
Under review as a conference paper at ICLR 2021

Appendix
(MONGOOSE: A Learnable LSH
Framework for Efficient Neural Network
Training)
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A SLOW CHANGE OBSERVATIONS

In this section, we analyze the relative distance between iterates of model parameters and connect it
with LSH updates throughout training. We target at making full use of our slowly change character-
ization for MONGOOSE.

Settings. We report �W throughout training on several benchmark models. We follow the stan-
dard training procedures of fully-connected networks on Wiki325k (Partalas et al., 2015) and Trans-
former (Vaswani et al., 2017) on enwik8. We choose W in the last linear layer for the fully-connected
model and W in the projection layer before attention for the transformer model to correspond ex-
periments in section 4. In Appendix A, we provide a detailed investigation on experimental results
from different datasets.

Results. We plot our results in Figure 3. The left-two and right-most plots show that during the
initial steps of the training, �W is relatively high, but quickly drops and flattens out afterwards.
The middle and right-most plots exhibit the hash code change of W in the hamming distance along
with the training. The pattern matches with �W but has a direct connection with the LSH update
overhead. This is also consistent with LSH theory that the hash code collision probability of two
vectors equals to the vectors’ certain similarity, e.g., angular. Note the above observations are made
based on angular distance LSH. The above phenomenon suggests that if there exists an optimal
scheduler to update the data structures adaptively based on the actual demand, the overhead by LSH
updates can be largely reduced. Furthermore, this opens the door to make LSH learnable in order to
improve query efficiency. Since the LSH update time is also closely related to the query time, the
overall update overhead might still be reduced after considering learning costs, if the updates are
well scheduled.
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Figure 7: We show the average change of weight (left), cosine similarity (middle), weight’s hash code (right).
Top row is reformer and the bottom row is for Wiki-325k.
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B DYNAMIC MAINTENANCE DATA STRUCTURE

The idea of dynamic maintenance have been successfully applied to matrix inversion problem, which
served as a central component in linear program solvers (Cohen et al., 2019; Jiang et al., 2020c),
cutting plane method (Jiang et al., 2020b), and semi-definite program solvers (Jiang et al., 2020a). In
this work, we adopt it for dynamic LSH maintenance problem. The rest of this section is organized
as follows

• In Section B.1, we state our main results.
• In Section B.2, we give a high-level overview on the correctness and the running time of

the algorithm.
• In Section B.3, we give an analyze on the movement of w vector.
• In Section B.4 we give analyze on the movement of v vector.
• In Section B.5, we discussed over the choice of potential function and analysis its property.
• In Section B.6, we compare the performance our algorithm with sequential updating strat-

egy/batch updating strategy.

B.1 MAIN RESULT

Theorem B.1 (Locality sensitive hashing maintenance, Formal statement of Theorem 3.3). For any
constant c

1

, c
2

(c
1

> c
2

) there is a dynamic data structure (Algorithm 1) that achieves (c
1

, c
2

)-
accuracy. The data structure takes eO(dn1+⇢

) time to initialize and each call of QUERY(h) takes
time eO(n⇢d). By taking a = min{⇢,↵} and

g
r

=

⇢
n⇢�a, r  na

;

t
r

, r.

The amortized expected time per call of UPDATE(w) is at most

eO((C
1

+ C
2

) · kgk
2

). (4)

B.2 PROOF OF THEOREM B.1

We first give a rough explanation on the proof of Theorem 3.3. For intuition, we consider the case
C

1

= ⇥(1), C
2

= ⇥(1), and ✏
mp

= ⇥(1) in this explanation. The amortized time analysis is based
on a potential function that measures the distance of the approximate vector v and the target vector
w. We will show that

• The cost to update the LSH data structure is proportional to the decrease of the potential.
• Each call to query increase the potential by a fixed amount.

Combining both together gives the amortized running time bound of our data structure.

Now, we explain the definition of the potential. Consider the k-th round of the algorithm. For all
i 2 [n], we define x(k)

i

= w(k)

i

� v(k)

i

. Note that kx(k)

i

k
2

measures the distance between w(k)

i

and
v(k)

i

. Our algorithm fixes the indices with largest error kx(k)

i

k
2

. To capture the fact that updating
in a larger batch is more efficient, we define the potential as a weighted combination of the error
where we put more weight to higher x(k)

i

. Formally, we sort the coordinates of x(k) such that
kx(k)

i

k
2

� kx(k)

i+1

k
2

and define the potential by

 

k

=

nX

i=1

g
i

·  (x(k)

i

) ,

where g
i

are positive decreasing numbers to be chosen and  is a symmetric ( (x) =  (�x))
positive function that increases on both sides. For intuition, one can think  (x) behaves roughly
like |x|.
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B.2.1 PROOF OF CORRECTNESS

We prove the correctness of Theorem 3.3, we will defer some simple calculations into later sections.

Definition of x and y. Consider the k-th round of the algorithm. For all i 2 [n], we define x(k)

i

2
Rd, x(k+1)

i

2 Rd and y(k)

i

2 Rd as follows:

x(k)

i

= w(k)

i

� v(k)

i

, y(k)

i

= w(k+1)

i

� v(k)

i

, x(k+1)

i

= w(k+1)

i

� v(k+1)

i

.

Note that the difference between x(k)

i

and y(k)

i

is that w is changing. The difference between y(k)

i

and x(k+1)

i

is that v is changing.

Assume sorting. Assume the coordinates of vector x(k) 2 Rn⇥d are sorted such that kx(k)

i

k
2

�
kx(k)

i+1

k
2

. Let ⌧ and ⇡ are permutations such that kx(k+1)

⌧(i)

k
2

� kx(k+1)

⌧(i+1)

k
2

and ky(k)

⇡(i)

k
2

�
ky(k)

⇡(i+1)

k
2

.

Definition of Potential function. Let  : R ! R be defined by

 (x) =

8
><

>:

kxk2
2

2✏mds
, kxk

2

2 [0, ✏
mds

]

✏
mds

� (4✏

2
mds�kxk2

2)
2

18✏

3
mds

, kxk
2

2 (✏
mds

, 2✏
mds

]

✏
mds

, kxk
2

2 (2✏
mds

, +1)

(5)

We define the potential at the k-th round by

 

k

=

nX

i=1

g
i

·  (x(k)

⌧

k

(i)

) ,

where ⌧
k

(i) is the permutation such that kx(k)

⌧

k

(i)

k
2

� kx(k)

⌧

k

(i+1)

k
2

.

Bounding the potential.
We can express  

k+1

� 
k

as follows:

 

k+1

� 
k

=

nX

i=1

g
i

·
⇣
 (x(k+1)

⌧(i)

) �  (x(k)

i

)

⌘

=

nX

i=1

g
i

·
⇣
 (y(k)

⇡(i)

) �  (x(k)

i

)

⌘

| {z }
w move

�
nX

i=1

g
i

·
⇣
 (y(k)

⇡(i)

) �  (x(k+1)

⌧(i)

)

⌘

| {z }
v move

. (6)

Now, using Lemma B.5 and B.7, and the fact that  
0

= 0 and  
T

� 0, with Eq. 6, we get

0   
T

� 
0

=

T�1X

k=0

( 

k+1

� 
k

)


T�1X

k=0

(O(C
1

+ C
2

/✏
mds

) · kgk
2

� ⌦(✏
mds

r
k

g
r

k

/ log n))

= T · O(C
1

+ C
2

/✏
mds

) · kgk
2

�
TX

k=1

⌦(✏
mds

r
k

g
r

k

/ log n) ,

where the third step follows by Lemma B.5 and Lemma B.7 and r
k

is the number of coordinates we
update during that iteration.

Therefore, we get,

TX

k=1

r
k

g
r

k

= O
�
T · (C

1

/✏
mds

+ C
2

/✏2
mds

) · log n · kgk
2

�
.
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B.2.2 INITIALIZATION TIME, UPDATE TIME, QUERY TIME

To formalize the amortized runtime proof, we first analyze the initialization time (Lemma B.2),
update time (Lemma B.3), and query time (Lemma B.4) of our maintenance data-structure.
Lemma B.2 (Initialization time). The initialization time of data-structure MAINTAIN (Algorithm 1)
is O(dn1+⇢

).
Lemma B.3 (Update time). The update time of data-structure MAINTAIN (Algorithm 1) is O(rg

r

)+

O(Sd + S log n) where r is the number of indices we updated in v, S is the number of weights
changed. The later two terms are dominated by the updating time of neural network.

Proof. We change r (r � na) terms each time, and the running time for updating the LSH is rg
r

.
We need to update v and calculate its `

2

norm every time, and the computational cost is Sd. We also
need to maintain an order on the error y(k)

i

, using some standard data structure (like Fibonacci heap),
this can be done in S log n. Thus the total running time per update is O(rg

r

)+O(Sd+S log n), the
second term is bounded by the updating cost of neural network training, since calculate the gradient
takes at least O(Sd) and we usually have d � log n.

Lemma B.4 (Query time). The query time of data-structure MAINTAIN (Algorithm 1) is O(n⇢d +

nad).

B.3 BOUNDING w MOVE

Lemma B.5 (w move). We have
nX

i=1

g
i

· E
h
 (y(k)

⇡(i)

) �  (x(k)

i

)

i
 O(C

1

+ C
2

/✏
mds

) · kgk
2

.

Proof. Observe that since the errors kx(k)

i

k
2

are sorted in descending order, and  (x) is symmetric
and non-decreasing function, thus  (x(k)

i

) is also in decreasing order. In addition, note that g is
decreasing, we have

nX

i=1

g
i

 (x(k)

⇡(i)

) 
nX

i=1

g
i

 (x(k)

i

). (7)

Hence we have

E
"

nX

i=1

g
i

·
⇣
 (y(k)

⇡(i)

) �  (x(k)

i

)

⌘#
 E

"
nX

i=1

g
i

·
⇣
 (y(k)

⇡(i)

) �  (x(k)

⇡(i)

)

⌘#
by Eq. 7

=

nX

i=1

g
i

· E[ (y(k)

⇡(i)

) �  (x(k)

⇡(i)

)]

= O(C
1

+ C
2

/✏
mds

) · kgk
2

). by Lemma B.6
Thus, we complete the proof of w move Lemma.

It remains to prove the following Lemma,
Lemma B.6.

nX

i=1

g
i

· E[ (y(k)

⇡(i)

) �  (x(k)

⇡(i)

)] = O(C
1

+ C
2

/✏
mds

) · kgk
2

.

Proof. We separate the term into two:
nX

i=1

g
i

· E[ (y(k)

⇡(i)

) �  (x(k)

⇡(i)

)] =

nX

i=1

g
⇡

�1
(i)

· E[ (y(k)

i

) �  (E[y(k)

i

])]

+

nX

i=1

g
⇡

�1
(i)

· ( (E[y(k)

i

]) �  (x(k)

i

)). (8)
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For the first term, we have

 (y(k)

i

) � E[ (y(k)

i

)]

= h 0
(E[y(k)

i

]), y(k)

i

� E[y(k)

i

]i +

1

2

(y(k)

i

� E[y(k)

i

])

> 00
(⇣)(y(k)

i

� E[y(k)

i

])

 h 0
(E[y(k)

i

]), y(k)

i

� E[y(k)

i

]i +

1

2

L
2

ky(k)

i

� E[y(k)

i

]k2

2

= h 0
(E[y(k)

i

]), w(k+1)

i

� E[w(k+1)

i

]i +

1

2

L
2

kw(k+1)

i

� E[w(k+1)

i

]k2

2

(9)

where the first step follows from the Mean value theorem, the second step follows from the definition
of L

2

(see Part 4 of potential lemma B.8), the last step follows from the definition of y(k)

i

.

Next, we denote �
i

= Var[w(k+1)

i

]. Summing over i and taking conditional expectation given w(k)

on both sides, we get
nX

i=1

g
⇡

�1
(i)

· E[ (y(k)

i

) �  (E[y(k)

i

])] 
nX

i=1

g
⇡

�1
(i)

· E[h 0
(E[y(k)

i

]), w(k+1)

i

� E[w(k+1)

i

]i]

+

nX

i=1

g
⇡

�1
(i)

· 1

2

L
2

E[kw(k+1)

i

� E[w(k+1)

i

]k2

2

]

= 0 +

1

2

L
2

nX

i=1

g
⇡

�1
(i)

· �
i

 1

2

L
2

kgk
2

(

nX

i=1

�2

i

)

1
2

 1

2

· O(1/✏
mds

) · kgk
2

· C
2

= O(C
2

/✏
mds

)kgk
2

. (10)

The first step follows from Eq. 9, the second step follows from the linearity of expectation and the
definition of �

i

, the third step follows from Cauchy-Shwarz inequality, the fourth step follows from
L

2

= O(1/✏
mds

) (see Lemma B.8) and Eq. 1.

For the second term, conditioning on w(k)

i

, we have

 (E[y(k)

i

]) �  (x(k)

i

)  L
1

· kE[y(k)

i

] � xk

i

k
2

= L
1

· kE[w(k+1)

i

] � wk

i

k
2

def
= L

1

· �
i

. (11)

The first inequality follows from the L
1

-Lipschitz continuity of  (see part 4 of Lemma B.8). The
second step follows from the definition of y(k)

i

and x(k)

i

.

Summing over i, we get
nX

i=1

g
⇡

�1
(i)

· ( (E[y(k)

i

]) �  (x(k)

i

)) 
nX

i=1

g
⇡

�1
(i)

· L
1

�
i

 L
1

· kgk
2

· (

nX

i=1

�2

i

)

1
2  O(C

1

) · kgk
2

.

(12)

The first step follows from Eq. 11, the second step follows from Cauchy Shwarz inequality, the last
step follows from L

1

 2 (see part 4 of Lemma B.8) and Eq. 1.

Combining Eq. 81012, we have
nX

i=1

g
i

· E[ (y(k)

⇡(i)

) �  (x(k)

⇡(i)

)]  O(C
1

+ C
2

/✏
mds

)kgk
2

.

Thus completing the proof.

B.4 BOUNDING v MOVE

The goal of this section is to prove Lemma B.7.
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Lemma B.7 (v move). We have,
nX

i=1

g
i

·
⇣
 (y(k)

⇡(i)

) �  (x(k+1)

⌧(i)

)

⌘
� ⌦(✏

mds

r
k

g
r

k

/ log n).

Proof. We split the proof into two cases.

We first understand some simple facts which are useful in the later proof. Note that from definition
of x(k+1)

i

, we know that x(k+1) has r
k

coordinates are ~0. Basically, ky(k) � x(k+1)k
0

= r
k

. The
difference between those vectors is, for the largest r

k

coordinates in y(k), we erase them in x(k+1).
Then for each i 2 [n � r

k

], x(k+1)

⌧(i)

= y(k)

⇡(i+r

k

)

. For convenience, we define y(k)

⇡(n+i)

=

~
0, 8i 2 [r

k

] .

Case 1. We exit the while loop when 1.5r
k

� n.

Let u⇤ denote the largest u satisfying ky(k)

⇡(u)

k
2

� ✏
mds

/2. If u⇤ � r
k

, then we have that ky(k)

⇡(r

k

)

k
2

�
✏
mds

/2 � ✏
mds

/100. Otherwise, the condition of the loop shows that

ky(k)

⇡(r

k

)

k
2

� (1 � 1/ log n)

log1.5 r

k

�log1.5 u

⇤ky(k)

⇡(u

⇤
)

k
2

� (1 � 1/ log n)

log1.5 n✏
mds

/2

� ✏
mds

/100.

where we used that n � 4.

According to the definition of x(k+1)

⌧(i)

, we have

nX

i=1

g
i

( (y(k)

⇡(i)

) �  (x(k+1)

⌧(i)

)) =

nX

i=1

g
i

( (y(k)

⇡(i)

) �  (y(k)

⇡(i+r

k

)

))

�
nX

i=n/3+1

g
i

( (y(k)

⇡(i)

) �  (y(k)

⇡(i+r

k

)

))

�
nX

i=n/3+1

g
i

 (y(k)

⇡(i)

)

�
2n/3X

i=n/3+1

g
i

f((✏
mds

/100)

2

) � ⌦(r
k

g
r

k

✏
mds

),

where the first step follows from x(k+1)

⌧(i)

= y(k)

⇡(i+r

k

)

, the second step follows from  (x) is non-

decreasing (see part 2 of Lemma B.8) and ky(k)

⇡(i)

k
2

is non-increasing, the third step follows from

1.5r
k

> n and hence  (y(k)

⇡(i+r

k

)

) = 0 for i � n/3+1, the fourth step follows from  (x) = f(kxk2

2

)

is non-decreasing and ky(k)

⇡(i)

k
2

� ky(k)

⇡(r

k

)

k
2

� ✏
mds

/100 for all i < 2n/3, and the last step follows
by g is non-increasing and the part 3 of Lemma B.8.

Case 2. We exit the while loop when 1.5r
k

< n and ky(k)

⇡(1.5r

k

)

k
2

< (1 � 1/ log n)ky(k)

⇡(r

k

)

k
2

.

By the same argument as Case 1, we have that ky(k)

⇡(r

k

)

k
2

� ✏
mds

/100. Part 3 of Lemma B.8 together
with the fact

ky(k)

⇡(1.5r

k

)

k
2

< min(✏
mds

/2, ky(k)

⇡(r

k

)

k
2

· (1 � 1/ log n)),

indicates that

 (y(k)

⇡(1.5r

k

)

) �  (y(k)

⇡(r

k

)

) = ⌦(✏
mds

/ log n). (13)
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Putting things together, we have
nX

i=1

g
i

· ( (y(k)

⇡(i)

) �  (x(k+1)

⌧(i)

))

=

nX

i=1

g
i
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is non-increasing and  is non-decreasing (see part 2 of
Lemma B.8).

B.5 POTENTIAL FUNCTION  

Here we proved a vector version ( (x) = f(kxk2

2

)):
Lemma B.8 (Properties of potential function  ). Let function  : Rd ! R (defined in Eq. 5). Then
function  satisfies the following properties:
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Proof of Part 1, 2 and 5. These proofs are pretty standard from definition of  .

Proof of Part 3. This is trivially following from definition of scalar function f .

Proof of Part 4. By chain rule, we have
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B.6 EXAMPLES

Comparing with sequential updating algorithm We present another version of our main result,
which is particularly useful when we compare with the sequential updating algorithm.
Theorem B.9 (Locality sensitive hashing maintenance, worst case bound). For any constant c

1

, c
2

(c
1

> c
2

) there is a dynamic data structure (Algorithm 1) that achieves (c
1

, c
2

)-accuracy. The data
structure takes eO(dn1+⇢

) time to initialize and each call of QUERY(h) takes time eO(n⇢d). By taking
a = min{⇢,↵} and g

r

= t
r

, after T iterations, the amortized expected time per call of UPDATE(w)

is at most
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The proof is almost indentical to Theorem B.1, we only need to replace Lemma B.5 by the following
one.
Lemma B.10 (w move). We have
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We omit the dependence on ✏
mds

since we assume it to be constant in the scheduler.
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Proof. Again, the proof is almost identical to Lemma B.5, the only difference is that we use `1/`
1

form of Cauchy-Shwarz instead of the `
2

/`
2

form in the previous proof. We only point out the
difference here.

We replace Eq. 10 with
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The first step follows from Eq. 10, the second step follows from {g
i

}
i=1,··· ,n are decreasing and the
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The rest of the proof are the same and we omit it here.

The sequential updating time for LSH is n⇢. The total number of updating is (roughly) at least
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It then easy to see that our scheduler always perform better than naive sequential update.

Comparing with naive batch updating algorithm Below we give a concrete example to show
the effectiveness of our algorithm. We take ↵ = ⇢ for simplicity. Remember in Assumption 3.2,
we already assume for any r  na

= n⇢, T
r

= n⇢, i.e., the average LSH updating time t
r

= n⇢/r
decays linearly in r when r  n⇢. It remains to specify the rest t

r

(r � n⇢).
Example B.11. Assuming the average running time decays faster than 1/

p
r, i.e. t

r

=

n�(1��)⇢r�� for some � 2 [

1

2

, 1) when r � n⇢. We then have

kgk2

2
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nX

r=1

g2

r

⇡ n�⇢/2.

The running time of our scheduler is then at most

(C
1

+ C
2

)kgk
2

⇡ (C
1

+ C
2

)n⇢/2.

As long as the weight changes slowly, say C
1

⇡ C
2

 n⇢/2, we know the amortized updating time
of our scheduler is strictly better than the naive approach that updates LSH every time, which has
running time n⇢ each iteration.
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C LEARNABLE LSH

C.1 LEARNING HASH FUNCTIONS

Denote a set of neurons in a particular layer as C = {v
r

| 0  r < m}, where each neuron v
r

has weight and bias. Given an input embedding q
i

from the previous hidden layer, the output of a
forward pass through neuron r is �(hq

i

, v
r

i), where � is some activation functions. For each input
embedding q

i

, both SLIDE and REFORMER select a set of neurons, denoted as S
i

, from the LSH
hash tables for the forward pass. We collect the training samples from q

i

and its S
i

to improve the
performance of LSH. Formally, The pairwise training samples (q, v) are collected according to the
following criterion.
• positive pair P

+

= (q, v) if v 2 S and hq, vi > t
+

• negative pair P� = (q, v) if v 2 S and hq, vi < t�

And the loss is defined as:

L(H, P
+

, P�) = max(0,
X

(q,v)2P+

� cos(H(q), H(v)) +

X

(q,v)2P�

cos(H(q), H(v)) + ↵). (15)

Here H is the hash functions of all L tables. H(x) generates a K ·L vector containing the projection
of x in each hash table. cos(H(x), H(y)) represents the cosine similarity of two projected vectors.
The major contribution of this learning approach is that it first optimize the hash function and the
hash table index together. Our method targets at learning a useful indexing for retrieval efficiency
while other learn to hash methods Wang et al. (2017) aim for a binary sketching that have higher
precision.
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C.2 OBSERVATIONS ON ATTENTION DISTRIBUTION

In this section, we present the visualization with analysis on the distribution of the minimal quan-
tifies of neurons that sum up to have 0.9 softmax values in attention. On Figure 8, we present the
distribution of each head of attention in each layer from a transformer model trained on Enwiki8
dataset. We classify the patternsRamsauer et al. (2020) of the distribution into 3 categories by their
median values. With this observation, we are able to determine the layers that LSH or learnable LSH
can apply in MONGOOSE framework.

Figure 8: The distribution of the minimal quantifies of neurons that sum up to have 0.9 softmax values in
attention in each head of attention in each layer of transformer for Enwiki8
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D EXPERIMENTS DETAILS

D.1 DATA STATISTICS

Table 3: Statistics for our benchmark dataset

Dataset Wiki10-31k Delicious-200K Wiki-325K
Output Dimension 30938 205443 325056
Input Dimension 101938 782585 1617899
Training Samples 14146 6616 1778351
Testing Samples 196606 100095 587084

We present statistics on the 3 datasets we test on from the Extreme Classification Repository (Bhatia
et al., 2016). While the number of datapoints in each dataset is not large (on the order of 200K
at most), the key feature is the sheer size of the input and output dimensions. In particular, each
dataset has over 10,000 output classes, which, using a conventional nueral network, requires a matrix
multiplication involving over 10,000 neurons at the final layer.

D.2 ADDITIONAL RESULTS ON THE EXTREME-CLASSIFICATION TASK
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Figure 9: Comparison of MONGOOSE against SLIDE and FULL during the training. The two metrics (P@1
in the top row and P@5 in the bottom row) are the same as in Bhatia et al. (2016).
We present the results of additional experiments comparing the classification performance of MON-
GOOSE against SLIDE and FULL in Figure 9. The two metrics, P@1 and P@5, are presented in
Bhatia et al. (2016) as follows:

P@k =

1

k

X

l2rank
k

(by)

y
l

where rank
k

(·) extracts the top k indices from a vector, by refers to the predicted labels, and y refers
to the ground truth label.
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D.3 ADDITIONAL RESULTS ON THE LANGUAGE MODELING TASK

We present additional experiments comparing the training loss of MONGOOSE and Reformer on the
synthetic copy task in Section 4. In Figure 10 we present additional experiments comparing the
training loss of MONGOOSE and Reformer on the synthetic copy task in Section 4.1.2. The titles of
each graph denote the hyperparameters of the Transformer model being tested: h1_s2048_t16 refers
to a model with 1 round of hashing, a sequence length of 2048, and a token size of 16. Overall we
can see that MONGOOSE makes a marked improvement in loss over Reformer in every case.
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Figure 10: Comparison of MONGOOSE against Reformer during training on the synthetic copy task.
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Figure 11: Comparison of MONGOOSE against Reformer during training on enwik8.

In Figure 11, we present further results comparing MONGOOSE to Reformer on the enwik8 character-
level language modelling task. In particular, we train two sizes of Transformer (3 and 6 layers) with
a maximum sequence length of 8192 and 4096 respectivelyh. In both settings mongoose achieves
lower loss than Reformer.

Note that the goal of this experiments is to prove the superiority of learnable LSH over classical
LSH in NN training (or MONGOOSE vs. naive LSH-NN framework) rather than improve the state-
of-the-art perplexity.
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E RELATED WORK

E.1 DATA STRUCTURES FOR DYNAMIC SIMILARITY SEARCH

Similarity search is a well-studied problem with wide applications in recommendation system (Xue
et al., 2017; Severyn & Moschitti, 2015; Hall & Attenberg, 2015), question answering (Boytsov
et al., 2016; Seo et al., 2019; Ahmad et al., 2019; Chang et al., 2020), multi-label classification (Cov-
ington et al., 2016; Jain et al., 2016; Tagami, 2017) and natural language processing (Bengio et al.,
2003; Gao et al., 2014; Lee et al., 2015). There are two major categories of similarity measures: (1)
metric similarity (cosine similarity, euclidean distance), (2) non-metric similarity (inner product, KL
divergence, neural network). The brute-force approach to solving similarity search is computation-
ally expensive; in response, researchers have developed novel indexing structures to accelerate the
search process, with trade-offs on search accuracy. Based on these indexing structures, similarity
search algorithms can be broadly categorized as (1) hashing (Shrivastava & Li, 2014a;b), (2) quan-
tization (Guo et al., 2016; Jegou et al., 2011), (3) tree-based (Ram & Gray, 2012), or (4) graph-based
methods (Malkov et al., 2012; 2014; Malkov & Yashunin, 2018).

Most similarity search scenarios studied by these papers are static (search data does not change). In
the experiments section, the developed similarity search methods are compared on a fixed dataset
such as Sift (Jegou et al., 2011) or Glove (Pennington et al., 2014). However, in current similarity
search applications such as the work of Fan et al. (2019), the search distribution (e.g. product
vectors) changes over time due to the activation of new products and the expiration of old products.
Therefore, some similarity search methods in metric space have been modified for online settings,
such as hashing (Coleman et al., 2019) and quantization (Xu et al., 2018) methods; these methods
sacrifice search speed for data-adaptiveness.

The training phase of Deep Learning models provides a natural setting for Dynamic LSH. During
training, the weight matrices are slowly modified via gradients derived from objective functions. If
we consider the weights as the search data and the training sample as queries, we can view DNN
training as a Dynamic Similarity Search problem. Recent works take advantage of this view of DNN
training by introducing LSH data structures to the NN training process. Chen et al. (2020) propose
an algorithm (SLIDE) that retrieves neurons with maximum inner product in each step via an LSH
based data structure. In this way, the backward pass of NN training is concentrated on the neurons
with estimated large gradients. Their CPU implementation is able to outperform a traditional GPU
implementation. Similar hashing based algorithms have also been used in Transformer models:
Kitaev et al. (2020a) (Reformer) propose an LSH structure to reduce the memory bottleneck of
self-attention modules especially over long sequences in Transformer.

Since DNN weights are the search data, the distribution of the weights among different hash buckets
changes throughout the training. This necessitates constantly updating the LSH data structure: fail-
ing to update the LSH data structure as the search data changes degrades its nearest-neighbor search
performance, which in turn worsens the quality of the DNN approximation. In our experiments,
we found that failing to update the LSH data structure in SLIDE caused a 28% decrease in top-1
accuracy.

E.2 DATA DEPENDENT INDEXING

Data dependent hashing methods (DDH) focus on adapting hashing schemes to the data distribution.
They often relate to indexing via an objective function. Most literature concentrates on hashing and
quantization methods. Although previous works have achieved promising results in learning B-
Trees (Kraska et al., 2018) or Lattice quantization (Sablayrolles et al., 2018), there are two major
bottlenecks for DDH: (1) Theoretical insights are few applied in practice, (2) Complex index designs
introduce computation overhead. In the theory of data dependent indexing, Andoni et al. (2018)
present fruitful insights on hashing-based Approximate Nearest Neighbor search on metric space.
However, there is not much literature that puts these insights into practice. Dong et al. (2019)
propose a k-NN graph based algorithm for efficiently learning data dependent LSH in Euclidean
space based on the insights given by Andoni et al. (2018). However, their method requires pre-
computing a k-NN graph, which is computationally expensive at scale. In the experiments, Dong
et al. (2019) only compare their method with k-means; their performance compared to major ANN
benchmarks (Erik et al., 2018) remains unknown.
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Many practical applications of LSH eschew DDH methods for vanilla LSH due to the aforemen-
tioned computational bottlenecks. However, despite having sub-linear query time in theory, query
complexity for even vanilla LSH is still high in practice Datar et al.(2004); Andoni et al. (2017).

When designing the dynamic data structure, we want to minimize the total running time and balance
the overhead and benefit brought by the data structure. In general, the matrix multiplication and
backpropagation procedures comes from neural network training, which we can not control, hence,
we want to balance the accuracy-efficiency trade-offs by selecting neurons.

This is especially pronounced in the Dynamic LSH regime, when weights are evolving, besides
query time, LSH updates incur a more significant overhead that harms the overall efficiency. Chen
et al. (2020) introduce a method to control update frequency, but their method requires heavy hyper-
parameter tuning and is not guaranteed to work for each benchmark. In contrast, our findings in
the following section show that the update overhead can be significantly reduced while maintaining
nearest-neighbor search quality during NN training. To our knowledge, this is the first time DDH
techniques have been successfully applied to the Deep Learning setting.

E.3 EFFICIENT NEURAL NETWORK TRAINING

The weights of a neural network dynamically change during the training process, which brings great
challenges to the LSH implementation. Since the data are no longer static, we need to constantly
update the hash table, which incurs extra computation cost that could harm the overall performance.
We present a dynamic data structure to handle this issue, and our data structure achieves signifi-
cant speedup over naive implementation under mild assumptions, without compromising the worst
case guarantee. The dynamic data structure (shown in Algorithm 1) borrows ideas from the work
of Cohen et al. (2019); Jiang et al. (2020c) (which are originally designed for linear programming),
and we adapt it to the LSH setting. Our data structure generalizes several practical insights and
turns practical heuristics into rigorous theory, which guarantees significant speed up under natural
assumptions for training neural networks and ensure the worst guarantee at the same time. In partic-
ular, we generalize and provide the following three practical heuristics (i) only update significantly
changed coordinates, (ii) batch updating LSH instead of sequential updating, (iii) using “prediction”
on those “marginal” coordinates.

In this work, we primarily study two LSH based efficient NN training methods: SLIDE and RE-
FORMER. SLIDE introduces LSH to select neurons in the forward pass and then only do gradient
descent on the chosen neurons. The major trade-off of SLIDE is the rebuild overhead versus the ac-
curate neuron selection. To accurately retrieve the neurons with high inner products, the hash tables
are required to be updated. This rehashing and rebuilding will be the major overhead caused by
SLIDE. Therefore, the SLIDE’s speed over full NN training is determined by the relative magnitude
of rebuild overhead compared to the saved back-propagation time. The major goal of REFORMER
is to reduce the memory consumption of the transformer so that GPU based hardware can support
sequence to sequence tasks with longer sequence length. REFORMER also shares the trade-off when
rebuilding the hash tables for better retrieval of attention weights. Besides, learning hash functions
of REFORMER is more challenging than SLIDE. From an information retrieval’s perspective, in at-
tention settings, each data vector is also a query. This unique setting increases the hardness for
learning better hash functions.
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F EFFICIENT GPU IMPLEMENTATION
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Figure 12: Visualization of how union
selection within the batch instead of in-
dependent sets of neurons with variant
length can avoid irregular memory ac-
cess.

As noted by Chen et al. (2020), each input in one batch sam-
ples a different set of weights(neurons). These irregular oper-
ations significantly reduce the benefits of using GPUs: they
correspond to different sizes of rows for each input, which
makes the forward pass much more difficult to parallelize
and thus, more challenging to map to GPUs than regular pro-
grams (Burtscher et al., 2012). For this reason, Chen et al.
(2020) build their SLIDE system in C++ from scratch on
CPU. Even though their implementation achieved remark-
able speed up, their impact is limited as they implemented
their system from scratch in C++, making it difficult for the
community to adopt SLIDE in practice. To verify that such
randomized algorithm is not GPU friendly, we implement the
exact same algorithm for GPUs. We show in Section 4.1.1
that it indeed fails to gain any speed up.

We design a variant of the algorithm to exploit fast matrix
multiplications on GPUs. In the original SLIDE, each train-
ing example in a batch retrieves its own subset of weights.
Here, we take a union of the retrieved subsets in each batch to avoid irregular and unbalanced mem-
ory access, shown in figure 12. Our implementation of this proposal is written in python under
Pytorch framework with Cython compiled LSH and CUDA kernels for hashcode efficient computa-
tion. We believe this implementation would be more beneficial for the community as it can be easily
plugged into any deep learning models.

Practical Implementation: In our design, we borrow insights from the theoretical guarantee from
above and aim to find the sweet spot between theory limitations and practical challenges. First,
instead of detecting weight changes at the cost of an extra copy, we reduce the problem to detect
low quality of retrieved weights. In NN training setting, we measure quality as the inner product
and low quality indicates a low inner product. We argue these two approaches are similar that
they both signal the necessity of updating the data structure. Besides, rather than a soft margin for
detecting data changes, which can be ambiguous under dynamic setting, inner product is a better
measurement as it clearly indicates the performance of current data structure. More importantly
from an efficiency perspective, quality detection comes almost for free because the inner product
between the query embedding and retrieved neurons are necessary for the forward pass.

G DISCUSSIONS

MONGOOSE shed lights on efficient NNS-ds for efficient training of deep neural networks. Espe-
cially, the slow change observation along with the smart scheduler demonstrate the possibility of
applying NNS-ds with larger indexing overhead for dynamic similarity search where the distribu-
tion of data changes slowly. Equipped with both observation and algorithm, more NNS-ds could be
involved in the deep learning community to tackle the efficiency issue.

REFERENCES

Amin Ahmad, Noah Constant, Yinfei Yang, and Daniel Cer. Reqa: An evaluation for end-to-end
answer retrieval models. arXiv preprint arXiv:1907.04780, 2019.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neigh-
bor in high dimensions. In 2006 47th annual IEEE symposium on foundations of computer science
(FOCS’06), pp. 459–468. IEEE, 2006.

Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate near
neighbors. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing
(STOC), pp. 793–801, 2015.

25



Under review as a conference paper at ICLR 2021

Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya Razenshteyn, and Erik Waingarten. Data-
dependent hashing via nonlinear spectral gaps. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pp. 787–800, 2018.

Jimmy Ba and Brendan Frey. Adaptive dropout for training deep neural networks. In Advances in
neural information processing systems (NeurIPS), pp. 3084–3092, 2013.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research (JMLR), 3(Feb):1137–1155, 2003.

K. Bhatia, K. Dahiya, H. Jain, A. Mittal, Y. Prabhu, and M. Varma. The extreme classification repos-
itory: Multi-label datasets and code, 2016. URL http://manikvarma.org/downloads/

XC/XMLRepository.html.

Leonid Boytsov, David Novak, Yury Malkov, and Eric Nyberg. Off the beaten path: Let’s replace
term-based retrieval with k-nn search. In Proceedings of the 25th ACM international on confer-
ence on information and knowledge management (CIKM), pp. 1099–1108, 2016.

M. Burtscher, R. Nasre, and K. Pingali. A quantitative study of irregular programs on gpus. In 2012
IEEE International Symposium on Workload Characterization (IISWC), pp. 141–151, 2012.

Sarath Chandar, Sungjin Ahn, Hugo Larochelle, Pascal Vincent, Gerald Tesauro, and Yoshua Ben-
gio. Hierarchical memory networks. arXiv preprint arXiv:1605.07427, 2016.

Wei-Cheng Chang, Felix X Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar. Pre-training
tasks for embedding-based large-scale retrieval. arXiv preprint arXiv:2002.03932, 2020.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing (STOC), pp. 380–388. ACM,
2002.

Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. Large scale online learning of image
similarity through ranking. Journal of Machine Learning Research, 11(3), 2010.

Beidi Chen, Tharun Medini, James Farwell, Sameh Gobriel, Charlie Tai, and Anshumali Shrivas-
tava. Slide: In defense of smart algorithms over hardware acceleration for large-scale deep learn-
ing systems. In MLSys. https://arxiv.org/pdf/1903.03129, 2020.

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. In International conference on machine learning, pp.
2285–2294, 2015.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. In Proceedings of the 51st annual ACM SIGACT symposium on theory of
computing (STOC), pp. 938–942, 2019.

Benjamin Coleman, Anshumali Shrivastava, and Richard G Baraniuk. Race: Sub-linear
memory sketches for approximate near-neighbor search on streaming data. arXiv preprint
arXiv:1902.06687, 2019.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations.
In Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191–198. ACM, 2016.

Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learning space partitions for nearest
neighbor search. In International Conference on Learning Representations (ICLR), 2019.

Bernhardsson Erik, Aumüller Martin, and Faithfull Alexander. ANN Benchmarks. https://

github.com/erikbern/ann-benchmarks, 2018.

Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Mingming Sun, and Ping Li. Mobius: Towards
the next generation of query-ad matching in baidu’s sponsored search. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2509–
2517. ACM, 2019.

26

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://arxiv.org/pdf/1903.03129
https://github.com/erikbern/ann-benchmarks
https://github.com/erikbern/ann-benchmarks


Under review as a conference paper at ICLR 2021

Jianfeng Gao, Xiaodong He, Wen-tau Yih, and Li Deng. Learning continuous phrase representations
for translation modeling. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (ACL), volume 1, pp. 699–709, 2014.

Ruiqi Guo et al. Quantization based fast inner product search. In Artificial Intelligence and Statistics,
pp. 482–490, 2016.

Rob Hall and Josh Attenberg. Fast and accurate maximum inner product recommendations on map-
reduce. In Proceedings of the 24th International Conference on World Wide Web, pp. 1263–1268.
ACM, 2015.

Himanshu Jain, Yashoteja Prabhu, and Manik Varma. Extreme multi-label loss functions for rec-
ommendation, tagging, ranking & other missing label applications. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 935–
944. ACM, 2016.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2011.

Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster interior
point method for semidefinite programming. In FOCS, 2020a.

Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting plane
method for convex optimization, convex-concave games and its applications. In STOC. https:
//arxiv.org/pdf/2004.04250.pdf, 2020b.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix inverse for
faster lps. arXiv preprint arXiv:2004.07470, 2020c.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020a.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In ICLR.
https://arxiv.org/pdf/2001.04451, 2020b.

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned index
structures. In SIGMOD, pp. 489–504, 2018.

Moontae Lee, Xiaodong He, Wen-tau Yih, Jianfeng Gao, Li Deng, and Paul Smolensky. Reasoning
in vector space: An exploratory study of question answering. arXiv preprint arXiv:1511.06426,
2015.

Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. Scalable dis-
tributed algorithm for approximate nearest neighbor search problem in high dimensional general
metric spaces. In International Conference on Similarity Search and Applications, pp. 132–147.
Springer, 2012.

Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. Approximate near-
est neighbor algorithm based on navigable small world graphs. Information Systems, 45:61–68,
2014.

Yury A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 2018.

Ioannis Partalas, Aris Kosmopoulos, Nicolas Baskiotis, Thierry Artieres, George Paliouras, Eric
Gaussier, Ion Androutsopoulos, Massih-Reza Amini, and Patrick Galinari. Lshtc: A benchmark
for large-scale text classification. arXiv preprint arXiv:1503.08581, 2015.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019.

27

https://arxiv.org/pdf/2004.04250.pdf
https://arxiv.org/pdf/2004.04250.pdf
https://arxiv.org/pdf/2001.04451


Under review as a conference paper at ICLR 2021

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy Harley, Andrew W Senior, Gregory Wayne,
Alex Graves, and Timothy Lillicrap. Scaling memory-augmented neural networks with sparse
reads and writes. In Advances in Neural Information Processing Systems, pp. 3621–3629, 2016.

Parikshit Ram and Alexander G Gray. Maximum inner-product search using cone trees. In Pro-
ceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data
mining (KDD), pp. 931–939. ACM, 2012.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas Gru-
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