
A FIRST ORDER MOTION MODEL

We built our architecture on top of First Order Motion Model (Siarohin et al., 2019), a state-of-the-art
model on image animation. This section summarizes its background. First Order Motion Model
consists of a motion estimation module and an image generation module. The motion estimation
module takes as inputs a source image S ∈ R3×H×W and a driving image D ∈ R3×H×W , and
predicts a dense motion field T̂S←D and an occlusion mask ÔS←D. The image generation module
warps the source image based on the dense motion field T̂S←D and inpaints the occluded parts of the
source image.

A.1 MOTION ESTIMATION MODULE

The motion estimation module first uses local affine transformations to approximate motion in
the neighborhood of each keypoint. It then combines the local motions to estimate the final
dense motion field T̂S←D.

Approximating motion description Given a driving frame D and a source frame S, the
motion estimation module estimates the backward optical flow TS←D from D to S. The estimation of
TS←D is based on an abstract reference frame R. Therefore, the estimation of TS←D is a combination
of estimating TS←R and TR←D. To estimate the transformation TX←R of a given frame X, the
motion estimation module considers its first-order Taylor expansions in K keypoints p1, . . . , pK in the
reference frame R. In the rest of the section, p denotes the point locations in the reference pose space
and z denotes the point locations in the X, S, or D pose spaces.

TX←R(p) = TX←R(pk) +

(
d

dp
TX←R(p)

∣∣∣∣ p = pk

)
(p− pk) + o(‖p− pk‖) (1)

Finally, the backward optical flow TS←D is obtained as follows:

TS←D = TS←R ◦ TR←D = TS←R ◦ T −1D←R (2)

Computing the first-order Taylor expansion of Equation 2 gives:

TS←D(z) ≈ TS←R(pk) + Jk(z − TD←R(pk)) (3)

where Jk is the Jacobian corresponding to the keypoint location pk in R. To estimate the
transformation TX←R near pk in the reference frame R, the motion estimation module uses the
standard U-Net architecture as a keypoint detector to estimate a heatmap for each keypoint pk. The
keypoint detector uses softmax activations as a confidence map in the last layer of the decoder for
prediction.

Combining local motions The motion estimation module uses a convolutional network to estimate
the final dense motion field T̂S←D from the set of Taylor approximations of TS←D(z). Using the
local transformation estimated in Equation 3, it obtains K transformed images S1, . . . ,SK . Each
image Sk is aligned with T̂S←D in the neighborhood of a keypoint. It obtains also an image S0 for the
background.

To indicate to the dense motion network where each transformation occurs, it further computes
heatmaps Hk for each keypoint pk. Each Hk(z) is the difference between the heatmaps centered in
TD←R(pk) and TS←R(pk):

Hk(z) = exp

(
(TD←R(pk)− z)2

σ

)
− exp

(
(TS←R(pk)− z)2

σ

)
(4)

where σ is a small fixed standard deviation. By concatenating the heatmaps Hk and the
transformed images S0, . . . ,SK , it estimates K + 1 masks Mk that indicate where each local
transformation holds. The final dense motion prediction is obtained as follows:

T̂S←D(z) = M0z +

K∑
k=1

Mk(TS←R(pk) + Jk(z − TD←R(pk))) (5)
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(a) First Order Motion Model+ Discriminator

RGB image x ∈ R256×256×3

ConvBlock down ch→ 2ch

ConvBlock down 2ch→ 4ch

ConvBlock down 4h→ 8ch

Conv2d 8ch→ 1

(b) U-Net Discriminator

RGB image x ∈ R256×256×3

ConvBlock down ch→ 2ch

ConvBlock down 2ch→ 4ch

ConvBlock down 4h→ 8ch *(see below)

ConvBlock up 8ch→ 4ch

ConvBlock up (4 + 4)ch→ 2ch

ConvBlock up (2 + 2)ch→ ch

ConvBlock up (ch+ ch)→ ch

Conv2d ch→ 1

Sigmoid

*Conv2d 8ch→ 1

Table A1: The architectures of First Order Motion Model+ discriminator and our U-Net discriminator.

A.2 IMAGE GENERATION MODULE

The image generation module takes into account occluded parts in S that cannot be recovered by
image warping and inpaints those parts based on an occlusion map ÔS←D ∈ [0, 1]H

′×W ′
. To obtain

the occlusion map ÔS←D from the sparse keypoint representation, a channel is added to the final
layer of the dense motion network. Suppose ξ ∈ RH′×W ′

is the feature map obtained from the
down-sampling convolutional blocks. The transformed feature map ξ′ is obtained as follows:

ξ′ = ÔS←D � fw(ξ, T̂S←D) (6)

where fw denotes the back-warping operation and � denotes the Hadamard product. The subsequent
layers of the image generation module decode the transformed feature map ξ′ back to the target
image.

B ARCHITECTURES AND TRAINING DETAILS

Architectures We followed Schonfeld et al. (2020) to adapt a U-Net architecture in the
discriminator. A U-Net discriminator DU consists of both an encoder DU

enc and a decoder DU
dec.

The U-Net encoder DU
enc progressively downsamples the input image to predict global realism

like the discriminator of a vanilla GAN. The U-Net decoder DU
dec progressively upsamples the

feature map to predict the realism of individual pixels. It uses skip connections to feed information
between matching resolutions of DU

enc and DU
dec, enhancing its capability in segmenting fine details.

The U-Net discriminator learns both the global and the local differences between real and fake
images. Table A1 summarizes the differences between our discriminator architecture and that of First
Order Motion Model+1, the concurrent work of First Order Motion Model (Siarohin et al., 2019)
with a global discriminator. Our U-Net encoder uses the same architecture like that of the global
discriminator of First Order Motion Model+. Our U-Net decoder is a symmetry of the U-Net encoder
architecture, with skip connections feeding information between the matching resolutions of the two
modules. Both discriminators use ch = 64 for channels. For the keypoint detector and the generator,
we use the same architectures as those of the baseline First Order Motion Model.

Hyperparameters We followed Siarohin et al. (2019) to use the Adam (Kingma & Ba, 2014)
optimizer for training with learning rate 2e-4 and batch size 20. For regularization with PriorityCut,
we followed Schonfeld et al. (2020) to linearly increase the probability of augmentation from 0 to 0.5

1https://github.com/AliaksandrSiarohin/first-order-model
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for the first n epochs. This gives the generator sufficient time to warm up and does not make the
discriminator too strong in the beginning.

Training losses Following Siarohin et al. (2019) and Schonfeld et al. (2020), we used a combination
of losses for both the discriminator and the generator. The loss of the U-Net discriminatorDU consists
of the adversarial loss of the U-Net encoder LDU

enc
, the adversarial loss of the U-Net decoder LDU

dec
,

and the consistency regularization loss Lcons
DU

dec
for the CutMix operation between the real and the fake

images.
LDU = LDU

enc
+ LDU

dec
+ λLcons

DU
dec

(7)

In particular, the consistency regularization loss consists of two terms. The first term is the output of
the U-Net decoder DU

dec on the CutMix image. The second term is the CutMix between the outputs
of DU

dec on real and fake images. The consistency regularization loss computes the L2 norm between
the first and the second terms.

Lcons
DU

dec
=

∥∥∥∥DU
dec

(
mix(x, x′,min

k
Ôfg)

)
−mix

(
DU

dec(x), D
U
dec(x

′),min
k
Ôfg

)∥∥∥∥2 (8)

The loss of the generator consists of the reconstruction loss Lrec, the equivariance loss Lequiv,
the adversarial loss Ladv, and the feature matching loss Lfeat. The published First Order Motion
Model paper uses only the reconstruction loss Lrec and the equivariance loss Lequiv (Siarohin
et al., 2019). We followed its concurrent work to include the adversarial loss Ladv and the
feature matching loss Lfeat for adversarial training.

LG = Lrec + Lequiv + Ladv + Lfeat (9)

The reconstruction loss Lrec is the multi-scale perceptual loss based on the activations of the
pre-trained VGG-19 network (Simonyan & Zisserman, 2014) between real and fake images.
The equivariance loss Lequiv encourages consistent keypoint predictions given known geometric
transformations. It is based on the following equivariance constraint on local motion approximations:

TX←R ≡ TX←Y ◦ TY←R (10)

The adversarial loss Ladv is the sum of the feedback from the encoder DU
enc and the decoder DU

dec

of the U-Net discriminator DU . The feature matching loss Lfeat matches the feature maps of each
layer of the U-Net encoder LDU

enc
between the driving and the generated images, similar to that of

pix2pixHD (Wang et al., 2018).

C EXPERIMENTAL SETUP DETAILS

Datasets We followed the preprocessing protocols of Siarohin et al. (2019) to obtain high-quality
videos on the following three datasets. At the time of data collection, some videos are no longer
available on YouTube. We report the number of videos used in our experiments.

• The VoxCeleb dataset (Nagrani et al., 2017) is a face dataset with 22,496 videos from YouTube.
We tracked the face until it is too far from its initial position and cropped the frames using the
smallest crop containing all the bounding boxes. Then, we removed videos of resolution lower
than 256× 256 and resized the remaining videos to 256× 256. After preprocessing, we obtained
18,398 videos for training and 512 videos for testing.

• The BAIR robot pushing dataset (Ebert et al., 2017) contains videos of a Sawyer robotic arm
pushing objects over a table. It contains 42,880 videos for training and 128 videos for testing.

• The Tai-Chi-HD dataset (Siarohin et al., 2019) contains 280 tai-chi videos from YouTube. We
used similar preprocessing steps as VoxCeleb to split the videos into short clips and resized all
high-quality videos to 256×256. After preprocessing, we obtained 2,994 video chunks for training
and 285 video chunks for testing.

Unlike First Order Motion Model paper (Siarohin et al., 2019), we did not experiment on the
UvA-NEMO dataset (Dibeklioğlu et al., 2012), since the VoxCeleb dataset is a more difficult one to
learn. The VoxCeleb dataset contains videos of different pose angles while the UvA-NEMO dataset
contains only frontal faces. Also, the UvA-NEMO dataset has a simple uniform dark background and
the facial features are the only moving parts with subtle movements.
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Metrics We provide additional details on the metrics and the third-party tools used for computation.

• L1. This measures the pixel-wise differences between the generated and the ground truth videos.

• Peak Signal-to-Noise Ratio (PSNR). This measures the maximum possible power of a signal and
the power of corrupting noise that affects the fidelity of its representation. It evaluates how good
the model is at reconstructing the low-level details of the ground truth videos.

• Structural Similarity (SSIM). This compares the low-level structures between the generated and the
ground truth videos. It evaluates also how good the model is at reconstructing the low-level details.

• Masked PSNR and SSIM (M-PSNR, M-SSIM). We used a variety of masks to evaluate the masked
PSNR and SSIM on both the foreground and the background. The salient masks in Tables 1 and 2
cover the most noticeable parts of the images. The top-k masks in Tables A2, A3 and A4 correspond
to the parts of the images that are the most difficult to inpaint.
To compute a salient mask, we first used DeepLabv3+ (Chen et al., 2018), a semantic
image segmentation library, to generate a binary mask. Then, we used an automatic trimap
generator (Nugraha, 2018) to generate a trimap from the binary mask. We used the image matting
library F , B, α Matting (Forte & Pitié, 2020) to generate a final alpha mask for the foreground.
The background mask is the inversion of the foreground mask.
We used the same methodology as Section 3.2 to obtain the masks based on the top-k percent
occluded pixels. The top-k masks are derived from the occlusion masks predicted by the
baseline model (FOMM). Similar to salient masks, we used the top-k masks to evaluate the
foreground and their inversions to evaluate the background.

• Average Keypoint Distance (AKD). This measures the average keypoint distance between the
generated and the ground truth videos. Following Siarohin et al. (2019), we used a face alignment
library (Bulat & Tzimiropoulos, 2017) to detect face keypoints for the VoxCeleb dataset and a
human pose estimation library (Cao et al., 2017) to detect pose keypoints for the Tai-Chi-HD
dataset.

• Missing Keypoint Rate (MKR). This measures the percentage of keypoints detected in the
ground truth videos but not in the generated ones. This evaluates the appearance quality of
the generated videos. Following Siarohin et al. (2019), we used the binary label returned by the
human pose estimation library (Cao et al., 2017) to count if a keypoint is detected or not for the
Tai-Chi-HD dataset.

• Average Euclidean Distance (AED). This measures the distance of the feature embedding
between the generated and the ground truth videos. Following Siarohin et al. (2019), we used
OpenFace (Baltrusaitis et al., 2018) to extract the face identity embedding for the VoxCeleb dataset
and a person re-id library (Hermans et al., 2017) to extract the person re-identification embedding
for the Tai-Chi-HD dataset.

D ADDITIONAL EVALUATIONS

Quantitative comparison We additionally evaluated masked PSNR and SSIM on state-of-the-art
approaches based on the top-k percent occluded pixels. In Tables A2, A3 and A4, the columns top-k
represent the masks of the heaviest k percent occluded pixels. The columns ¬ top-k are the inversions
of the top-k masks. We evaluated both masks to check if the models compromise the quality of
certain parts of the image to achieve the desired performance. For both metrics, the larger the values,
the better the results. The bold texts represent the best results. The red and green texts represent
performance loss and gain compared to the baseline model (FOMM), respectively.

We evaluated the masked versions on the VoxCeleb, BAIR, and Tai-Chi-HD datasets. Table A2
shows the results for VoxCeleb. For both PSNR and SSIM, PriorityCut outperforms state-of-the-art
approaches in different thresholds k. Note that adversarial training alone does not guarantee
performance gains. For PSNR, the adversarial model (FOMM+) compromises the quality of the
hardest parts to inpaint (top-k masks) and pursues the easy targets (¬ top-k masks). For SSIM,
adversarial training performs worse in every setting. Table A3 shows the results for BAIR. For both
PSNR and SSIM, PriorityCut consistently outperforms state-of-the-art approaches. Table A4 shows
the results for Tai-Chi-HD. For PSNR, PriorityCut outperforms state-of-the-art approaches in all
settings. For SSIM, PriorityCut is on par with the adversarial model.
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k 10% 20% 30% 40% 50%

top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k

X2Face 28.42±0.02 19.94±0.02 25.41±0.02 20.74±0.02 23.72±0.02 21.59±0.02 22.57±0.02 22.51±0.02 21.70±0.02 23.55±0.02

Monkey-Net 30.81±0.02 23.50±0.02 28.00±0.02 24.44±0.02 26.45±0.02 25.41±0.02 25.41±0.02 26.44±0.02 24.65±0.02 27.57±0.02

FOMM 32.99±0.02 25.24±0.02 30.07±0.02 26.14±0.02 28.46±0.02 27.09±0.02 27.37±0.02 28.11±0.02 26.55±0.02 29.24±0.02

FOMM+ 32.91±0.02 25.24±0.02 30.00±0.02 26.16±0.02 28.39±0.02 27.12±0.02 27.30±0.02 28.15±0.02 26.49±0.02 29.30±0.02

Ours 33.14±0.02 25.42±0.02 30.21±0.02 26.34±0.02 28.60±0.02 27.29±0.02 27.51±0.02 28.32±0.02 26.70±0.02 29.46±0.02

(a) Masked PSNR on top-k percent occluded pixels.

k 10% 20% 30% 40% 50%

top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k

X2Face 0.9519±9e-5 0.6792±5e-4 0.9108±1e-4 0.7262±5e-4 0.8721±2e-4 0.7702±4e-4 0.8344±2e-4 0.8114±4e-4 0.7977±3e-4 0.8499±3e-4

Monkey-Net 0.9640±7e-5 0.7755±4e-4 0.9333±1e-4 0.8134±4e-4 0.9041±2e-4 0.8473±3e-4 0.8757±2e-4 0.8779±3e-4 0.8483±3e-4 0.9053±2e-4

FOMM 0.9736±6e-5 0.8270±4e-4 0.9497±1e-4 0.8573±3e-4 0.9264±2e-4 0.8842±3e-4 0.9034±2e-4 0.9085±2e-4 0.8813±3e-4 0.9301±2e-4

FOMM+ 0.9734±6e-5 0.8259±4e-4 0.9493±1e-4 0.8563±3e-4 0.9260±2e-4 0.8834±3e-4 0.9028±2e-4 0.9079±2e-4 0.8805±3e-4 0.9297±2e-4

Ours 0.9741±6e-5 0.8287±4e-4 0.9505±1e-4 0.8587±1e-4 0.9275±2e-4 0.8854±3e-4 0.9048±2e-4 0.9094±2e-4 0.8829±2e-4 0.9308±2e-4

(b) Masked SSIM on top-k percent occluded pixels.

Table A2: Comparison with state-of-the-art for approaches for video reconstruction on VoxCeleb.

k 10% 20% 30% 40% 50%

top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k

X2Face 24.88±0.1 24.86±0.1 23.10±0.1 27.42±0.2 22.39±0.1 29.53±0.2 22.01±0.1 31.42±0.2 21.78±0.1 33.23±0.2

Monkey-Net 27.11±0.1 26.21±0.1 25.09±0.1 28.69±0.2 24.29±0.1 30.80±0.2 23.86±0.1 32.74±0.1 23.59±0.1 34.70±0.1

FOMM 29.94±0.1 27.24±0.1 27.51±0.1 29.40±0.1 26.48±0.1 31.38±0.1 25.91±0.1 33.27±0.1 25.53±0.1 35.21±0.1

Ours 30.71±0.1 27.61±0.1 28.19±0.1 29.73±0.1 27.11±0.1 31.67±0.1 26.49±0.1 33.53±0.1 26.09±0.1 35.42±0.1

(a) Masked PSNR on top-k percent occluded pixels.

k 10% 20% 30% 40% 50%

top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k

X2Face 0.9409±4e-4 0.8885±2e-3 0.9097±9e-4 0.9228±1e-3 0.8906±1e-3 0.9429±1e-3 0.8772±1e-3 0.9564±8e-4 0.8670±2e-3 0.9661±7e-4

Monkey-Net 0.9608±4e-4 0.9112±1e-3 0.9355±8e-4 0.9393±1e-3 0.9188±1e-3 0.9565±8e-4 0.9068±1e-3 0.9681±6e-4 0.8977±1e-3 0.9765±4e-4

FOMM 0.9723±4e-4 0.9218±1e-3 0.9512±7e-4 0.9449±9e-4 0.9365±9e-4 0.9601±7e-4 0.9255±1e-3 0.9707±5e-4 0.9169±5e-4 0.9787±4e-4

Ours 0.9750±3e-4 0.9244±1e-3 0.9551±6e-4 0.9463±9e-4 0.9409±9e-4 0.9609±7e-4 0.9304±1e-3 0.9714±5e-4 0.9221±1e-3 0.9791±4e-4

(b) Masked SSIM on top-k percent occluded pixels.

Table A3: Comparison with state-of-the-art for approaches for video reconstruction on BAIR.

Qualitative comparison We performed additional qualitative comparisons between state-of-the-art
approaches on each dataset.

Figures 1 and 2 show the results for VoxCeleb. X2Face shows severe warping artifacts and face
distortions. Monkey-Net does not follow the pose angles properly and shows warping artifacts
around locations of large changes in motion (hair or area around the edges of the faces). FOMM
has difficulty distinguishing between foreground and background texture around those locations.
FOMM+ amplifies the foreground or background artifacts at those locations. In contrast, PriorityCut
shows a clear distinction between foreground and background and does not inpaint confusing texture.

Figure 3 shows the results for BAIR. X2Face shows trivial warping artifacts and broken texture on
the robot arms. Monkey-Net shows warping artifacts around the robot arms. FOMM prefers to erase
the background objects when it fails to recover the artifacts and produces blurry texture on the robot
arms when they are close to the edge of the frame. In contrast, PriorityCut preserves better texture of
both the robot arms and the background objects.
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k 10% 20% 30% 40% 50%

top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k

X2Face 27.52±0.03 19.02±0.02 25.05±0.03 19.64±0.02 23.74±0.03 20.16±0.02 22.83±0.03 20.66±0.02 22.21±0.03 21.11±0.02

Monkey-Net 28.11±0.03 19.81±0.03 25.68±0.03 20.43±0.03 24.35±0.03 20.97±0.03 23.43±0.03 21.50±0.03 22.79±0.03 21.98±0.03

FOMM 31.50±0.04 22.01±0.03 28.62±0.03 22.62±0.03 27.05±0.03 23.20±0.03 25.97±0.03 23.78±0.03 25.21±0.03 24.34±0.03

FOMM+ 31.61±0.04 22.08±0.03 28.68±0.03 22.70±0.03 27.09±0.03 23.29±0.03 26.00±0.03 23.88±0.03 25.24±0.03 24.45±0.03

Ours 31.76±0.04 22.26±0.03 28.86±0.03 22.88±0.03 27.28±0.03 23.47±0.03 26.18±0.03 24.06±0.03 25.42±0.03 24.63±0.03

(a) Masked PSNR on top-k percent occluded pixels.

k 10% 20% 30% 40% 50%

top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k top-k ¬ top-k

X2Face 0.9477±2e-4 0.6439±1e-3 0.9069±3e-4 0.6928±1e-3 0.8701±5e-4 0.7351±1e-3 0.8348±6e-4 0.7736±9e-4 0.8016±8e-4 0.8081±7e-4

Monkey-Net 0.9505±2e-4 0.6613±1e-3 0.9116±4e-4 0.7077±1e-3 0.8761±5e-4 0.7478±1e-3 0.8422±7e-4 0.7846±9e-4 0.8102±9e-4 0.8177±7e-4

FOMM 0.9626±2e-4 0.7034±1e-3 0.9301±3e-4 0.7441±1e-3 0.8992±5e-4 0.7803±1e-3 0.8687±7e-4 0.8140±8e-4 0.8393±8e-4 0.8447±7e-4

FOMM+ 0.9633±2e-4 0.7055±1e-3 0.9310±3e-4 0.7459±1e-3 0.9002±5e-4 0.7822±1e-3 0.8697±7e-4 0.8159±8e-4 0.8404±8e-4 0.8465±7e-4

Ours 0.9631±2e-4 0.7048±1e-3 0.9307±3e-4 0.7456±1e-3 0.8997±5e-4 0.7820±1e-3 0.8690±7e-4 0.8160±8e-4 0.8393±8e-4 0.8470±7e-4

(b) Masked SSIM on top-k percent occluded pixels.

Table A4: Comparison with state-of-the-art for approaches for video reconstruction on Tai-Chi-HD.

Figure 4 shows the results for Tai-Chi-HD. X2Face shows slight to severe warping artifacts, depending
on the motion. MonkeyNet shows trivial warping artifacts in the background and around the hands.
FOMM produces visible warping artifacts on the faces and FOMM+ amplifies the artifacts. In
contrast, PriorityCut preserves better identity without trivial warping artifacts on the faces.
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Figure 1: Qualitative comparison of state-of-the-art approaches for image animation on VoxCeleb.
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Figure 2: Qualitative comparison of state-of-the-art approaches for image animation on VoxCeleb.
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Figure 3: Qualitative comparison of state-of-the-art approaches for image animation on BAIR.
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Figure 4: Qualitative comparison of state-of-the-art approaches for image animation on Tai-Chi-HD.
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