s(x̄′)}m

i , γ, τ
)
=

1, len
(
set

(
{s(x̄′)}m

i

))
≥ γ

∧ monotonicτ
(
{s(x̄′)}m

i

)
0, otherwise

, (13)

ϕSMR(γ, τ)i =
1

M

M∑
m=1

ϕSMR
(
{s(x̄′)}m

i , γ, τ
)
, (14)

top-K(γ, τ) =
1

K

∑
i∈top-K directions

(
ϕSMR(γ, τ)i

)
. (15)

Figure 2: This shows the sequence monotonic ratio (SMR) on calibrated Tanimoto similarity (CTS). Eqs. (13)
and (14) are the SMR on each sequence and each direction respectively, where M is the number of generated
sequences for the i-th direction and {s(x̄′)}mi is the CTS of the m-th generated sequence with the i-th direction.
Eq. (15) is the average of top-K SMR on D directions. More details are in Appendix F.

7

Under review as a conference paper at ICLR 2023

Table 2: This table lists the sequence monotonic ratio (SMR, %) on calibrated Tanimoto similarity (CTS) with
respect to the top-1 and top-3 directions. The best performances are marked in bold.

Model Dataset
Tanimoto top-1 Tanimoto top-3

diversity γ 3 4 3 4

tolerance τ 0 0.2 0 0.2 0 0.2 0 0.2

MoFlow ZINC250k

Random 23.0 25.0 12.0 15.0 22.0 24.0 11.0 13.7
Variance 24.0 28.0 12.0 16.0 20.0 25.0 10.0 15.0
SeFa [51] 4.0 4.0 0.0 0.0 3.3 3.3 0.0 0.0
DisCo [45] 7.0 14.0 2.0 8.0 5.3 11.7 2.0 7.7

GraphCG-P 32.0 34.0 16.0 18.0 29.0 31.0 13.7 16.3
GraphCG-R 25.0 26.0 11.0 14.0 22.0 24.3 10.3 13.3

HierVAE ChEMBL

Random 14.0 45.0 14.0 43.0 10.0 42.3 9.3 41.7
Variance 23.0 59.0 19.0 55.0 18.3 52.7 15.7 50.3
SeFa [51] 4.0 41.0 4.0 41.0 2.3 36.0 2.3 36.0

GraphCG-P 40.0 73.0 32.0 65.0 36.0 64.3 26.3 57.7
GraphCG-R 42.0 67.0 30.0 55.0 38.0 62.3 28.7 53.7

(a) Steerable factor: number of halogens. (b) Steerable factor: number of hydroxyls.

(c) Steerable factor: number of amides. (d) Steerable factor: chain length.

Figure 3: GraphCG for molecular graph editing. We visualize the output molecules and CTS on four directions
with two sequences each, where each sequence consists of five steps. The center point is the anchor molecule,
and the other four points correspond to step size with -3, -1.8, 1.8, and 3 respectively. Figs. 3(a) to 3(c) show
how functional groups in the molecules can be viewed as the steerable factors as they change along the sequence,
such as halogen atoms, hydroxyl groups and amides. Fig. 3(d) illustrates the effect on the steerable factor on
the length of flexible chains in the molecules. Notably, certain properties change with molecular structures
accordingly, like topological polar surface area (tPSA) and number of rotatable bonds (NRB).

Baselines. For baselines, we consider four unsupervised editing methods. (1) The first is Random. It
randomly samples a normalized random vector in the latent space as the semantic direction. (2) The
second one is Variance. We analyze the variance on each dimension of the latent space, and select the
highest one with one-hot encoding as the semantic direction. (3) The third one is SeFa [51]. It first
decomposes the latent space into lower dimensions using PCA, and then takes the most principle
components (eigenvectors) as the semantic-rich direction vectors. (4) The last one is DisCo [45].
It maps each latent code back to the data space, followed with an encoder for contrastive learning.
Namely, it requires the backbone DGMs to be end-to-end and is infeasible for HierVAE.

Quantitative results. We take D = 10 to train GraphCG, and the optimal results on 100 sampled
sequences are reported in Table 2. We can observe that GraphCG can show consistently better
structure change with both top-1 and top-3 directions. This can empirically prove the effectiveness of
our proposed GraphCG. More comprehensive results are in Appendix F.

Analysis on steerable factors in molecules: functional group change. For visualization, we
sample 8 molecular graph sequences along 4 selected directions in Fig. 3, and the backbone DGM is
HierVAE pretrained on ChEMBL. The CTS holds good monotonic trend, and each direction shows
certain unique changes in the molecular structures, i.e., the steerable factors in molecules. Some
structural changes are reflected in molecular properties. We expand all the details below. In Fig. 3(a)
and Fig. 3(b), the number of halogen atoms and hydroxyl groups (in alcohols and phenols) in the

8

Under review as a conference paper at ICLR 2023

(a) Steerable factor: engine. (b) Steerable factor: engine.

(c) Steerable factor: size. (d) Steerable factor: leg height.
Figure 4: GraphCG for point clouds editing. We show four editing sequences, where each sequence consists
of five point clouds, and the center one is the anchor point clouds, i.e., with step size 0. The other four point
clouds correspond to step size with -3, -1.8, 1.8, and 3, respectively. Fig. 4(a) and Fig. 4(b) refer the same
semantic direction, and they are showing how to steer the factor engine: the number of engines will be decreased
and increased with the negative (left) and positive (right) step size respectively. Similarly, Figs. 4(c) and 4(d)
illustrate the effect on the steerable factors on the car size and the chair leg height.

molecules decrease from left to right, respectively. In Fig. 3(c), the number of amides in the molecules
increases along the path. Because amides are polar functional groups, the topological polar surface
area (tPSA) of the molecules also increase accordingly, which is a key molecular property for the
prediction of drug transport properties, e.g., permeability [12]. In Fig. 3(d), the flexible chain length,
marked by the number of ethylene (CH2CH2) units, increases from left to right. Since the number of
rotatable bonds (NRB) measures the molecular flexibility, it also increases accordingly [57].

5.2 GRAPH DATA: POINT CLOUDS

Backbone DGMs. We consider one of the latest DGMs on point clouds, PointFlow [62]. It is
using the normalizing flow model for estimating the 3D point clouds distribution. Then we consider
PointFlow pretrained on three datasets in ShapeNet [3]: Airplane, Car, and Chair. All point clouds
are obtained by sampling points uniformly from the mesh surface.

Analysis on steerable factors in point clouds: shape change. To train GraphCG, we take D = 10
directions, and we sample 8 point cloud sequences along 3 directions for visualization in Fig. 4. More
results are in Appendix G. It is observed that GraphCG can steer the shape of the point clouds, e.g.,
the size of cars and the height of chair legs. We also find it interesting that GraphCG can steer more
finger-trained factors, like modifying the number jet engines of airplanes in Figs. 4(a) and 4(b).

6 CONCLUSION AND DISCUSSION

In this work, we are interested in unsupervised graph editing. It is a well-motivated task for various
real-world applications, and we discuss two mainstream data types: molecular graphs and point
clouds. We start with exploring the latent space of mainstream deep generative models and propose
GraphCG, a model-agnostic and task-agnostic unsupervised method for graph data editing. The key
component of GraphCG is EBM, and we take the GraphCG-NCE as the solution for now. For the
future work, we may as well extend it to more advanced solutions like denoising diffusion model [21].

One limitation of GraphCG (as well as the solutions to general unsupervised data editing) [17, 45, 51]
is that we may need some post-training human selection (as shown in Algorithms 1 and 2) to select
the most promising semantic vectors to steer factors. Another issue is the lack of open-sourced
evaluation metrics. This requires both a deep understanding of the representation space of deep
generative models and domain knowledge of the problem. For instance, activity cliff is a challenging
task [22] for editing, while current measures fail to capture it. To set up constructive evaluation
metrics can help augment our understandings from both the domain and technique perspectives. This
is beyond the scope of our work, yet would be interesting to explore as a future direction.

9

Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

We authors acknowledge that we have read and commit to adhering to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the empirical results, we provide the implementation details (hyperpa-
rameters, dataset specifications, pretrained checkpoints, etc.) in Sec. 5 and appendices C and E to G,
and the source code will be released in the future. Besides, the complete derivations of equations and
clear explanations are given in Sec. 4 and appendix D.

Specifically, we provide the details for reproducing the results:

• In Table 5, GraphCG-P with Eq. (26) and GraphCG-R with Eq. (24) are reported in Table 2.
• In Table 6, GraphCG-P with Eq. (25) and GraphCG-R with Eq. (25) are reported in Table 2.

For the visualization in Fig. 3, we take the GraphCG-P with Eq. (25), and the backbone generative
model is HierVAE pretrained on ChEMBL. Further, we provide an anonymous link here. In these
CSV files:

• Direction 0 is the halogen fragment (data 4, 71).
• Direction 5 is the amide fragment (data 95, 61).
• Direction 6 is the chain length (data 57, 14).
• Direction 7 is the alcohol and phenol fragments (data 10, 8).

For the visualization in Fig. 4, we take the GraphCG-R with Eq. (25) on PointFlow, for all three
datasets.

REFERENCES

[1] Michael Arbel, Liang Zhou, and Arthur Gretton. Generalized energy based models. arXiv:2003.05033,
2020. 17

[2] Hans-Joachim Böhm, Alexander Flohr, and Martin Stahl. Scaffold hopping. Drug discovery today:
Technologies, 1(3):217–224, 2004. 1

[3] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, et al. Shapenet: An
information-rich 3d model repository. arXiv:1512.03012, 2015. 9

[4] Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, et al. Your gan is secretly
an energy-based model and you should use discriminator driven latent sampling. arXiv:2003.06060, 2020.
3

[5] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas Blaschke. The rise of deep
learning in drug discovery. Drug discovery today, 23(6):1241–1250, 2018. 2

[6] Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentanglement
in variational autoencoders. In NeurIPS, 2018. 4, 15

[7] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal neighbour-
hood aggregation for graph nets. arXiv:2004.05718, 2020. 14

[8] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation.
arXiv:1410.8516, 2014. 3

[9] Jürgen Drews. Drug discovery: a historical perspective. Science, 287(5460):1960–1964, 2000. 1, 14

[10] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy
Hirzel, et al. Convolutional networks on graphs for learning molecular fingerprints. arXiv:1509.09292,
2015. 1, 14

[11] Cian Eastwood and Christopher KI Williams. A framework for the quantitative evaluation of disentangled
representations. In ICLR, 2018. 1, 4, 15

[12] Peter Ertl, Bernhard Rohde, and Paul Selzer. Fast calculation of molecular polar surface area as a sum of
fragment-based contributions and its application to the prediction of drug transport properties. Journal of
medicinal chemistry, 43(20):3714–3717, 2000. 9, 21

10

https://anonymous.4open.science/r/GraphCG_outputs-075A

Under review as a conference paper at ICLR 2023

[13] Peter Ertl, Eva Altmann, and Jeffrey M McKenna. The most common functional groups in bioactive
molecules and how their popularity has evolved over time. Journal of medicinal chemistry, 63(15):
8408–8418, 2020. 1

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In ICML, 2017. 1, 14

[15] Laurent Gomez. Decision making in medicinal chemistry: The power of our intuition. ACS Medicinal
Chemistry Letters, 9(10):956–958, 2018. 1

[16] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In AISTATS, 2010. 3, 5

[17] Erik Härkönen, Aaron Hertzman, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Discovering interpretable
gan controls. In NeurIPS, 2020. 2, 3, 9, 14

[18] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on graphs.
In ICML, 2020. 6

[19] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, et al. beta-vae: Learning basic
visual concepts with a constrained variational framework. In ICLR, 2017. 1, 3, 4, 15

[20] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural computation,
14(8):1771–1800, 2002. 3

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020. 9

[22] Ye Hu and Bajorath Jurgen. Extending the activity cliff concept: structural categorization of activity
cliffs and systematic identification of different types of cliffs in the chembl database. Journal of chemical
information and modeling, 52(7):1806–1811, 2012. 9

[23] Ye Hu, Dagmar Stumpfe, and Jurgen Bajorath. Recent advances in scaffold hopping: miniperspective.
Journal of medicinal chemistry, 60(4):1238–1246, 2017. 1

[24] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005. 3

[25] John J Irwin and Brian K Shoichet. Zinc: a free database of commercially available compounds for virtual
screening. Journal of chemical information and modeling, 45(1):177–182, 2005. 7

[26] Ali Jahanian, Lucy Chai, and Phillip Isola. On the" steerability" of generative adversarial networks. In
ICLR, 2019. 2, 14

[27] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs using
structural motifs. In ICML, 2020. 2, 7, 14

[28] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In CVPR, 2019. 3, 5, 14

[29] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, et al. Analyzing and improving
the image quality of stylegan. In CVPR, 2020. 3

[30] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In ICML, 2018. 4, 15

[31] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv:1312.6114, 2013. 3

[32] Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational inference of disentangled
latent concepts from unlabeled observations. In ICLR, 2018. 4, 15

[33] Greg Landrum et al. RDKit: A software suite for cheminformatics, computational chemistry, and predictive
modeling, 2013. 4

[34] Shengchao Liu, Mehmet Furkan Demirel, and Yingyu Liang. N-gram graph: Simple unsupervised
representation for graphs, with applications to molecules. arXiv:1806.09206, 2018. 14

[35] Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, et al. Pre-training molecular
graph representation with 3d geometry. In ICLR, 2022. 4, 6, 16, 17

11

Under review as a conference paper at ICLR 2023

[36] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, et al. Challenging
common assumptions in the unsupervised learning of disentangled representations. In ICML, 2019. 1, 2, 3,
15

[37] David Mendez, Anna Gaulton, A Patrícia Bento, Jon Chambers, Marleen De Veij, et al. Chembl: towards
direct deposition of bioassay data. Nucleic acids research, 47(D1):D930–D940, 2019. 7

[38] Zlatko Mihalić and Nenad Trinajstić. A graph-theoretical approach to structure-property relationships.
Journal of Chemical Education, 69(9):701, 1992. 1

[39] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic language
models. arXiv preprint arXiv:1206.6426, 2012. 17

[40] Weili Nie, Arash Vahdat, and Anima Anandkumar. Controllable and compositional generation with
latent-space energy-based models. In NeurIPS, 2021. 2, 14

[41] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo design
through deep reinforcement learning. Journal of cheminformatics, 9(1):1–14, 2017. 14

[42] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv:1807.03748, 2018. 6

[43] Yael Pritch, Eitam Kav-Venaki, and Shmuel Peleg. Shift-map image editing. In ICCV, 2009. 1

[44] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In CVPR, 2017. 14

[45] Xuanchi Ren, Tao Yang, Yuwang Wang, and Wenjun Zeng. Do generative models know disentanglement?
contrastive learning is all you need. arXiv:2102.10543, 2021. 2, 8, 9, 14

[46] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In ICML, 2015. 3

[47] Karl Ridgeway and Michael C Mozer. Learning deep disentangled embeddings with the f-statistic loss. In
NeurIPS, 2018. 1, 4, 15

[48] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In ICRA, 2011. 4, 15

[49] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, and John Hsu. Fast 3d recognition and pose using the
viewpoint feature histogram. In IROS, 2010. 4, 15

[50] Paul G. Seybold, Michael May, and Ujjvala A. Bagal. Molecular structure: Property relationships. Journal
of Chemical Education, 64(7):575, 1987. 4

[51] Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in gans. In CVPR, 2021. 2, 3, 7,
8, 9, 14

[52] Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou. Interfacegan: Interpreting the disentangled face
representation learned by gans. IEEE TPAMI, 2020. 2, 3, 7, 14

[53] Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object detection in a point cloud.
In CVPR, 2020. 1, 14

[54] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
arXiv:1907.05600, 2019. 3

[55] Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv:2101.03288, 2021. 5,
17

[56] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, et al. Score-
based generative modeling through stochastic differential equations. arXiv:2011.13456, 2020. 3, 6

[57] Daniel F Veber, Stephen R Johnson, Hung-Yuan Cheng, Brian R Smith, Keith W Ward, and Kenneth D
Kopple. Molecular properties that influence the oral bioavailability of drug candidates. Journal of medicinal
chemistry, 45(12):2615–2623, 2002. 2, 9, 21

[58] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, et al. Dynamic graph cnn for
learning on point clouds. ACM ToG, 2020. 1

[59] Zichao Wang, Weili Nie, Zhuoran Qiao, Chaowei Xiao, Richard Baraniuk, and Anima Anandkumar.
Retrieval-based controllable molecule generation. arXiv preprint arXiv:2208.11126, 2022. 14

12

Under review as a conference paper at ICLR 2023

[60] Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace analysis: Disentangled controls for stylegan
image generation. In CVPR, 2021. 1

[61] Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, et al. Gan inversion: A survey.
arXiv:2101.05278, 2021. 2

[62] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, et al. Pointflow: 3d point cloud
generation with continuous normalizing flows. In ICCV, 2019. 9, 14

[63] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, et al. Analyzing learned molecular
representations for property prediction. Journal of chemical information and modeling, 59(8):3370–3388,
2019. 14

[64] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. Advances in neural information processing systems,
31, 2018. 2, 14

[65] Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In KDD,
2020. 7, 14

13

Under review as a conference paper at ICLR 2023

A GRAPH DATA

A.1 MOLECULES

Molecules can be naturally represented as the 2D molecular graphs, where atoms and bonds are nodes and edges
in the graph, respectively. For the recent years, graph representation learning has been extensively explored on
the molecular graph [7, 10, 14, 34, 63]. Based on the graph representation of molecules, a variety of work have
been done for molecule generation. The state-of-the-art ones include MoFlow [65] and HierVAE [27].

A.2 POINT CLOUDS

A point cloud is represented as a set of points, where each point Pi is described by a vector of 3D Euclidean
coordinates possibly with extra channels (e.g., colors, surface normals and returned laser intensity). In 2017, Qi
et. al [44] designed a deep learning framework called PointNet that directly consumes unordered point sets as
inputs and can be used for various tasks such as classification and segmentation. For the generative models on
point clouds, we consider one of the latest work, PointFlow [62].

B RELATED WORK

Image editing and image controllable generation Many existing works on controllable generation
with DGMs mainly focus on the image data. With the assumption that the learned latent space already include
rich semantic information [17, 26, 28, 52], the question then becomes how to identify semantic-rich directions
from the latent space of DGMs. Depending on whether or using supervised signals to discover the semantic
directions, existing works can be divided into two settings: supervised and unsupervised.

The supervised setting relies on the supervised signals to learn the pre-defined semantic-rich directions. For
instance, InterfaceGAN [52] identifies the semantic directions in the latent space via linear models that recognize
semantic boundary among data. LACE [40] uses energy-based models to learn the joint distribution of data and
properties (i.e., semantics) and formulate the sampling process as to solve an ordinary differential equation.

As supervised signals usually require domain knowledge and laborious annotations, latest works are more
focused on the unsupervised setting, either model-specific or data-specific. Specifically, GANSpace [17] applies
PCA on the intermediate layers of GANs (instead of latent space) for learning the semantic-rich directions.
SeFa [51] exploits the pretrained GANs and extracts the semantic-rich directions by using PCA on the backbone
layers. Nevertheless, as both methods are specifically designed for StyleGAN [28], it is nontrivial to generalize
them to other DGMs. A more recent work DisCo [45] employs a different pipeline: it trains a new encoder
after reconstruction, and maps the generated images to another latent space for editing. However, training a new
encoder introduces extra complexities.

Graph editing and graph controllable generation This is an emerging field with many downstream
applications [9, 53]. However, existing works are mainly focusing on the supervised setting. For example,
conventional approaches, such as genetic algorithms (GAs), edit the molecule graphs in the data space via
hand-crafted heuristics with the guidance of moleular property predictors. More recent learning based methods
perform the latent direction discovery, either by training a classifier on the latent space of DGMs on the graph
data [27] or by learning to retrieve exemplar samples from a retrieval database for guidance [59]. Other works
fine-tune a pre-trained graph DGM using the supervised property annotations as rewards, resulting a controllable
DGM specifically for the considered task [41, 64]. To the best of our knowledge, our work is the first to explore
the unsupervised graph editing in the unsupervised manner. Besides, different from many previous approches
that may only work for molecule graphs or point cloud graphs, our method is generic and thus can be applied to
various graph modalities.

C ANALYSIS EXPERIMENTS ON DISENTANGLEMENT

In Sec. 3, we conduct three analysis experiments to conclude that the representation space is not perfectly
disentangled in such the setting. In this section, we provide more details and complementary information of
these experiments.

C.1 STEERABLE FACTORS

As mentioned in Sec. 3, we consider the measuring the disentanglement with respect to three types of structured
data: molecular graphs and point clouds. Recall that we need to define steerable factors first, so as to measure
the disentanglement.

14

Under review as a conference paper at ICLR 2023

Table 3: The six mainstream disentanglement metrics on five DGMs and three data types. All
measures range from 0 to 1, and higher scores mean more disentangled representation. MoFlow and
HierVAE are for molecular graphs, PointFlow is for point clouds.

Data Type Model Dataset BetaVAE ↑ FactorVAE ↑ MIG ↑ DCI ↑ Modularity ↑ SAP ↑

Molecular Graphs
MolFlow QM9 0.251 0.165 0.038 0.727 0.599 0.017

ZINC250k 0.264 0.175 0.030 0.958 0.620 0.009

HierVAE QM9 0.165 0.135 0.044 0.241 0.626 0.076
ChEMBL 0.159 0.130 0.023 0.113 0.604 0.026

Point Clouds PointFlow
Airplane 0.022 0.025 0.029 0.160 0.745 0.022
Chair 0.019 0.014 0.032 0.149 0.721 0.019
Car 0.019 0.023 0.021 0.120 0.713 0.021

Molecular Graph For molecular graphs, we treat the important substructures (a.k.a., motifs or fragments)
as factors, and they are extracted using RDKit. We consider the existence of the following 9 motifs as the binary
factor labels:

• aliphatic hydroxyl groups.
• aliphatic hydroxyl groups excluding tert-OH.
• aromatic nitrogens.
• aromatic amines.
• Tertiary amines.
• Secondary amines.
• amides.
• ether oxygens (including phenoxy).
• nitriles.

Point Clouds For point clouds, we adopt the viewpoint feature histogram (VFH) [49] implemented in
PCL [48]. There are 308 bins in total, where each bin is a histogram of the angles that viewpoint direction makes
with each normal. VFH has been widely used as point cloud descriptors, and here we binarize it into factors
with:

• We collect the shared non-zero bins from all three datasets (Airplane, Car, and Chair), and ignore the
bins where the values distribution are highly skewed. This can give us 75 bins.

• Then for each of these selected bins, we use the median value as the threshold to generate the binary
factor labels.

C.2 DISENTANGLEMENT MEASURES

We follow the [36] on considering the following six disentanglement measures:

• β-VAE [19] evaluates the prediction accuracy of a linear classifier for the index of a fixed factor of
variation.

• FactorVAE [30] addresses the limitations (i.e. corner case) of β-VAE via introducing a majority voting
classifier on a different feature vector.

• MIG [6] measures the normalized difference between the highest and second highest mutual informa-
tion between latent dimensions and each steerable factor.

• DCI [11] disentanglement score measures the average difference from one of the entropy of probability
that a latent dimension is useful for predicting a steerable factor (computed by the relative importance
score).

• Modularity [47] measures whether each latent dimension is dependent on at most one single steerable
factor. It computes the average normalized squared difference over the highest and second highest
mutual information between each steerable factor and each latent dimension.

• SAP [32] calculates the R2 score of the linear models trained to predict each steerable factor from
each latent dimension.

Recall that all six disentanglement measures range from 0 to 1, and higher value means the corresponding space
is more disentangled. The results can be found in Table 3. We can conclude that all the values are indeed low on
all datasets and models, revealing that DGMs are not well-disentangled in general.

15

Under review as a conference paper at ICLR 2023

D MUTUAL INFORMATION

We added the comprehensive derivations below. In this section, we will briefly introduce mutual information
(MI), and also a lower bound for maximizing MI. This has been previously proposed in [35] for self-supervised
learning. First for notation, without loss of generality, we use X and Y as two views.

D.1 FORMULATION

The standard formulation for mutual information (MI) is

I(X;Y) = Ep(x,y)

[
log

p(x,y)

p(x)p(y)

]
. (16)

Mutual information (MI) between random variables measures the corresponding non-linear dependence. As can
be seen in the first equation in Eq. (16), the larger the divergence between the joint (p(x,y) and the product of
the marginals p(x)p(y), the stronger the dependence between X and Y .

D.2 A LOWER BOUND TO MI

First we can get a lower bound of MI. Assuming that there exist (possibly negative) constants a and b such that
a ≤ H(X) and b ≤ H(Y), i.e., the lower bounds to the (differential) entropies, then we have:

I(X;Y) =
1

2

(
H(X) +H(Y)−H(Y |X)−H(X|Y)

)
≥ 1

2

(
a+ b−H(Y |X)−H(X|Y)

)
≥ 1

2

(
a+ b

)
+ LMI.

(17)

Thus, we transform the MI maximization problem into maximizing the following objective:

LMI =
1

2
Ep(x,y)

[
log p(x|y)

]
+

1

2
Ep(x,y)

[
log p(y|x)

]
. (18)

Empirically, we use energy-based models to model the distributions. The existence of a and b can be understood
as the requirements that the two distributions (px, py) are not collapsed. For the next, we will try to model the
two conditional data distributions p with model distributions pθ .

D.3 DERIVATION OF CONDITIONAL EBM WITH NCE

WLOG, let’s consider modeling the pθ(x|y) first, and by EBM it is as follows:

pθ(x|y) =
exp(−E(x|y))∫
exp(−E(x̃|y))dx̃

=
exp(fx(x,y))∫
exp(fx(x̃|y))dx̃

=
exp(fx(x,y))

Ax|y
. (19)

Then we solve this using NCE. NCE handles the intractability issue by transforming it as a binary classification
task. We take the partition function Ax|y as a parameter, and introduce a noise distribution pn. Based on this, we
introduce a mixture model: z = 0 if the conditional x|y is from pn(x|y), and z = 1 if x|y is from pdata(x|y).
So the joint distribution is:

pn,data(x|y) = p(z = 1)pdata(x|y) + p(z = 0)pn(x|y)

The posterior of p(z = 0|x,y) is

pn,data(z = 0|x,y) = p(z = 0)pn(x|y)
p(z = 0)pn(x|y) + p(z = 1)pdata(x|y)

=
ν · pn(x|y)

ν · pn(x|y) + pdata(x|y)
,

where ν = p(z=0)
p(z=1)

.

Similarly, we can have the joint distribution under EBM framework as:

pn,θ(x) = p(z = 0)pn(x|y) + p(z = 1)pθ(x|y)

And the corresponding posterior is:

pn,θ(z = 0|x,y) = p(z = 0)pn(x|y)
p(z = 0)pn(x|y) + p(z = 1)pθ(x|y)

=
ν · pn(x|y)

ν · pn(x|y) + pθ(x|y)

16

Under review as a conference paper at ICLR 2023

We indirectly match pθ(x|y) to pdata(x|y) by fitting pn,θ(z|x,y) to pn,data(z|x,y) by minimizing their KL-
divergence:

min
θ

DKL(pn,data(z|x,y)||pn,θ(z|x,y))

= Epn,data(x,z|y)[log pn,θ(z|x,y)]

=

∫ ∑
z

pn,data(x,z|y) · log pn,θ(z|x,y)dx

=

∫ {
p(z = 0)pn,data(x|y,z = 0) log pn,θ(z = 0|x,y)

+ p(z = 1)pn,data(x|z = 1,y) log pn,θ(z = 1|x,y)
}
dx

= ν · Epn(x|y)

[
log pn,θ(z = 0|x,y)

]
+ Epdata(x|y)

[
log pn,θ(z = 1|x,y)

]
= ν · Epn(x|y)

[
log

ν · pn(x|y)
ν · pn(x|y) + pθ(x|y)

]
+ Epdata(x|y)

[
log

pθ(x|y)
ν · pn(x|y) + pθ(x|y)

]
.

(20)

This optimal distribution is an estimation to the actual distribution (or data distribution), i.e., pθ(x|y) ≈
pdata(x|y). We can follow the similar steps for pθ(y|x) ≈ pdata(y|x). Thus following Eq. (20), the objective
function is to maximize

ν · Epdata(y)Epn(x|y)

[
log

ν · pn(x|y)
ν · pn(x|y) + pθ(x|y)

]
+ Epdata(y)Epdata(x|y)

[
log

pθ(x|y)
ν · pn(x|y) + pθ(x|y)

]
.

(21)

The we will adopt three strategies to approximate Eq. (21):

1. Self-normalization. When the EBM is very expressive, i.e., using deep neural network for modeling,
we can assume it is able to approximate the normalized density directly [39, 55]. In other words, we
can set the partition function A = 1. This is a self-normalized EBM-NCE, with normalizing constant
close to 1, i.e., p(x) = exp(−E(x)) = exp(f(x)).

2. Exponential tilting term. Exponential tilting term [1] is another useful trick. It models the distribution
as p̃θ(x) = q(x) exp(−Eθ(x)), where q(x) is the reference distribution. If we use the same reference
distribution as the noise distribution, the tilted probability is p̃θ(x) = pn(x) exp(−Eθ(x)).

3. Sampling. For many cases [35], we only need to sample 1 negative points for each data, i.e., ν = 1.

Following these three disciplines, the objective function to optimize pθ(x|y) becomes

Epn(x|y)

[
log

pn(x|y)
pn(x|y) + p̃θ(x|y)

]
+ Epdata(x|y)

[
log

p̃θ(x|y)
pn(x|y) + p̃θ(x|y)

]
=Epn(x|y)

[
log

1

1 + pθ(x|y)

]
+ Epdata(x|y)

[
log

pθ(x|y)
1 + pθ(x|y)

]
=Epn(x|y)

[
log

exp(−fx(x,y))

exp(−fx(x,y)) + 1

]
+ Epdata(x|y)

[
log

1

exp(−fx(x,y)) + 1

]
=Epn(x|y)

[
log

(
1− σ(fx(x,y))

)]
+ Epdata(x|y)

[
log σ(fx(x,y))

]
.

(22)

Thus, the final EBM-NCE contrastive SSL objective is

LEBM-NCE = −1

2
Epdata(y)

[
Epn(x|y) log

(
1− σ(fx(x,y))

)
+ Epdata(x|y) log σ(fx(x,y))

]
− 1

2
Epdata(x)

[
Epn(y|x) log

(
1− σ(fy(y,x))

)
+ Epdata(y,x) log σ(fy(y,x))

]
.

(23)

17

Under review as a conference paper at ICLR 2023

E IMPLEMENTATION AND EXPERIMENT DETAILS

Editing function. For the editing function, we consider both linear (Eqs. (24) and (25)) and non-linear (Eq. (26))
cases as below, i.e., for z̄i,α = h(z,di, α):

z̄i,α = z + α · di, di = norm ◦ Linear(ei), (24)

z̄i,α = z + α · di, di = sqrt ◦ norm ◦ ReLU ◦ Linear(ei), (25)

z̄i,α = z + α · di + norm ◦ Linear ◦ ReLU ◦ Linear(z ⊕ di ⊕ [α]), di = norm ◦ Linear ◦ ReLU ◦ Linear(ei), (26)

where ◦ means the composition of two functions.

Objective function. The objective function is given as:

L = c1 · Eu,v[LGraphCG-NCE] + c2 · Lsim + c3 · Lsparsity, (27)

where LGraphCG-NCE is the MI estimation defined in Eq. (9), Lsim is the direction similarity defined in Eq. (10),
and Lsparsity. c1, c2 and c3 are three coefficients accordingly.

Hyperparameters. We list the key hyperparameters in Table 4, and all the results are evaluated on 100 sampled
sequences. We also want to highlight that DisCo is an unstable baseline, in the sense that once we add more
training data (e.g., from 100 to 500) or more training epochs (e.g., from 1 epoch to 5 epochs), the model will
collapse, with the nan loss. Thus, here we are reporting the most reasonable results for DisCo, i.e., 100 training
data with 1 epoch.

Table 4: Hyperparameter specifications.
Hyperparameter Value

Random D {10}
α {-3, -2.7, -2.4, ..., 2.7, 3}

Variance
D {10}
α {-3, -2.7, -2.4, ..., 2.7, 3}
training data {100, 500}

SeFa
D {10}
α {-3, -2.7, -2.4, ..., 2.7, 3}
training data {100, 500}

DisCo
D {10}
α {-3, -2.7, -2.4, ..., 2.7, 3}
training data {100}
epochs {1}

GraphCG

D {10}
α {-3, -2.7, -2.4, ..., 2.7, 3}
training data {100, 500}
epochs {20, 100}
coefficient c1 {0, 1}
coefficient c2 {0, 1}
coefficient c3 {0, 1}

Hardware. We use V100 GPU cards, and each job (w.r.t. different hyperparameters) for GraphCG can be
finished within 3 hours on a single GPU card.

Time complexity. The time complexity of GraphCG is O(B × D2) for GraphCG-P and O(B2 × D2) for
GraphCG-R, where B is the number of data points for each batch. Here we omit the constants for step-sizes.

18

Under review as a conference paper at ICLR 2023

F RESULTS: MOLECULAR GRAPH

F.1 EVALUATION METRICS

Change of Structure Factors and Calibrated Tanimoto Similarity (CTS). We are interested in the change of
the graph structure (the steerable factors) along the output sequence edited with the i-th direction. To evaluate
the structure change, we apply the Tanimoto similarity between each output molecule and the anchor molecule,
as shown in Fig. 5(a). Besides, for the ease of evaluating the monotonicity, we utilize a transformation (on the
Tanimoto similarity) of output molecules with positive step size by taking the deduction from 2. We call this
calibrated Tanimoto similarity sequence (CTS), i.e., {s(x̄′)}i, as shown in Fig. 5(b).

(a) Tanimoto Similarity Sequence (b) Calibrated Tanimoto Similarity Sequence

Figure 5: Fig. 5(a) is the original Tanimoto similarity sequence w.r.t. the anchor molecule, i.e., step size with
0 in the figure. Yet, this is not easy to compute the monotonicity. We thus propose the calibrated Tanimoto
similarity sequence, by taking the deduction from 2 for output molecules with positive step size, as shown
in Fig. 5(b).

Sequence Monotonic Ratio (SMR). For evaluation, we propose a metric called Sequence Monotonic Ratio
(SMR), ϕSMR(γ, τ)i. It measures the monotonic ratio of M generated sequences edited with the i-th direction.
It has two arguments: the diversity threshold γ constrains the minimum number of distinct molecules, and the
tolerance threshold τ controls the non-monotonic tolerance ratio along each sequence.

In specific, for each learned semantic direction i, we will generate M sequences of edited molecules, and the
calibrated Tanimoto similarity for each sequence is marked as {s(x̄′)}mi . Then we can define the SMR on
each direction as:

ϕSMR(γ, τ)i =
1

M

M∑
m=1

ϕSMR
(
{s(x̄′)}m

i , γ, τ
)
,

ϕSMR
(
{s(x̄′)}m

i , γ, τ
)
=

{
1, len

(
set

{
s(x̄′)}m

i

))
≥ γ ∧ monotonicτ

(
{s(x̄′)}m

i

)
0, otherwise .

(28)

Evaluating the Diversity of Semantic Directions. SMR can evaluate all the output sequences generated by
one direction. To better illustrate that GraphCG is able to learn multiple directions with various semantic
information, we also consider taking the average of top-K SMR w.r.t. directions to reveal that all the best K
directions are semantically meaningful, as in Eq. (29):

top-K(γ, τ) =
1

K

∑
i∈top-K directions

(
ϕSMR(γ, τ)i

)
. (29)

19

Under review as a conference paper at ICLR 2023

F.2 RESULTS ON MOLECULAR STRUCTURES

Next we would like to show the comprehensive SMR on the CTS results with respect to different backbone
models, as in Tables 5 and 6.

Table 5: This table lists the sequence monotonic ratio (SMR, %) on calibrated Tanimoto similarity (CST) w.r.t.
the top-1, top-2, and top-3 directions. The backbone model is the pretrained MoFlow on ZINC250k.

Edit Method
top-K Tanimoto top-1 Tanimoto top-2 Tanimoto top-3

γ 2 3 4 2 3 4 2 3 4

τ 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2

Random 35.0 36.0 23.0 25.0 12.0 15.0 34.5 36.0 22.5 25.0 11.5 14.0 34.0 36.0 22.0 24.0 11.0 13.7
Variance 32.0 36.0 24.0 28.0 12.0 16.0 31.5 35.5 21.0 26.5 10.5 16.0 30.3 35.3 20.0 25.0 10.0 15.0
SeFa 23.0 23.0 4.0 4.0 0.0 0.0 19.0 19.0 4.0 4.0 0.0 0.0 17.3 17.3 3.3 3.3 0.0 0.0
DisCo 8.0 15.0 7.0 14.0 2.0 8.0 7.5 13.5 6.0 12.5 2.0 8.0 7.0 13.0 5.3 11.7 2.0 7.7

GraphCG-P
Eq. (24) 39.0 40.0 27.0 28.0 15.0 18.0 38.5 40.0 26.0 28.0 15.0 18.0 37.0 39.0 24.7 27.3 14.3 17.3
Eq. (25) 35.0 37.0 19.0 22.0 8.0 11.0 33.5 36.5 18.5 21.5 7.0 10.5 31.7 34.7 17.7 20.7 6.3 9.3
Eq. (26) 44.0 46.0 32.0 34.0 16.0 18.0 42.5 44.5 30.0 32.0 15.0 17.5 41.7 44.0 29.0 31.0 13.7 16.3

GraphCG-R
Eq. (24) 37.0 42.0 25.0 26.0 11.0 14.0 37.0 40.0 23.0 25.5 11.0 13.5 36.3 39.0 22.0 24.3 10.3 13.3
Eq. (25) 35.0 37.0 19.0 22.0 8.0 11.0 33.5 36.5 18.5 21.5 7.0 10.5 31.7 34.7 17.7 20.7 6.3 9.3
Eq. (26) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6: This table lists the sequence monotonic ratio (SMR, %) on calibrated Tanimoto similarity (CST) w.r.t.
the top-1, top-2, and top-3 directions. The backbone model is the pretrained HierVAE on ChEMBL.

Edit Method
top-K Tanimoto top-1 Tanimoto top-2 Tanimoto top-3

γ 2 3 4 2 3 4 2 3 4

τ 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2

Random 14.0 45.0 14.0 45.0 14.0 43.0 11.0 43.5 11.0 43.5 11.0 42.5 10.0 42.3 10.0 42.3 9.3 41.7
Variance 28.0 64.0 23.0 59.0 19.0 55.0 22.5 59.5 19.5 57.0 17.5 55.0 20.3 54.3 18.3 52.7 15.7 50.3
SeFa 4.0 41.0 4.0 41.0 4.0 41.0 3.0 41.0 3.0 41.0 3.0 41.0 2.3 36.0 2.3 36.0 2.3 36.0

GraphCG-P
Eq. (24) 23.0 61.0 19.0 57.0 15.0 53.0 19.0 59.0 16.5 56.5 13.5 53.0 17.0 55.3 15.3 53.7 12.7 50.7
Eq. (25) 62.0 77.0 40.0 73.0 32.0 65.0 60.5 74.0 38.5 67.5 29.0 61.0 59.3 70.3 36.0 64.3 26.3 57.7
Eq. (26) 29.0 71.0 28.0 70.0 27.0 69.0 22.0 62.0 21.5 61.5 20.5 61.0 18.7 57.7 18.3 57.3 17.7 56.7

GraphCG-R
Eq. (24) 16.0 56.0 16.0 56.0 15.0 55.0 13.5 48.0 13.5 48.0 12.0 47.0 11.7 44.7 11.7 44.7 10.7 43.3
Eq. (25) 61.0 74.0 42.0 67.0 30.0 55.0 59.0 69.5 40.0 64.0 29.5 54.5 57.7 67.7 38.0 62.3 28.7 53.7
Eq. (26) 25.0 57.0 24.0 57.0 21.0 55.0 20.0 55.0 19.5 54.5 17.0 52.0 17.3 52.7 17.0 52.3 15.0 50.0

20

Under review as a conference paper at ICLR 2023

F.3 VISUALIZATION

For a more comprehensive visualization of the steerable factors in molecular graphs, we demonstrate 16
molecular graph paths along the 4 selected directions in Fig. 6, and the backbone DGM is HierVAE pretrained
on ChEMBL. The CTS holds good monotonic trend in all these sequences. Each direction shows certain unique
changes in the molecular structures, i.e., the steerable factors in molecules. Some structural changes are reflected
in molecular properties. We expand all the details below. In Fig. 6(a) and Fig. 6(b), the number of halogen
atoms and hydroxyl groups (in alcohols and phenols) in the molecules decrease from left to right, respectively.
In Fig. 6(c), the number of amides in the molecules increases along the path. As a result, the topological polar
surface area (tPSA) of the molecules increase accordingly, which is a key molecular property for the prediction
of drug transport properties, e.g., permeability [12]. In Fig. 3(d), the flexible chain length, marked by the number
of ethylene (CH2CH2) units, increases from left to right. Since the number of rotatable bonds (NRB) measures
the molecular flexibility, it also increases accordingly [57].

(a) Steerable factor: number of halogens. (b) Steerable factor: number of hydroxyls.

(c) Steerable factor: number of amides. (d) Steerable factor: chain length.

Figure 6: GraphCG for molecular graph editing. We visualize the output molecules and CTS on four directions
with four sequences each, where each sequence consists of five steps. The center point is the anchor molecule,
and the other four points correspond to step size with -3, -1.8, 1.8, and 3 respectively. Fig. 6(a) to Fig. 6(c) show
how functional groups in the molecules can be viewed as the steerable factors as they change along the path,
such as halogen atoms, hydroxyl groups and amides. Fig. 6(d) illustrates the effect on the steerable factor on the
length of flexible chains in the molecules. Notebly, certain properties change together with molecular structures,
like topological polar surface area (tPSA) and number of rotatable bonds (NRB).

21

Under review as a conference paper at ICLR 2023

Since we have determined four directions with semantic information matching with the domain knowledge
(fragments), then we can check if the disentanglement measure changes before and after editing. Notice that
comparing to Table 1, three measures are infeasible (i.e., with value nan), and we show three feasible ones
in Table 7.

Table 7: Disentanglement measure before and after editing. The corresponding model is the GraphCG-P with
Eq. (25), and the backbone generative model is HierVAE pretrained on ChEMBL. The better performance is
marked in bold.

Fragment BetaVAE ↑ MIG ↑ SAP ↑

Halogen after editing 0.617 0.010 0.017
before editing 0.950 0.062 0.017

Hydroxyls after editing 0.833 0.031 0.017
before editing 0.933 0.113 0.067

Amide after editing 0.400 0.041 0.017
before editing 0.933 0.136 0.017

Chain length after editing 0.400 0.051 0.000
before editing 0.700 0.020 0.017

22

Under review as a conference paper at ICLR 2023

G RESULTS: POINT CLOUDS

Here we compare two editing functions, i.e., the key function design in GraphCG. We provide the visualizations
for the linear editing function in Eq. (25), and non-linear editing function in Eq. (26).

First we want to highlight that all the samples are generated randomly. In the linear case in Appendix G.1,
we can observe that the shape of the airplanes, cars, and chairs, are steerable using GraphCG. We also find it
interesting that GraphCG can steer more finger-trained factors, like modifying the airplane engines. However, in
the non-linear case, the diversity of the edited data is smaller. This can been observed from the middle columns
in Appendix G.2. We will leave this for future exploration.

G.1 LINEAR EDITING FUNCTION

(a) Steerable factor: engine (direction 1). (b) Steerable factor: engine (direction 1).

(c) Steerable factor: fuselage length (direction 2). (d) Steerable factor: wing size (direction 3).

(e) Steerable factor: wing shape(direction 4). (f) Steerable factor: wing thickness (direction 5).

Figure 7: GraphCG for point clouds (Airplane) editing. It can successfully reflect these steerable
factors: engine, fuselage length, wing size, wing shape, and wing thickness.

23

Under review as a conference paper at ICLR 2023

(a) Steerable factor: size (direction 1). (b) Steerable factor: size (direction 2).

Figure 8: GraphCG for point clouds (Car) editing. The steerable factors on this dataset are not
obvious, and here we only plot the car size editable with two directions.

(a) Steerable factor: leg height (direction 1). (b) Steerable factor: seat size (direction 2).

Figure 9: GraphCG for point clouds (Chair) editing. It can successfully reflect these steerable
factors: leg height, and seat size.

24

Under review as a conference paper at ICLR 2023

G.2 NON-LINEAR EDITING FUNCTION

(a) Steerable factor: wing shape (direction 1). (b) Steerable factor: wing length (direction 2).

Figure 10: GraphCG for point clouds (Airplane) editing. It can successfully reflect these steerable
factors: wing shape and wing length.

(a) Steerable factor: size (direction 1). (b) No obvious steerable factor (direction 2).

Figure 11: GraphCG for point clouds (Car) editing. The steerable factors on this dataset are not
obvious, and here we only plot the car size editable with one directions.

(a) Steerable factor: leg height (direction 1). (b) Steerable factor: seat size (direction 2).

Figure 12: GraphCG for point clouds (Chair) editing. It can successfully reflect these steerable
factors: leg height, and seat size.

25

