
A Theorems and proofs

We repeat the theorems presented in Sec. 3 and provide their proofs below. The theorems hold
for Neumann boundary conditions, which we use in our implementation—this is achieved by the
construction of the differential operators. The proofs follow the ones presented in [22].
Theorem 1. If the activation function σ(·) is monotonically non-decreasing and sign-preserving,
then the forward propagation through the diffusive PDE in (1) for t ∈ [0,∞) yields a non-increasing
feature norm, that is,

∂

∂t
‖f‖2 ≤ 0.

Proof. Let us examine the following inner product following Eq. (1):

(f, ft) = (f,∇ ·K∗σ(K∇f))

From integration by parts it holds that :

1

2

∂

∂t
‖f‖2 = −(∇f,K∗σ(K∇f)) = −(K∇f, σ(K∇f)).

Plugging the definition of an inner product, together with the assumption that σ is a sign-preserving
function, it follows that:

sign(K∇f) = sign(σ(K∇f)).

Therefore, the following is non-positive:

1

2

∂

∂t
‖f‖2 = −(K∇f, σ(K∇f)) ≤ 0

Meaning
∂

∂t
‖f‖2 ≤ 0.

Theorem 2. Assume that the activation function σ(·) is monotonically non-decreasing, sign-
preserving and satisfies |σ(x)| ≤ |x|, and define energy

Enet = ‖ft‖2 + (K∇f, σ(K∇f)) ,

then the forward propagation through the hyperbolic PDE in (2) satisfies Enet ≤ cK , where cK is a
constant that depends on K but independent of time.

Proof. Let us define the following energy:

Elin = ‖ft‖2 + (K∇f,K∇f)

This energy is associated with the linear hyperbolic (wave-like) equation:

ftt = ∇ ·K∗K∇f f(t = 0) = f0, , ft(t = 0) = 0 t ∈ [0, T].

Assuming K is constant in time, we obtain:

1

2
∂tElin = (ft, ftt −∇ ·K∗K∇f) = 0

This means that the energy Elin is constant in time, i.e. there exists some cK such that Elin = cK .

Also, given our assumption that σ is sign-preserving and |σ(x)| ≤ |x| (i.e., it does not increase the
norm of its input), we show that Enet ≤ Elin:

Enet = ‖ft‖2 + (K∇f, σ(K∇f))

≤ ‖ft‖2 + (K∇f,K∇f) = Elin
Therefore, we conclude that Enet ≤ cK .

15

B Architectures in details

In this section we elaborate on the specific architectures that were used in our experiments in Sec.
4. As discussed in Sec. 3.3, all our network architectures are comprised of an opening layer (1× 1
convolution), a sequence of PDE-GCN layers, and a closing layer (1× 1 convolution), and possibly
additional final convolution steps which serve as the classifier. In total, we have three types of
architectures in our experiments, which differ in their classifier layers. Throughout the following
tables, cin and cout denote the input and output channels, respectively, and c denotes the number
of features in hidden layers (which is a hyper-parameter, as given in Appendix C.) We denote the
number of PDE-GCN blocks by L, and the dropout probability by p.

Our first architecture is described in Tab. 8 and includes only a closing layer as a final step. The
architecture is used for the semi- and fully supervised node classification tasks (i.e., the experiment
on Cora in Sec. 4.1 – 4.2, the experiments in Sec. 4.3 – 4.4 and the ablation study in Sec. 4.7), as
well as the inductive learning task on PPI in Sec. 4.5. Note, the high-level architecture is the same as
in GCNII [19], and only differs in the employed GCN-block, which is our PDE-GCN.

Table 8: The architecture used for semi-and fully supervised node classification and inductive
learning.

Input size Layer Output size

n× cin 1× 1 Dropout(p) n× cin
n× cin 1× 1 Convolution n× c
n× c ReLU n× c
n× c L× PDE-GCN block n× c
n× c 1× 1 Dropout(p) n× c
n× c 1× 1 Convolution n× cout

The second architecture is described in Tab. 9, and is used for the ModelNet-10 in Sec. 4.1. The
difference between this architecture and the one presented in Tab. 8 is that here we perform a global-
max pooling operation to obtain a global shape class prediction. Following this pooling operation,
we add two multi-layer perceptron (MLP) layers, where each consists of a 1× 1 convolution, ReLU
activation, batch normalization and dropout with probability of 0.5. Finally, a fully connected
convolution layer is applied to obtain the prediction.

Table 9: The architecture used for shape classification on ModelNet-10.

Input size Layer Output size

n× 3 1× 1 Convolution n× c
n× c ReLU n× c
n× c L× PDE-GCN block n× c
n× c 1× 1 Convolution n× c
n× c ReLU n× c
n× c Global Max-Pool 1× c
1× c 1× 1 Convolution 1× 128
1× 128 Batch-Normalization 1× 128
1× 128 ReLU 1× 128
1× 128 1× 1 Dropout(0.5) 1× 128
1× 128 1× 1 Convolution 1× 64
1× 64 Batch-Normalization 1× 64
1× 64 ReLU 1× 64
1× 64 1× 1 Dropout(0.5) 1× 64
1× 64 Fully-Connected 1× 10

The third architecture is used for the dense-shape correspondence task on FAUST in Sec. 4.6 is given
in Tab. 10. In addition to the closing 1 × 1 convolution layer, it also includes a layer of a 1 × 1

16

convolution and an ELU activation, followed by another final 1× 1 convolution which classifies the
point-to-point correspondence. In the case of the FAUST dataset, each mesh has n = 6890 vertices.

Table 10: The architecture used for dense-shape correspondence on FAUST.

Input size Layer Output size

n× 4 1× 1 Convolution n× c
n× c ReLU n× c
n× c L× PDE-GCN block n× c
n× c 1× 1 Convolution n× c
n× c ReLU n× c
n× c 1× 1 Convolution n× 512
n× 512 ELU n× 512
n× 512 Fully-Connected n× n

C Hyper-parameters details

We provide the selected hyper-parameters in our experiments, besides for the inductive learning on
PPI (Sec. 4.5) and dense shape correspondence (Sec. 4.6) which are reported in the main paper. We
denote the learning rate of our PDE-GCN layers by by LRGCN , and the learning rate of the 1× 1
opening and closing as well as any additional classifier layers by LRoc. Also, the weight decay for
the opening and closing layers is denoted by WDoc. For the PDE-GCN layers, no weight decay is
used throughout all experiments.

C.1 GCN generalization

For semi-supervised node-classification on Cora, for GCNII we used the same settings as in the
original paper of GCNII. For DGCNN and our PDE-GCNH we used the same hyper-parameters as
reported in Tab. 12.

For the ModelNet-10 classification we used a learning rate of 0.01 without weight decay, for all
parameters, on all considered networks, and a hidden feature space of size c = 64.

C.2 Learning PDE dynamics

In this experiment we used a 8 layers mixed PDE-GCNM, starting with α = 0.5, such that it
is balanced between a PDE-GCND and a PDE-GCNH. We report the hyper-parameters for this
experiment in Tab. 11.

Table 11: Learning PDE dynamics hyper-parameters

Dataset LRGCN LRoc LRα WDoc #Channels Dropout h

Cora 1 · 10−4 0.01 0.01 5 · 10−4 64 0.6 0.5

FAUST 0.001 0.01 0.01 0 256 0 0.01

C.3 Semi-supervised node-classification

The hyper-parameters for this experiment are summarized in Tab. 12.

17

Table 12: Semi-Supervised classification hyper-parameters

Dataset LRGCN LRoc WDoc #Channels Dropout h

Cora 5 · 10−5 0.07 5 · 10−4 64 0.6 0.9

CiteSeer 2 · 10−6 0.07 0.003 256 0.7 0.35

PubMed 3 · 10−5 0.03 1 · 10−4 256 0.7 0.7

C.4 Fully-supervised node-classification

The hyper-parameters for this experiment are summarized in Tab. 13.

Table 13: Fully-Supervised classification hyper-parameters

Dataset LRGCN LRoc WDoc #Channels Dropout h

Cora 4 · 10−5 0.06 1 · 10−4 64 0.6 0.65

CiteSeer 2 · 10−4 0.07 1 · 10−4 64 0.6 0.4

PubMed 5 · 10−5 0.02 3 · 10−4 64 0.5 0.55

Chameleon 40 · 10−4 0.02 8 · 10−5 64 0.6 0.55

Cornell 2.5 · 10−4 0.07 2.5 · 10−4 64 0.5 0.05

Texas 3 · 10−4 0.05 1 · 10−4 64 0.5 0.05

Wisconsin 3 · 10−5 0.07 5 · 10−5 64 0.5 0.054

C.5 Ablation study

In this experiment we used the same hyper-parameters as reported in Tab. 12.

18

	Theorems and proofs
	Architectures in details
	Hyper-parameters details
	GCN generalization
	Learning PDE dynamics
	Semi-supervised node-classification
	Fully-supervised node-classification
	Ablation study

