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Abstract

Attention layers—which map a sequence of inputs to a sequence of outputs—are
core building blocks of the Transformer architecture which has achieved significant
breakthroughs in modern artificial intelligence. This paper presents a rigorous
theoretical study on the learning and generalization of a single multi-head attention
layer, with activation function replaced by ReLU, which have recently shown
comparable performance with the original Softmax activation. We consider the
random feature setting where the attention layer has a large number of heads, with
randomly sampled frozen query and key matrices, and trainable value matrices.
We show that such a random-feature attention layer can express a broad class
of target functions that are permutation invariant to the key vectors. We further
provide quantitative excess risk bounds for learning these target functions from
finite samples, using random feature attention with finitely many heads.
Our results feature several implications unique to the attention structure compared
with existing random features theory for neural networks, such as (1) Advantages
over standard fully connected random-feature models; (2) Concrete and natural
classes of functions that can be learned efficiently by a random-feature attention
layer. Additionally, we show that the sampling distribution of the query-key
matrix (the product of the query and key matrix) matters—A biased Gaussian
random matrix results in better sample complexities over the standard zero-mean
counterpart for learning certain natural target functions.Experiments on simulated
data corroborate our theoretical findings and further illustrate the interplay between
the sample size and the complexity of the target function.

1 Introduction

The transformer architecture [86] has achieved remarkable recent successes in many areas of artificial
intelligence (AI) such as vision, language, speech, graph processing, reinforcement learning, and
more recently general AI capabilities [29–31, 19, 73, 101, 22, 77, 65, 20]. A central building block
in transformers is the attention layers [10]—sequence-to-sequence mappings that allow each token
within the input sequence to “attend to” other tokens that are most relevant to the present token, and
produce outputs based on those tokens. Attention layers implement this mechanism in a compact
way that allows them to handle sequences of arbitrary length using a fixed set of parameters, a crucial
reason behind their success in handling long input sequences.
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Despite its wide applicability, the theoretical properties of attention layers are less well understood.
While multi-layer attention networks (transformers) have been shown to be universal approximators
for certain classes of functions, such as equivariant sequence-to-sequence functions [102], their results
only focus on the expressive power and do not account for learning from finite samples. Another
line of work derives generalization bounds for learning with multi-layer transformers in terms of the
number of layers, heads, and weight norms [91, 35], yet the results are either instantiated on specific
target functions such as sparse boolean functions [35], or generic but arguably elusive function
classes such as Turing machines [91]. Understandings about the more basic building block—a single
attention layer— remain largely open. This is in stark contrast with the situation for fully connected
neural networks, where there is by now a decent understanding of the learning and generalization
in the important basic case of two-layer neural networks on generic and natural function classes
(e.g., [8, 51, 7, 40] and many other results along the line). This motivates the following open question:

What function classes can be learned by a single attention layer with benign sample complexities?

This work makes progress on this problem by studying the learning and generalization with a single
attention layer in the random feature setting [74, 76, 28, 100], in which the query and key matrices
are frozen at their random initialization, and the value matrices remain to be learnable parameters.
Motivated by the attention structure in practical architectures, we consider attention layers that take in
a single query token x0 ∈ Rd and N key tokens {xi}i∈[N ] as the input, and produce a scalar-valued
output—A simplified setting capturing the essence (the interaction between the query and keys) of
attention models. We study the sample complexity of learning certain target functions (of x0:N ) using
an attention layer with a large but finite number of heads, and finitely many samples.

Our contributions are summarized as follows.

• We show that a Random Feature Attention layer (the RFA model) with a sufficiently large number
of heads can express a broad class of target functions that are averages over a generic function
of two tokens, which are in particular permutation invariant with respect to the key tokens
(Section 3.1). We give several natural examples of target functions in this class (Section 3.3)
with concrete bounds on the number of heads and weight norms.

• We derive an Õ(
√
B(f⋆)/n) excess risk bound for learning with the RFA model with sufficiently

many heads, where B(f⋆) is an inherent complexity measure of the target function f⋆ and n is
the sample size (Section 3.2). When instantiated on the aforementioned examples, the bounds
only depend on the input dimension and not the number of key tokens, improving over a naive
two-layer random feature neural network model (RFMLP). Such improvement is expected due to
the permutation invariance structure of target functions, aligning with the attention mechanism.

• Towards moving beyond standard random feature settings, we study a biased RFA model where
the query-key matrices (product of transposed query matrices and key matrices) are drawn from a
distribution with a non-zero mean (more precisely the identity matrix as the mean), motivated by
a similar observation on learned attention layers in practice. We show that this model achieves
provably superior sample complexity than the standard zero-mean RFA for learning certain
functions of the correlations between the query token and key tokens (Section 4).

• Experiments on simulated data verify our theoretical findings in realistic settings of learning
from finite samples using a RFA layer with a mild number of heads, and characterize the interplay
between the complexity of the target function and the sample size (Section 5).

1.1 Related work

Transformers The Transformer architecture, initially proposed by [86], brought about a revolu-
tionary change in natural language processing and has been widely adopted in large language models
such as GPT and BERT [72, 29, 19]. At the core of transformers lie the attention layers, which were
originally introduced as neural network modules for machine translation tasks [10, 49, 68].

A recent line of work investigated the capabilities of transformers by viewing transformers to be
function approximators [102], computational models [91, 70, 99, 15, 56], or algorithms [82], and
using transformers to perform synthetic reasoning tasks [103]. Among these works, the closest to
our work is [102], which shows that multi-layer transformers can approximate any permutation-
equivariant sequence-to-sequence function, and any function if positional encodings are added. Our
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paper instead uses a single attention layer to approximate sequence-to-scalar functions and focuses
on the generalization property with quantitative bounds.

In terms of generalization properties of transformers, [35] analyzed the generalization bound of a
single attention network through the Rademacher complexity and showed that a single self-attention
head could efficiently represent a sparse function of the input sequence. Besides, several works
studied the sample complexities of vision transformers [48, 50], and prompt-tuning using attention
[67] with special target function classes. Our paper also studies the generalization bound of a single
attention network, but from the different perspective of kernel methods, and for a more general
class of target functions. The kernel limit of transformers was derived in [43, 98], which shows that
multi-head attention architectures behave as Gaussian processes as the number of heads tends to
infinity. However, they do not study the representation power of the limiting kernel.

Besides approximation and generalization capabilities, recent work also studied the limitations
[42, 14], internal working mechanisms [36, 81, 94, 64], and in-context learning capabilities [19, 96,
37, 88, 3, 26, 41, 52] of Transformer models.

Theory of random features and neural tangent kernels A recent line of work [28, 51, 33, 32,
6, 7, 104, 66, 25] studied the training dynamics of overparametrized neural networks under certain
random initialization, and showed that it converges to a kernel estimator, which corresponds to the
“neural tangent kernel” (NTK). These works suggested that one could use kernel or random-feature
models [74] to study the properties of deep neural networks.

For NTK of MLPs and their corresponding random-feature models, there is a vast number of
literature that studies their approximation power [12, 71, 8], as well as their generalization properties
[13, 21, 93, 92, 54, 55, 76, 79, 100, 57, 60, 40, 39]. More recently, a line of work studies the NTK
beyond MLPs, including convolution networks [53, 17, 59, 62, 18, 16], residual networks [45, 83, 4],
graph networks [97, 47], and transformers [43, 98].

Although the kernel approach is a powerful tool for studying neural networks, it received criticism
since it does not capture the feature learning of neural networks. Going beyond the kernel regime, a
series of works used the mean field method to establish the evolution of the network parameters via
a Wasserstein gradient flow [58, 9, 24, 78]. Several other mechanisms have been proven to obtain
superior results over the NTK, including the Quadratic NTK [5, 11, 23, 63], regularization [90],
Neural Tangent Hierarchy [34, 44], representation learning [27], and staircase-like mechanisms [1, 2].

2 Preliminaries

We consider a sequence ofN+1 input tokens x0:N = (x0, {xi}i∈[N ]) ∈ X = (Rd)N+1, where each
{xi}i∈[N ] ⊆ Rd represents a sequence of key vectors, and x0 represents the query vector. This model
simplifies standard self-attention, which maps N input tokens to N output tokens, where the output i
only uses input i as the query token and all of [N ] as key tokens. Results obtained in this model can
be directly mapped back to full self-attention, by simply concatenating N outputs generated by our
model with x0 ranging over {xi}i∈[N ]. In addition, throughout the paper, we consider scalar-valued
attention models, which take the sequence x0:N as input and give a scalar output in R.

Attention layer We consider a scalar-valued, M -head, multiplicative attention layer that takes
x0:N = (x0, {xi}i∈[N ]) as the input. The attention layer first applies affine (linear with bias)
transformations to the input vectors to obtain {query, keys, values} at each head m ∈ [M ]:

qm,0 = Qm[x0; 1] =: Qmx̃0 ∈ Rd, km,i = Km[xi; 1] =: Kmx̃i ∈ Rd,
vm,i = v⊤

m[xi; 1] = v⊤
mx̃i ∈ R, i ∈ [N ],

(1)

where Qm,Km ∈ R(d+1)×d, vm ∈ Rd+1 are the parameters of the attention layer, and x̃i := [xi; 1]
for a more compact display. Then, it computes the output value by an attention mechanism

f(x0:N ) =

M∑
m=1

1

N

N∑
i=1

fm,i(x0,xi), fm,i(x0,xi) = σ(⟨qm,0,km,i⟩) · vm,i ∈ R. (2)

Above, σ : R → R is an activation function applied entry-wisely to each attention score ⟨qm,0,km,i⟩.
We choose σ to be the ReLU activation σ(t) = max {t, 0} throughout this paper. Notice that
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this choice of the attention non-linearity is different from standard transformers [86] with softmax-
attention. We remark that we choose to study the (normalized) ReLU attention for theoretical
convenience, and this replacement does not change the essence of the attention mechanism. Such a
choice is also recently explored in the literatures such as [80] and [95], which show that transformers
with ReLU-attention perform as well as standard softmax-attention transformers in certain NLP and
CV tasks. Moreover, our results can extend to other activation functions such as the exponential
activation σ(t) = exp(t), which is more similar to the standard Softmax activation. We refer to
Section B.5 for a short discussion.

Simplifying the expression, we reparametrize the attention layer (1) and (2) using parameters
{(Wm,vm)}m∈[M ] ⊆ R(d+1)×(d+1) × Rd+1:

fi,m(x0:N ) = σ
(
x̃⊤
0 QmKmx̃i

)
· ⟨vm, x̃i⟩ = σ

(〈
Wm, x̃0x̃

⊤
i

〉)
· ⟨vm, x̃i⟩ . (3)

For technical convenience, we assume all input tokens have unit norm throughout the rest of the
paper: ∥xi∥2 ≡ 1 so that ∥x̃i∥2 ≡

√
2, for all i ∈ {0} ∪ [N ].

Random-feature attention models We consider a random-feature version2 of the multiplicative
attention mechanism (3), where the weight matrices {Wm}m∈[M ] have i.i.d. Gaussian entries3:

(Wm)ij∼iidN(0, 1/4), (m, i, j) ∈ [M ]× [d+ 1]2. (4)

The variance is chosen to be 1/4 without loss of generality: this choice of variance is such that
⟨Wm, x̃0x̃

⊤
i ⟩ ∼ N(0, 1) has a unit variance. The weight matrices {Wm}m∈[M ] are then held to be

fixed during the entire learning process, whereas the value vectors {vm}m∈[M ] are the learnable
parameters. The random-feature attention model with input x0:N is thus given by

fWM (x0:N ;V) =
∑M
m=1

1
N

∑N
i=1 σ

( 〈
Wm, x̃0x̃

⊤
i

〉 )
⟨vm, x̃i⟩ . (5)

Notice that random-feature attention model is linear in the parameter V, so training this model with a
convex loss function gives a convex optimization problem.

Additional notation For any x ∈ Rd1 and y ∈ Rd2 , let x ⊗ y ∈ Rd1×d2 denote their tensor
product (outer product), and x⊗n := x⊗ · · · ⊗ x denote the n-fold self tensor product of x. For a
tensor A, we use ∥A∥Fr to denote its Frobenius norm. For a function f : X → R, we use ∥f∥∞ to
denote its L∞ norm. We use O(·) (resp. Θ(·)) for standard Big-O (resp. Big-Theta) relations. We
use Õ(·) for hiding the multiplicative terms that are logarithmic in problem parameters, including
(M,d, n,N, δ−1). We use Poly(p) to denote a polynomial of p that is less than pC for some universal
constant 0 < C <∞.

3 Learning with random-feature attention models

In this section, we study the expressivity and generalization of random-feature attention models.
We will consider a broad class of target functions that can be well approximated and is efficiently
learnable by random-feature attention models.

3.1 Expressivity of random-feature attention

Consider a broad class of permutation invariant4 target functions f⋆ : X → R that takes form

f⋆(x0:N ) = 1
N

∑N
i=1 F (x0,xi). (6)

2A different and closely related model is the Neural Tangent Kernel [46, 32], which is however similar in
essence to the random feature model in terms of the sample complexity of learning, e.g. [40].

3Another feasible choice for (4) is to sample the key matrix and the query matrix separately with independent
Gaussian entries, which however will produce a mean-zero product matrix similar to (4) in many aspects.

4A function f(x0,x1, ...,xN ) is permutation invariant (with respect to x1:N ) if f(x0,x1, ...,xN ) =
f(x0,xσ(1), ...,xσ(N)) for any permutation σ : [N ] → [N ]. We consider permutation invariant target functions
since attention layers can only fit these functions due to the structure of attention models.
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Assume that there exists symmetric tensors {frs ∈ Rdr+s}r,s≥0 such that F : R2d → R admits
representation

F (x0,xi) =
∑∞
r,s≥0

〈
x⊗r
0 ⊗ x⊗s

i , frs
〉
. (7)

Note that such an expression allows F (x0,xi) to be any general nonlinear function that admits
convergent Taylor expansions. In particular, any polynomials of [x0,xi] (e.g., β⊤x0, β⊤xi, and
⟨x0,Sxi⟩ for some β ∈ Rd and S ∈ Rd2) are within this function class. We will discuss more
specific target functions in Section 3.3.
Theorem 1 (Expressivity of RFA model). Suppose function f⋆ : X → R takes form (6). Then for
any input distribution P on X , with probability at least 1− δ (over {Wm}m∈[M ] sampled from (4)),
there exists an M -head RFA model (5) with coefficients V = {vm}m∈[M ] ⊆ Rd+1 that approximates
f⋆ in L2(P ) up to error

Ex0:N∼P

[(
f⋆(x0:N )− fWM (x0:N ;V)

)2] ≤ O
(
(d2 + logM)B(f⋆)δ

−1

M

)
. (8)

In addition, the norms of the weight of this random-feature attention model are bounded as
M∑
m=1

∥vm∥2 ≤ O
(√

B(f⋆) +

√
B(f⋆)δ−1

M

)
,

M∑
m=1

∥vm∥22 ≤ O
(
B(f⋆)δ

−1

M

)
. (9)

Here B(f⋆) is a complexity measure of f⋆ defined as

B(f⋆) =
∑∞
k=0 Ck

∑
max{r,s}=k ∥frs∥

2
Fr , Ck = k4.54k ∨ 1. (10)

In case where f⋆ admits multiple representations of the form (7), B(f⋆) is the infimum of the
right-hand-side over all such representations.

The proof of Theorem 1 is contained in Appendix B.1. Our proof relies on standard analyses
of infinite-width random feature model with ReLU-Gaussian kernel, combined with a sampling
argument to obtain approximation with finite-width.

This theorem is applicable to general functions with a finite B(f⋆) norm. The 4k scaling of Ck in the
summand of equation (10) seemingly confines the target function class to those with exponentially
fast decaying ∥frs∥Fr, which suggests a relatively narrow target function class. However, as we will
demonstrate in the forthcoming examples, this class includes a diverse range of functions.

3.2 Generalization and sample complexity of learning

Given n samples {x(j)
0:N , yj}j∈[n]∼iidP, where x(j)

0:N = {x(j)
i }0≤i≤N is the j-th token sequence with

length N + 1, and yj is the label corresponding to the i-th token sequence. Assume that we are given
a loss function ℓ(ŷ, y) that is 1-Lipschitz in ŷ, and ℓ(0, y) ≤ 1 for any y. The population risk is then
given by LD(f) = E(x0:N ,y)∼P[ℓ(f(x0:N ), y)]. We consider the empirical risk minimization (ERM)
over the RFA model (5),

V̂ = argminV∈VM
L̂D(f

W
M (·;V)), L̂D(f) =

1
n

∑n
j=1 ℓ(f(x

(j)
0:N ), yj), (11)

where the constrained class VM is given by

VM =
{
V = {vm}Mm=1 :

∑M
m=1 ∥vm∥2 ≤ K1,

∑M
m=1 ∥vm∥22 ≤ K2/M

}
, (12)

with K1 and K2 being two constants. Theorem 2 below provides the excess risk bound for the
empirical risk minimizer.
Theorem 2. Assume M > δ−1 and n > log(dM). Let f⋆ be the minimizer of the population risk
LD(f) within the target function class (6) (7). Let f̂WM = fWM (·; V̂) be the empirical risk minimizer
given by (11), where in (12) we choose K1 = C

√
B(f⋆) and K2 = CB(f⋆)δ

−1, with C being a
constant. Then for any joint distribution P, with probability at least 1− δ over {Wm}m∈[M ] sampled

according to (4) and {(x(j)
0:N , yj)}j∈[n] ∼iid P, the excess risk is bounded by

LD(f̂
W
M )− LD(f⋆) ≤ Õ

(√
B(f⋆)

[√
1

n
+

√
d2δ−1

M

])
. (13)
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The proof of Theorem 2 is contained in Appendix B.2. The proof mostly uses the Rademacher
complexity bound for the supremum of empirical process. The main non-trivial technical challenge
lies in showing the concentration of supf∈VM

|L̂D(f)− LD(f)|, which cannot be simply controlled
due to the unboundedness of the infinity norm of functions in the target function class VM . We
dealt with this subtlety by a carefully decomposition of supf∈VM

|L̂D(f)− LD(f)|. The seemingly
unnatural constraint set (12) is used in bounding different terms in this decomposition.

3.3 Examples and comparison

We next give the sample complexity for learning several examples of target functions using the
random-feature attention model. We will compare its sample complexity for learning these functions
with that of the standard random-feature model [74] (thereafter, we call it the random-feature MLP
model, in short RFMLP model). In the RFMLP model, we view x0:N as an input vector instead of a
sequence of vectors denoted as vec(x0:N ) = [x0;x1; . . . ;xN ; 1] ∈ Rd(N+1)+1. The RFMLP is given
by

fMLP
M (x0:N ;v) =

M∑
m=1

σ
(
⟨wm, vec(x0:N )⟩

)
· vm, {wm}m∈[M ]∼iidN(0, I/(N + 2)). (14)

We choose the variance of random weights wm to be 1/(N + 2) to ensure that ⟨wm, vec(x0:N )⟩ ∼
N(0, 1) has unit variance. The generalization and approximation properties of the random-feature
MLP model have been well-studied in the literature, for example, [7, 8, 60].

We instantiate Theorem 2 on three concrete examples of target functions (calculations of the excess
risks in Appendix B.4, where the result for RFMLP are adapted5 from Arora et al. [7]). In all three cases,
the target functions are permutation invariant with respect to {xi}i∈[N ], by which we naturally expect
RFA to achieve better sample complexity than RFMLP in accordance with this structure. Although the
comparsion between RFA and RFMLP is based on comparing upper bounds on the sample complexity
of both models, existing work has also derived lower bounds on the sample complexity of RFMLP,
which aligns with the upper bound for RFMLP we used. We do not invoke these lower bounds, as they
apply to a special case with a uniform distributional assumption on the input tokens.

Example 1 (Functions of x0): We consider functions of x0 (no dependence on x1:N ) of the form

f⋆(x0:N ) =

∞∑
k=0

〈
x⊗k
0 ,Ak

〉
, Ak ∈ Rd

k

, with B(f⋆) =

∞∑
k=0

Ck ∥Ak∥2Fr by (10).

By Theorem 2, setting M = Θ(d2n), the excess risk bound gives Õ(
√∑∞

k=0 k
4.54k∥Ak∥2Fr/n). 3

As a special case, consider f⋆(x0:N ) = (β⊤x0)
p, which corresponds to taking Ak = β⊗p for k = p

and Ak = 0 for k ̸= p. The above excess risk of RFA model and the RFMLP model scales as

RFA : Õ
(
Poly(p)

√
4p∥β∥2p2 /n

)
, RFMLP : Õ

(
Poly(p)

√
(N + 2)p∥β∥2p2 /n

)
.

Compared to the RFMLP model, the RFA model significantly reduces the necessary sample size by a
factor of (N/4)p.

Example 2 (Average of functions of xi): We consider average of functions of xi of the form

f⋆(x0:N ) =
1

N

N∑
i=1

∞∑
k=0

⟨x⊗k
i ,Ak⟩, Ak ∈ Rd

k

, with B(f⋆) =

∞∑
k=0

Ck ∥Ak∥2Fr by (10).

Theorem 2 then gives an Õ(
√∑∞

k=0 k
4.54k∥Ak∥2Fr/n) excess risk, same as Example 1. 3

As a specific example, consider f⋆ = 1
N

∑N
i=1 ψ(⟨β,xi⟩) with ψ(z) = z arctan(z/η) for some

η > 2, ∥β∥2 = 1. Using the power series expansion of ψ, the excess risk bound of RFA model and
the RFMLP model scale as

RFA : Õ
(√∑∞

k=1 k
4.5(2/η)2k/n

)
= Õ(

√
1/n), RFMLP : Õ

(√∑∞
k=1 k

4.5[(N + 2)/(2η)]2k/n
)
.

5By deriving the corresponding results for Random Features instead of Neural Tangent Kernels.
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Figure 1: Visualization of weight matrices of the 2nd, 5th, 8th, and 11th layers of the BERT-Base
model. Each row contains weight matrices of a layer. All matrices are clipped to the top-left 32× 32
block. Lighter color indicates a larger absolute value.

The latter diverges whenever η ≤ (N + 2)/2, in which case the bound is meaningless.

Example 3 (Correlation-weighted functions): f⋆ is the following function:

f⋆(x0:N ) =
1

N

N∑
i=1

F (⟨x0,Sxi⟩)G(xi), F (t) =

∞∑
k=0

ak · tk, G(xi) =

∞∑
k=0

〈
x⊗k
i ,Gk

〉
,

for S ∈ Rd×d, {ak}k≥0 ⊆ R, Gk ∈ Rdk . This target function fully exploits the representation power
of the attention layer. Eq. (10) gives B(f⋆) = O(

∑∞
k=0 Ck(

∑
r+s=k a

2
r∥S∥2rFr ∥Gs∥2Fr)). 3

As a specific example, consider f1,⋆ = 1
N

∑N
i=1 ⟨x0,xi⟩p, corresponding to taking S = Id, F (t) =

tp, and G ≡ 1. The excess risk bound of RFA (by Theorem 2) and RFMLP scale as

RFA : Õ
(
Poly(p)

√
(4d)p/n

)
, RFMLP : Õ

(
Poly(p)

√
[(N + 2)d]p/n

)
.

As another example, consider f2,⋆ = 1
N

∑N
i=1 cos(⟨x0,xi⟩)⟨x⊗p

i ,G⟩ with ∥G∥Fr = 1. Then the
excess risk bound of RFA and RFMLP scale as

RFA : Õ
(
Poly(pd)

√
e4

√
d4p/n

)
, RFMLP : Õ

(
Poly(pNd)

√
e2(N+2)

√
dNp/n

)
.

RFA reduces the required sample size by factors of (N/4)p for f1,⋆ and exp(N
√
d) for f2,⋆.

4 Expressivity of biased random-feature attention model

We now move beyond the Gaussian weight assumption by exploring alternative possibilities for
the weight distribution in the attention heads. We observe empirically that the weight matrices in
transformer architectures learned in practice are often more similar to the identity matrix than a
mean-zero matrix (Figure 1; see the details in Appendix D.1. This is also observed in a recent and
concurrent work [84]).

Towards understanding this effect, we consider an alternative attention model with biased random
weights, where the bias is a fixed matrix W0 ∈ R(d+1)×(d+1):

fW,W0

M (x0:N ;V) =

M∑
m=1

1

N

N∑
i=1

σ
(〈
W0 +Wm, x̃0x̃

⊤
i

〉)
⟨vm, x̃i⟩ . (15)

Here {Wm}m∈[M ] are again Gaussian random matrices sampled according to (4). The biased
random-feature attention model is similar to (5) except that a bias weight W0 is added. Motivated
by our observation, we choose W0 = [Id×d,0d×1;01×d, 0] ∈ R(d+1)×(d+1), so that the diagonal
elements of W0 +Wm will be on average larger than the off-diagonal elements.
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4.1 Expressivity of biased random-feature attention

Given the formulation of biased random-feature attention models (thereafter, we call it the biased
random-feature attention model, in short BRFA model), a natural conjecture is that this model can
better fit functions that are the average of function of ⟨x0,xi⟩. We here show that this is indeed the
case. In particular, we consider a broad class of target functions g⋆ : X → R that take forms

g⋆(x0:N ) = 1
N

∑N
i=1 F (⟨x0,xi⟩)G(x0,xi)

F (t) =
∑∞
k=0 akt

k, G(x0,xi) =
〈
x̃⊗3
i ⊗ x̃⊗2

0 ,A⋆

〉
. (16)

Here the scalars {ak}k≥0 ⊆ R and the tensor A⋆ ∈ Rd5 parameterizes g⋆. As we will explain in
Section 4.3, confining G to be a degree-(3, 2) polynomial in (xi,x0) is essential to our theoretical
results. Our next theorem provides the excess risk of learning target function g⋆ using the BRFA
model (15).
Theorem 3. Given the same setting and assumptions as in Theorem 2, when the population risk
minimizer gives f⋆ = g⋆, with probability at least 1− δ, we have

LD(f̂
W,W0

M )− LD(g⋆) = Õ

(
inf
L

[√
B(g⋆, L)

(√ 1

n
+

√
d2δ−1

M

)
+ εL ∥g⋆∥∞

])
, (17)

where εL = 1/[2L+1(L+ 1)!] and

B(g⋆, L) = ∥A⋆∥2Fr · (
∑∞
k=0 |ak| · Ck)2, with Ck = (2L+ k)(k+3)/28L+k/2. (18)

The proof of Theorem 3 is contained in Appendix C. We provide the intuitions of the result and an
overview of the proof technique in Section 4.3.

4.2 Examples and comparison

Compared to the target functions (7) discussed in Section 3.1, functions in (16) may not express the
average of arbitrary functions of x0 and xi, but are well-suited to express functions of correlations.
Consequently, we anticipate that the BRFA model will outperform the RFA model in learning functions
of correlations. We will now present three concrete examples of target functions (16), and compare
the excess risk of the BRFA model to that of the RFA model. The proof of excess risk is contained in
Appendix C.3.

Example 4 (Low degree polynomials): Consider average of polynomials of xi and x0,

g⋆ =
1

N

N∑
i=1

⟨x⊗3
i ⊗ x⊗2

0 ,A⟩, with B(g⋆, L) = ∥A∥2FrL382L by (18).

For any η > 0, if we take n ≥ exp(exp(Θ(1/η))), L = Θ((1 + log log n)−1 log n), and M =

Θ(d2n), the excess risk will scale as Õ(
√

∥A∥2Fr/n1−η). 3
Compared with the excess risk of the RFA model as detailed in Example 2, the excess risk bound of
the BRFA model loses a factor of n−η/2.

Example 5 (Functions of correlations): Consider a special case of functions of correlations,

g⋆ =
1

N

N∑
i=1

⟨x0,xi⟩p ⟨β,xi⟩ , β ∈ Sd−1, with B(g⋆, L) = (2L+ p)p+382L+p by (18).

For any η > 0, choosing the same parameters (n,L,M) as Example 4, the excess risk bound scales
as Õ(

√
(log n+ p)(p+3)8p/n1−η). 3

Consider the required sample size n⋆ to reach an accuracy of 0.01. The BRFA model requires
n⋆ = Õ((8p+48)p+3), whereas the RFA model requires n⋆ = Õ((4d)p). Thus, in comparison to the
RFA model, the BRFA model can reduce the required sample size by a factor of Õ([d/(2p+ 12)]p).

Example 6 (Correlation-weighted functions): Consider the function

g⋆ =
1

N

N∑
i=1

cos(⟨x0,xi⟩)
〈
x⊗3
i ,G

〉
, with ∥G∥2Fr ≤ 1 and B(g⋆, L) = Θ((8e)2L),
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where B(g⋆, L) is bounded through the Taylor expansion of cos(t) and (18). For any η > 0, choosing
the same parameters as Example 4, the excess risk bound scales as Õ(

√
1/n1−η). 3

Consider the required sample size n⋆ to reach an accuracy of 0.01. The BRFA model requires
n⋆ = Õ(1), whereas the RFA model requires n⋆ = Õ(Poly(d) exp(

√
d)). Thus, in comparison to the

RFA model, the BRFA model can reduce the required sample size by a factor of Õ(Poly(d) exp(
√
d)).

4.3 Overview of techniques

Here we provide the intuition and an overview of the technique of Theorem 3, with the proof details
in Appendix C. To show the sample complexity of learning with the BRFA model, the first step is to
derive the kernel KBRFA(x0:N ,x

′
0,N ) associated with the infinite-width BRFA model. This kernel has

a natural feature map, given by {Ψk : X → Rd2k+1}k≥0, where

Ψk(x0:N ) =
∑N
i=1 ϕ(⟨x0,xi⟩) ·Hek−2(⟨x0,xi⟩) · x̃⊗k+1

i ⊗ x̃⊗k
0 , ∀k ≥ 2.

Here ϕ(t) = (2π)−1/2e−t
2/2 is the Gaussian density function, and Hek(z) denotes the k-th proba-

bilist’s Hermite polynomial, with detailed expression and properties given in Appendix A.1. This
feature map implies the learnability of the following target function class by the BRFA model,

g̃⋆(x0:N ) = 1
N

∑N
i=1 ϕ(⟨x0,xi⟩)

∑∞
k=2 Hek−2(⟨x0,xi⟩)

〈
x̃⊗k+1
i ⊗ x̃⊗k

0 ,Ak

〉
, (19)

whose RKHS norm associated with kernel KBRFA is bounded by B(g̃⋆) =
∑∞
k=2(k−2)!k24k∥Ak∥2Fr.

Notice that g̃⋆ bears similarities to, but also distinct differences from, g⋆ as presented in (16). The
key difference lies in the ϕ(⟨x0,xi⟩) factor in g̃⋆, which is hard to interpret and analyze. To obtain
the excess risk bound for learning g⋆, we can use g̃⋆ to approximate g⋆ in the L∞ norm. The excess
risk for learning g⋆ can be bounded by the summation of the excess risk for learning g̃⋆ and the
approximation error. Acquiring this approximation error bound necessitates a truncation argument of
the Taylor expansion of 1/ϕ(·).

5 Numerical experiments

We test our theory by experimentally approximating two types of target functions using the three
models under investigation RFA (5), BRFA (15), and RFMLP (14). We choose the target functions to be
of form

f1,p(x0:N ) = 1
N

∑N
i=1 ⟨β,xi⟩

p
, p ∈ N, β ∈ Sd−1, (20)

f2,q(x0:N ) = 1
N

∑N
i=1 ⟨x0,xi⟩q ⟨β,xi⟩ , q ∈ N, β ∈ Sd−1. (21)

The first target function (20) is a specific instance of Example 2, whereas the second target function
(21) has been considered in both Example 3 and 5.

In our experimental setup, we set the input dimension as d = 16 and the number of tokens as N = 16.
We fix the width of RFA and BRFA to be MRFA =MBRFA =M = 1000, whereas the width of RFMLP
is set as MRFMLP =M(d+ 1) = 17000. This configuration ensures an equal number of parameters
across all three models. To further accentuate the test risk difference between the BRFA and RFA, in
BRFA we use a bias matrix of W0 = 4[Id×d,0d×1;01×d, 0] ∈ R(d+1)×(d+1), which is four times the
matrix investigated in our theory. The input distribution is selected as {xi}0≤i≤N∼iidUnif(Sd−1),
and we take y = f⋆(x0:N ) without any noise. We consider three representative target functions: f1,p
for p = 2, 4, and f2,p for p = 3, as per (20) and (21). We examine a list of sample sizes n from 24 to
212. Prior to training with RF models, we standardize the yi’s to have zero mean and unit standard
deviation, ensuring that the trivial risk equals 1. We train the RF models using square loss with ridge
regularization, selecting the ridge parameter to minimize the test error. The experimental results are
displayed in Figure 2.

The left and middle panels of Figure 2 demonstrate a noticeable separation between RFMLP and the
other two random-feature attention models for learning these target functions. RFMLP can hardly
approximate the target function, whereas RFA and BRFA exhibit significantly better performance.
This observation is consistent with our sample complexity analysis detailed in Example 2, where the
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Figure 2: Test error of three RF models for learning f1,2 (left), f1,4 (mid), and f2,3 (right), as per
(20) and (21). We set d,N = 16, MRFA = MBRFA = 1000, and MRFMLP = 17000. We train the
RF models using square loss with ridge regularization, with the ridge parameter selected to minimize
test error. The test error is calculated using ntest = 1000 fresh samples. The figure reports the mean
and normalized standard error of the test error, based on 5 independent experimental instances.

sample complexity bound of RFMLP for learning average of functions of xi is found to be O((N/4)p)
times greater than that of RFA.

The performance comparison between RFA and BRFA depends on the target functions. RFA outper-
forms BRFA in learning f1,2 and f1,4, whereas BRFA outperforms RFA in learning f2,3. The latter
phenomenon is as we expected: as demonstrated in Example 3 and 5, BRFA is more powerful than
RFA in approximating the correlation-weighted functions.

We have conducted further experiments with various other target functions, detailed in Appendix D.

6 Conclusion

In this work, we introduced and examined the expressivity of two random-feature attention models,
namely RFA (5) and BRFA (15). For general classes of functions that are invariant to the permutation
of key tokens x1:N , the excess risk of RFA (5) can avoid the dependence on sequence length, in
contrast to the standard random-feature model RFMLP (14). Moreover, for specific functions that adopt
the form of correlation-weighted polynomials (6), the excess risk of BRFA can avoid the polynomial
dependence on the dimension. These insights enhance our understanding of the attention mechanism
within a simplified context. Finally, our work left open many interesting questions for future work,
such as the expressivity of softmax attention, the influence of positional encoding in expressivity, and
the expressivity of multi-layer transformers.
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A Technical tools

A.1 Basics on Hermite Polynomials

In this section, we briefly review Hermite polynomials and their properties. Let Hen be the proba-
bilists’ Hermite polynomial of degree n:

Hen(x) := (−1)ne
x2

2
dn

dxn
e−

x2

2 .

Here are some basic properties of Hermite polynomials {Hen}n≥0:

• Let (x, y) ∼ N(0, [1, ρ; ρ, 1]). Then E[Hem(x)Hen(y)] = n!ρn1m=n for m,n ≥ 0.
• Hen(−x) = (−1)nHen(x);

• Hen+1(x) = xHen(x)−He′n(x).

• He′n(x) = nHen−1(x).

It can be shown that Hermite polynomials are a complete orthogonal basis of the following Hilbert
space with ϕ(x) = (2π)−1/2e−x

2/2:

L2(R, ϕ(x)) :=
{
f : R → R :

∫ ∞

−∞
f(x)2ϕ(x)dx <∞

}
.

For two functions f, g : R → R, we define their inner product ⟨f, g⟩ as:

⟨f, g⟩ := Ex∼N(0,1)[f(x)g(x)] =

∫ ∞

−∞
f(x)g(x)ϕ(x)dx.

For any function f ∈ L2(R, ϕ(x)), we can derive its Hermite expansion:

f(x) =

∞∑
n=0

an
n!

Hen(x),

where an = ⟨f,Hen⟩ =
∫∞
−∞ f(x)Hen(x)ϕ(x)dx. Then for another function g(x) =∑∞

n=0
bn
n!Hen(x), the inner product of f and g gives:

⟨f, g⟩ =
∞∑
n=0

anbn
n!

.

Here are some formulae for Hermite expansion of certain functions.
Lemma A.1 (See e.g., [38]). Let f, g ∈ L2(R, ϕ(x)). Then, for any unit vectors u, v ∈ Rd, we have
that

Ex∼N (0,Id)

[
f(u⊤x)g(v⊤x)

]
=

∞∑
n=0

anbn
n!

⟨u, v⟩n ,

where f(x) =
∑∞
n=0

an
n! Hen(x) and g(x) =

∑∞
n=0

bn
n!Hen(x).
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Lemma A.2 (Inverse explicit expression [69]). Hermite expansion of xn gives:

xn = n!

⌊n
2 ⌋∑

m=0

1

2mm!(n− 2m)!
Hen−2m(x).

Lemma A.3. Let σc(x) := σ(x+ c) be the shifted ReLU function. Then the Hermite expansion of
σc gives:

σc(x) = cΦ(c) + ϕ(c) + Φ(c)He1(x) +

∞∑
n=2

(−1)n

n!
ϕ(c)Hen−2(c)Hen(x),

where ϕ(x),Φ(x) are the PDF and CDF of standard Gaussian.

Proof of Lemma A.3. Denote an,i :=
∫∞
−c (x+ c)iHen(x)ϕ(x)dx. It is easy to obtain that

a0,0 = Φ(c), a0,1 = cΦ(c) + ϕ(c), a1,0 = ϕ(c), and a1,1 = Φ(c).

Then using the two different formulae for an,0,

an,0 =

∫ ∞

−c
Hen(x)ϕ(x)dx = −Hen+1(−c)

n+ 1
ϕ(−c) +

∫ ∞

−c

Hen+1(x)

n+ 1
xϕ(x)dx

= −Hen+1(−c)
n+ 1

ϕ(−c) + 1

n+ 1
an+1,1 −

c

n+ 1
an+1,0, n ≥ 0, and

an,0 =

∫ ∞

−c
(xHen−1(x)− (n− 1)Hen−2(x))ϕ(x)dx

= an−1,1 − can−1,0 − (n− 1)an−2,0, n ≥ 2,

we obtain that

an,1 = (−1)nHen(c)ϕ(c) + can−1,1 + (n− c2)an−1,0 − (n− 1)can−2,0, and
an,0 = an−1,1 − can−1,0 − (n− 1)an−2,0, n ≥ 2.

Then it is easy to prove by induction that

an,1 = (−1)nHen−2(c)ϕ(c), n ≥ 2,

an,0 = (−1)n−1Hen−1(c)ϕ(c), n ≥ 1.

This completes the proof.

A.2 Basics on Random Features

In this section, we give some basic properties of the random feature model considered in our work,
which can be seen as an extension of the standard random feature model (e.g. of Rahimi and Recht
[74, 75]) to the vector-valued case.

Given a functional σ(x;w) : X ×W → Rd. Denote µ as a probability measure on W . We define
the (infinite-width) random feature model as:

F = {f : f(x) = ⟨v,σ(x; ·)⟩HW
, v ∈ HW}, (22)

where HW =
{
v(w) :

∫
W v(w)⊤v(w)µ(dw) <∞

}
is a Hilbert space with norm ∥v∥2HW

=∫
W v(w)⊤v(w)µ(dw) and inner product ⟨v,u⟩HW

=
∫
W v(w)⊤u(w)µ(dw). Besides, we endow

F with a norm ∥·∥F and the corresponding inner product ⟨·, ·⟩F defined as:

∥f∥F = inf
f=⟨v,σ(·)⟩HW

∥v∥HW
, ⟨f, g⟩F =

∥f + g∥2F − ∥f − g∥2F
4

.

We further define the corresponding reproducing kernel K : X × X → R, s.t.

K(x, y) =

∫
W

σ(x;w)⊤σ(y;w)µ(dw),

which is positive definite. Define the RKHS induced by this kernel as HK with corresponding norm
∥·∥HK

and the inner product ⟨·, ·⟩HK
. Then we have the following proposition according to [61]:
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Proposition A.1. Given the above definition of F and HK , we have that (F , ∥·∥F ) =
(
HK , ∥·∥HK

)
.

More generally [11], for any feature map ϕ : X → H (where H is a Hilbert space) that induces the
kernel K, i.e., K(x, y) = ⟨ϕ(x), ϕ(y)⟩H, we have for any function f that

∥f∥HK
= inf
f=⟨u,ϕ(·)⟩H

∥u∥H, (23)

which shows the equivalence among different feature maps that generate the same kernel.

A.3 Concentration inequalities

Definition A.1 (Sub-Gaussian and Sub-Exponential random variables [87]). For a random variable
X , its sub-gaussian norm, denoted ∥X∥ψ2 , is defined as

∥X∥ψ2
= inf

{
t > 0 : E exp

(
X2/t2

)
≤ 2
}
.

If σ ≡ ∥X∥ψ2
<∞, we say that X is σ-sub-Gaussian.

For a random variable X , its sub-exponential norm, denoted ∥X∥ψ1
, is defined as

∥X∥ψ1
= inf {t > 0 : E exp (|X|/t) ≤ 2} .

If σ ≡ ∥X∥ψ1
<∞, we say that X is σ-sub-exponential.

Theorem A.1 (Gaussian concentration inequality (e.g., [89])). Let (X1, . . . , Xn) be a vector of i.i.d.
standard Gaussian variables, and let f : Rn → R be L-Lipschitz with respect to the Euclidean norm.
Then the random variable f(X)− E[f(X)] is L-sub-Gaussian, and hence

P
(
|f(X)− E[f(X)]| ≥ t

)
≤ 2e−

t2

2L2 for all t ≥ 0.

Theorem A.2 (Bounded difference inequality (e.g., [89])). Consider a function f(X) : Rn → R.
Assume that for any X = (X1, . . . , Xn) and Xi,′ = (X1, . . . , X

′
i, . . . , Xn), we have difference

bound |f(X)− f(Xi,′)| ≤ Li. We further assume that the random vector X = (X1, X2, . . . , Xn)
has independent components. Then

P
(
|f(X)− E[f(X)]| ≥ t

)
≤ 2e

− 2t2∑n
k=1

L2
k for all t ≥ 0.

Theorem A.3 (Matrix Bernstein Inequality (e.g., [85])). Consider a sequence {Sk}k∈[n] of indepen-
dent random matrices with common dimension d1 × d2. Assume that

ESk = 0 and ∥Sk∥op ≤ L almost surely, for each index k.

Introduce the random matrix

Z =

n∑
k=1

Sk.

Let v(Z) be the matrix variance statistic of the sum

v(Z) = max
{∥∥E (ZZ⊤)∥∥

op
,
∥∥E (Z⊤Z

)∥∥
op

}
= max


∥∥∥∥∥
n∑
k=1

E
(
SkS

⊤
k

)∥∥∥∥∥
op

,

∥∥∥∥∥
n∑
k=1

E
(
S⊤
k Sk

)∥∥∥∥∥
op

 .

Then we have
E∥Z∥op ≤

√
2v(Z) log (d1 + d2) +

1

3
L log (d1 + d2) ,

and for all t ≥ 0,

P
(
∥Z∥op ≥ t

)
≤ (d1 + d2) exp

(
−t2/2

v(Z) + Lt/3

)
.

Theorem A.4 (Ledoux-Talagrand contraction inequality (e.g., [89])). Let {ξi}i∈[n]∼iidUnif({±1})
be independent Rademacher random variables. For any set T ⊂ Rn and any family of L-Lipschitz
functions {ϕj}j∈[n] with ϕi(0) = 0, we have

E
[
sup
θ∈T

∣∣∣ n∑
i=1

ξiϕi(θi)
∣∣∣] ≤ 2L · E

[
sup
θ∈T

∣∣∣ n∑
i=1

ξiθi

∣∣∣]. (24)
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B Proofs for Section 3

Throughout this section, we use the notation ≲ to hide a universal constant C. Also, we use σ(W,X)
to denote a function of W ∈ R(d+1)×(d+1) and X ∈ {X ∈ R(d+1)×(d+1) : ∥X∥2Fr ≤ 4} ≡ D that
satisfies the following properties:

1. For any X ∈ D, we have that σ(W,X) is L1-Lipschitz with respect to W.
2. For any X ∈ D, the expectation EW[σ(W,X)] ≤ L2.
3. For any X ∈ D, we have σ(0,X) ≤ L3.

Here L1, L2, and L3 are universal constants. Let {Wm}m∈[M ] be sampled from Eq. (4). Let
v : R(d+1)×(d+1) → R with EW[∥v(W)∥22] ≤ R2. Consider a random feature model associated
with σ (hereafter, we will refer to it as RF model)

fWM (x0:N ;V) =

M∑
m=1

1

N

N∑
i=1

σ
(
Wm, x̃0x̃

⊤
i

)
⟨vm, x̃i⟩ , (25)

as well as the infinite-width version of the random feature model,

fv(x0:N ) =
1

N

N∑
i=1

EW

[
σ(W, x̃0x̃

⊤
i ) ⟨v(W), x̃i⟩

]
. (26)

Note that both model RFA and BRFA correspond to special choices of σ. Thus, all lemmas and
theorems in this section are applicable to both model RFA and model BRFA.

B.1 Proof of Theorem 1

To prove Theorem 1, we first state two auxilliary lemmas, Lemma B.1 and B.2.
Lemma B.1 (From infinite-width RF model to finite-width RF model). Consider fv that takes the
form as Eq. (26), with EW[∥v(W)∥22] ≤ R2. Let x0:N ∼ P . Define the ∥·∥2L2(P ) norm by

∥g∥2L2(P ) =

∫
g(x0:N )

2
P (dx0:N ).

Then with probability at least 1 − δ, there exists a sequence of vectors {vm}Mm=1 ⊆ Rd+1 and
constant universal C <∞ that only depends on L1, L2, and L3 s.t.∥∥∥fv − 1

N

N∑
i=1

M∑
m=1

σ(Wm, x̃0x̃
⊤
i ) ⟨vm, x̃i⟩

∥∥∥2
L2(P )

≤ C(d2 + logM)R2δ−1

M
(27)

M∑
m=1

∥∥∥vm∥∥∥
2
≤

√
2R+

√
CR2δ−1

M
and

M∑
m=1

∥∥∥vm∥∥∥2
2
≤ CR2δ−1

M
. (28)

Lemma B.2. Under the setting of Theorem 1, let f⋆ be a target function of form (6) and (7). Then
there exists an infinite-width RFA model (26) with v : R(d+1)×(d+1) → R such that

f⋆ =
1

N

N∑
i=1

EW[σ(W, x̃0x̃
⊤
i ) ⟨v(W), x̃i⟩], (29)

with
EW[∥v(W)∥22] ≤ B(f⋆),

where B(f⋆) is as defined in (10).

The proofs of Lemma B.1 and B.2 are given in Section B.1.1. Now we assume these two lemmas
hold, and use them to prove Theorem 1.

Proof of Theorem 1. For any function that takes form (6) and (7), by Lemma B.2, it admits represen-
tation (29) with EW[∥v(W)∥22] ≤ B(f⋆). Then by Lemma B.1, since RFA model is a special case of
the RF model, there exists {vm}m∈[M ] such that Eq. (27) and Eq. (28) hold with probability larger
than 1− δ. This proves Theorem 1.
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B.1.1 Proof of auxiliary lemmas

Proof of Lemma B.1.

Step 1. Proof of Eq. (27). To prove Eq. (27), we use a truncation argument.

Fix a RW > 0 which we will choose its value later in the proof. Recall that we have
W1, . . . ,Wm i.i.d. with Wm,i,j∼iidN(0, 1/4). Define vm = v(Wm)1{∥Wm∥Fr ≤ RW/2}/M
for m = 1, . . . ,M . Consider the truncated infinite-width random feature model fRW

v =
1
N

∑N
i=1 EW[σ(W, x̃0x̃

⊤
i ) ⟨v(W), x̃i⟩ 1{∥W∥Fr ≤ RW/2}], we have

EW

[∥∥∥fRW
v − 1

N

N∑
i=1

M∑
m=1

σ(W, x̃0x̃
⊤
i ) ⟨vm, x̃i⟩

∥∥∥2
L2(P )

]
≤ EX

(
EW

[∥∥∥ 1

N

N∑
i=1

σ(W, x̃0x̃
⊤
i )x̃i

∥∥∥2
2

∥∥∥v(W)
∥∥∥2
2
1 {∥W∥Fr ≤ RW/2}

])
/M

≤ EX

(
EW

[ 2
N

N∑
i=1

∥x̃i∥22(L2
1∥W∥22 + L2

3)∥v(W)∥221 {∥W∥Fr ≤ RW/2}
])
/M

≤ C̃R2
WR2

M
,

where C̃1 only depends on L1, L2, and L3. Then using Markov’s inequality,∥∥∥fRW
v − 1

N

N∑
i=1

M∑
m=1

σ(W, x̃0x̃
⊤
i ) ⟨vm, x̃i⟩

∥∥∥2
L2(P )

≤ 3C̃R2
WR2

δM

holds with probability at least 1− δ/3. Next for the difference between fRW
v and fv, we have

∥fv − fRW
v ∥2L2(P ) ≤ EX

[(
EW

[ 1
N

N∑
i=1

σ(W, x̃0x̃
⊤
i ) ⟨v, x̃i⟩1 {∥W∥Fr ≥ RW/2}

])2]
≤ EX

[ 1
N

N∑
i=1

EW

[
⟨v, x̃i⟩2

]√
EW[σ(W, x̃0x̃⊤

i )
4]
√

P(∥W∥Fr ≥ RW/2)
]

≤ C̃2R
2P(∥W∥Fr > RW/2)

1
2 .

Here C̃2 is a constant that only depends on L1 and L2. By concentration of functions of Gaussian
random vectors (Theorem A.1), ∥σ(W, x̃0x̃

⊤
i )∥ψ2

≤ L1 + L2 for any i. So in the last inequality,
we used the bound (EW[σ(W, x̃0x̃

⊤
i )

4])1/2 by Θ((L1 +L2)
2). To bound P(∥W∥Fr > RW/2), we

use concentration of functions of Gaussian random vectors (Theorem A.1) again, and get that

P
(
∥W∥Fr − E(∥W∥Fr) ≥ t/2

)
≤ exp

(
−t2/2

)
.

Take C = max(C̃1, C̃2). Since E(∥W∥Fr) ≤ (E∥W∥2Fr)1/2 ≤ d+ 1, by choosing RW = d+ 1 +
C
√
logM , the above probability is less than 1/M2. Then∥∥∥fv − 1

N

N∑
i=1

M∑
m=1

σ(W, x̃0x̃
⊤
i ) ⟨vm, x̃i⟩

∥∥∥2
L2(P )

≤ 3CR2
WR2

δM
+ CR2P(∥W∥Fr > RW/2)

1
2

≤ C(logM + d2)R2

δM

with probability larger than 1− δ/3. This proves Eq. (27).

Step 2. Proof of Eq. (28). By Chebyshev’s inequality,

P

(
M∑
m=1

∥vm∥2 − E
[
∥v(W)∥2 1 {∥Wm∥Fr ≤ RW/2}

]
≥
√

6R2

δM

)
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≤
E
[
∥v(W)∥22 1 {∥W∥Fr ≤ RW/2}

]
δM

6R2M
≤ δ

3
.

Combining with the fact that E
[
∥v(W)∥2 1 {∥W∥Fr ≤ RW/2}

]
≤
√

E
[
∥v(W)∥22

]
≤ R, we

have

P

(
M∑
m=1

∥vm∥2 ≥ R+

√
6R2

δM

)
≤ δ

3
.

For the second part of (28), Markov inequality gives

P

(
M∑
m=1

∥vm∥22 ≥ 6R2

δM

)
≤

E
[
∥v(W)∥22 1 {∥Wm∥Fr ≤ RW/2}

]
δM

6R2M
≤ δ

3
.

This proves Eq. (28) and completes the proof of Lemma B.1.

Proof of Lemma B.2.

To get the kernel of the RFA model, we have

K(x0:N ,x
′
0:N ) =

1

N2
EW

[ N∑
i,j=1

σ(⟨W, x̃0x̃
⊤
i ⟩)σ(⟨W, x̃′

0(x̃
′
j)

⊤⟩)⟨x̃i, x̃′
j⟩
]
.

We first consider a single component in the sum, which is

EW

[
σ
(
⟨W, x̃0x̃

⊤
i ⟩
)
σ(⟨W, x̃′

0(x̃j)
′⟩)
]
⟨x̃i, x̃′

j⟩. (30)

Let ui,j =
〈
x̃0x̃

⊤
i , x̃

′
0(x̃

′
j)

⊤〉 /4. Let N2(ρ) denote a bivariate normal distribution with marginals
are N(0, 1) and the correlation is ρ ∈ [−1, 1]. Then (30) can be expanded as follows:

EW

[
σ
(
⟨W, x̃0x̃

⊤
i ⟩
)
σ
(
⟨W, x̃′

0(x̃
′
j)

⊤⟩
)]
⟨x̃i, x̃′

j⟩

= EZ1,Z2∼N2(ui,j)

[
σ(Z1)σ(Z2)

]
⟨x̃i, x̃′

j⟩

=
1

2π

(
ui,j(π/2− arccosui,j) +

√
1− u2i,j

)
⟨x̃i, x̃′

j⟩

=
1

2π

(
1 +

π

2
ui,j +

∞∑
ℓ=1

(2ℓ− 3)!!

(2ℓ)!!(2ℓ− 1)
u2ℓi,j

)
⟨x̃i, x̃′

j⟩

=
∑

ℓ∈{0,1}∪{2k}k≥1

cℓ
〈
x̃0x̃

⊤
i , x̃

′
0(x̃

′
j)

⊤〉ℓ 4−ℓ⟨x̃i, x̃′
j⟩

=
∑

ℓ∈{0,1}∪{2k}k≥1

cℓ

〈
2−ℓ(x̃0x̃

⊤
i )

⊗ℓ ⊗ x̃i, 2
−ℓ(x̃′

0(x̃
′
j)

⊤)⊗ℓ ⊗ x̃′
j

〉
.

Here the coefficients {cℓ} satisfy

c0 = 1/(2π), c1 = 1/4, and c2ℓ =
(2ℓ− 3)!!

2π(2ℓ)!!(2ℓ− 1)
= O(ℓ−

5
2 ) for ℓ ≥ 1.

Therefore, the kernel can be expressed as:

K(x0:N ,x
′
0:N )

=
1

N2

∑
1≤i,j≤N

∑
ℓ∈{0,1}∪{2k}k≥1

cℓ

〈
2−ℓ(x̃0x̃

⊤
i )

⊗ℓ ⊗ x̃i, 2
−ℓ(x̃′

0(x̃
′
j)

⊤)⊗ℓ ⊗ x̃′
j

〉

=
∑

ℓ∈{0,1}∪{2k}k≥1

〈√cℓ
N

N∑
i=1

2−ℓ(x̃0x̃
⊤
i )

⊗ℓ ⊗ x̃i,

√
cℓ
N

N∑
j=1

2−ℓ(x̃′
0(x̃

′
j)

⊤)⊗ℓ ⊗ x̃′
j

〉
.
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Now we reformulate the target function as

f⋆ =
1

N

N∑
i=1

∞∑
ℓ=0

∑
max{r,s}=ℓ

〈
x̃⊗r
0 ⊗ x̃⊗s

i , frs
〉

=
1

N

N∑
i=1

∞∑
ℓ=2k,k≥0

∑
max{r,s}=ℓ or ℓ−1

〈
(x̃0 ⊗ x̃i)

⊗ℓ ⊗ x̃i, f̃rs

〉

=

∞∑
ℓ=2k,k≥0

〈 2ℓ
√
cℓ

∑
max{r,s}=ℓ or ℓ−1

f̃rs,

√
cℓ
N

N∑
i=1

2−ℓ(x̃0x̃
⊤
i )

⊗ℓ ⊗ x̃i

〉
,

where f̃rs is a transpose of frs ⊗ 1
⊗(2ℓ−r−s+1)
d+1 with 1d+1 = (0, . . . , 0, 1), such that〈

x̃⊗r
0 ⊗ x̃⊗s

i , frs
〉
= ⟨(x̃0 ⊗ x̃i)

⊗ℓ ⊗ x̃i, f̃rs⟩ for any r ≥ 0 and s ≥ 0. Then by the feature
map equivalence property (23), the RKHS norm of f⋆ can be bounded as

∥f⋆∥2HK
≤
∥∥∥ ∞∑
ℓ=2k,k≥0

〈 2ℓ
√
cℓ

∑
max{r,s}=ℓ or ℓ−1

f̃rs,

√
cℓ
N

N∑
i=1

2−ℓ(x̃0x̃
⊤
i )

⊗ℓ ⊗ x̃i

〉∥∥∥2
HK

=

∞∑
ℓ=2k,k≥0

〈 2ℓ
√
cℓ

∑
max{r,s}=ℓ or ℓ−1

f̃rs,
2ℓ
√
cℓ

∑
max{r,s}=ℓ or ℓ−1

f̃rs

〉

=

∞∑
ℓ=2k,k≥0

4ℓc−1
ℓ

∥∥∥ ∑
max{r,s}=ℓ or ℓ−1

f̃rs

∥∥∥2
Fr

≤
∞∑
k=0

4kk4.5
∑

max{r,s}=k

∥∥∥f̃rs∥∥∥2
Fr
.

Thus, using again the property (23) with the original feature map of the random feature model, there
exists v : R(d+1)×(d+1) → Rd+1 such that

f⋆ =
1

N

N∑
i=1

EW[σ(W, x̃0x̃
⊤
i ) ⟨v(W), x̃i⟩], with

EW[∥v(W)∥22] ≤
∞∑
k=0

4kk4.5
∑

max{r,s}=k

∥f̃rs∥2Fr.

Notice that ∥f̃rs∥2Fr = ∥frs∥2Fr by our construction of f̃rs, so that the right-hand-side of the equation
above coincides with Eq. (10). This proves Lemma B.2.

B.2 Preliminary proposition for Theorem 2

To prove Theorem 2, we first present and prove the following proposition that gives a high probability
bound for the difference between the empirical risk and the population risk. In the proposition and
lemmas below, we denote X = {x(j)

0:N}j∈[n] and y = {yj}j∈[n].

Proposition B.1. Under the setting of Theorem 2. Consider the finite width RF model (25):

fWM (x0:N ;V) =

M∑
m=1

1

N

n∑
j=1

σ
(
Wm, x̃0x̃

⊤
i

)
⟨vm, x̃i⟩ .

Then with probability at least 1− δ (w.r.t. W, y, and X), we have

sup
V∈VM

∣∣∣ 1
n

n∑
j=1

ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)
− Ex0:N ,y

ℓ
(
fWM (x0:N ;V), y

)∣∣∣
≲K1

√
log(dM) log (nNM)

n
+

√
log

(
6

δ

)(
K1√
n
+

√
K2

M

)
. (31)
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The main difficulty of the proof of Proposition B.1 comes from that ℓ
(
fWM , y

)
might be unbounded

and that ℓ(fWM (x
(j)
0:N ), yj) are not independent across j (since they share the same {Wm}m∈[M ]). So

we begin with several lemmas below.
Lemma B.3. Let {ξj}j∈[n] be a set of i.i.d. Rademacher random variables. Under the setting of
Proposition B.1,

EX,y,W,ξ

[
sup

V∈VM

∣∣∣ 1
n

n∑
j=1

ξjℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)∣∣∣] ≲ K1

√
log(dM) log (nNM)

n
. (32)

Furthermore, any fixed X and y,

EW,ξ

[
sup

V∈VM

∣∣∣ 1
n

n∑
j=1

ξjℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)∣∣∣] ≲ K1

√
log(dM) log (nNM)

n
. (33)

Lemma B.4. Under the setting of Proposition B.1. With probability at least 1− δ/3 over X, y, and
W,

sup
V∈VM

∣∣∣ 1
n

n∑
j=1

ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)
− EW

[ 1
n

n∑
j=1

ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)]∣∣∣
≲

√
K2 log(6/δ)

M
+K1

√
log(dM) log (nNM)

n
. (34)

Lemma B.5. Under the setting of Proposition B.1. With probability at least 1− δ/3 over X and y,

sup
V∈VM

∣∣∣EW

[ 1
n

n∑
j=1

ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)]
− EX,y,W

[ 1
n

n∑
j=1

ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)]∣∣∣
≲K1

√
log(dM) log (nNM)

n
+K1

√
log (6/δ)

n
. (35)

Lemma B.6. Under the setting of Proposition B.1. With probability at least 1− δ/3 over W,

sup
V∈VM

∣∣∣EX,y

[ 1
n

n∑
j=1

ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)]
− EX,y,W

[ 1
n

n∑
j=1

ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)]∣∣∣
≲

√
K2 log(6/δ)

M
+K1

√
log(dM) log (nNM)

n
. (36)

The proofs of Lemma B.3, B.4, B.5, and B.6 are contained in section B.2.1. Now assuming they hold,
we proceed to prove Proposition B.1.

Proof of Proposition B.1.

Split the left-hand side of inequality (31), we have

sup
V∈VM

∣∣∣ 1
n

n∑
j=1

ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)
− EX,y

(
ℓ
(
fWM

(
x
(j)
0:N ;V

)
, y
))∣∣∣

≤ sup
V∈VM

∣∣∣ 1
n

n∑
j=1

ℓ
(
fWM , yj

)
− EW

[ 1
n

n∑
j=1

ℓ
(
fWM , yj

)]∣∣∣
+ sup

V∈VM

∣∣∣EW

[ 1
n

n∑
j=1

ℓ
(
fWM , yj

)]
− EX,y,W

(
ℓ
(
fWM , y

))∣∣∣
+ sup

V∈VM

∣∣∣EX,y

(
ℓ
(
fWM , y

))
− EX,y,W

(
ℓ
(
fWM , y

))∣∣∣
≲K1

√
log(dM) log (nNM)

n
+

√
log

(
6

δ

)(
K1√
n
+

√
K2

M

)
with probability at least 1− δ. Here the last inequality uses Lemma B.4, B.5, and B.6. This proves
Proposition B.1.
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B.2.1 Proof of auxiliary lemmas

Proof of Lemma B.3.

First using Rademacher contraction inequality, since ℓ(0, y) ≤ 1, we can center it and only pay an
extra term 1/

√
n in the Rademacher complexity. Then by the Rademacher contraction property

(Theorem A.4), the problem boils down to bounding the Rademacher complexity of fWM , which is

EX,y,W,ξ

[
sup

V∈VM

∣∣∣ 1
n

n∑
j=1

ξjf
W
M

(
x
(j)
0:N ;V

)∣∣∣].
Fix X, y, and W, we have

Eξ

[
sup

V∈VM

∣∣∣ 1
n

n∑
j=1

ξjf
W
M

(
x
(j)
0:N ;V

)∣∣∣]

= Eξ

[
sup

V∈VM

∣∣∣ M∑
m=1

〈
vm,

1

n

n∑
j=1

ξj

[ 1
N

N∑
i=1

σ(Wm, x̃
(j)
0 x̃

(j)⊤
i )x̃

(j)
i

]〉∣∣∣]

≤K1Eξ

[
max
m

∥∥∥ 1
n

n∑
j=1

ξj

[ 1
N

N∑
i=1

σ(Wm, x̃
(j)
0 x̃

(j)⊤
i )x̃

(j)
i

]∥∥∥
2

]
. (37)

By matrix Bernstein inequality (Theorem A.3), for any fixed m,

P
[∥∥∥ 1
n

n∑
j=1

ξj

[ 1
N

N∑
i=1

σ(Wm, x̃
(j)
0 x̃

(j)⊤
i )x̃

(j)
i

]∥∥∥
2
≥ ε
]
≤ 2d exp

(
− nε2/2

A2 +Kε/3

)
,

where

A = max
m

√
1

nN2

∑
i,j,k

[
σ(Wm, x̃

(j)
0 x̃

(j)⊤
i )σ(Wm, x̃

(j)
0 x̃

(j)
k )

〈
x̃
(j)
i , x̃

(j)
k

〉 ]
≲ max

m,i,j
σ(Wm, x̃

(j)
0 x̃

(j)⊤
i ), and

K = max
i,m

∥∥∥ 1

N

N∑
i=1

σ(Wm, x̃
(j)
0 x̃

(j)⊤
i )x̃

(j)
i

∥∥∥
2
.

Using the union bound, we have

P
[
max
m∈[M ]

∥∥∥ 1
n

n∑
j=1

ξj

[ 1
N

N∑
i=1

σ(Wm, x̃
(j)
0 x̃

(j)⊤
i )x̃

(j)
i

]∥∥∥
2
≥ ε
]
≤ 2dM exp

(
− nε2

A2 +Kε/3

)
.

Therefore, we can bound its expectation with

Eξ

[
max
m

∥∥∥ 1
n

n∑
j=1

ξj

[ 1
N

N∑
i=1

σ(Wm, x̃
(j)
0 x̃

(j)⊤
i )x̃

(j)
i

]∥∥∥
2

]
≲
[√ log(dM)

n
A+

log(dM)

n
K
]
. (38)

Now take expectation over X, y, and W. Since n ≥ log(dM), we have

EX,y,W

[√ log(dM)

n
A+

log(dM)

n
K
]

≲

(√
log(dM)

n
+

log(dM)

n

)
EX,y,W

[
max
i,j,m

∣∣∣σ(〈Wm, x̃
(j)
0 x̃

(j)⊤
i

〉)∣∣∣]
≲

√
log(dM) log (nNM)

n
.

Combine this with Eq. (37) and (38), we prove (32).

Fixing any X and y, only taking expectation over W, we get

EW

[√ log(dM)

n
A+

log(dM)

n
K
]
≲

√
log(dM) log (nNM)

n
.

Combine this with Eq. (37) and (38), we prove (33). This finishes the proof of Lemma B.3.
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Proof for Lemma B.4.

Denote X = {x(j)
0:N}j∈[n] and y = {yj}j∈[n] and denote

g(W1:M ;X,y) = sup
V∈VM

∣∣∣ 1
n

n∑
j=1

ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)
− EW

[ 1
n

n∑
j=1

ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)]∣∣∣.
Given W1:M = {Wm}Mm=1 and W′

1:M = {W′
m}Mm=1, we define ∥W1:M −W′

1:M∥Fr =

(
∑
m∈[M ] ∥Wm −W′

m∥2Fr)1/2. Then we have

g(W1:M ;X,y)− g(W′
1:M ;X,y)

≤ sup
V∈VM

∣∣∣ 1
n

n∑
j=1

[
ℓ
(
fWM , yj

)
− ℓ
(
fW

′

M , yj

)]∣∣∣
≤ sup

V∈VM

∣∣∣ 1

Nn

∑
i,j,m

[
σ(W, x̃

(j)
0 x̃

(j)⊤
i )− σ(W′, x̃

(j)
0 x̃

(j)⊤
i )

]
⟨vm, x̃i⟩

∣∣∣
≲ sup

V∈VM

∣∣∣∑
m

∥Wm −W′
m∥Fr ∥vm∥2

∣∣∣
≲ ∥W1:M −W′

1:M∥Fr

√
K2

M
.

Since Wm has independent standard Gaussian entries, by Gaussian concentration inequality (Theo-
rem A.1), we have that

P
[∣∣∣g(W1:M ;X,y)− EW

[
g(W1:M ;X,y) | X,y

]∣∣∣ ≥ ε | X,y
]
≤ 2 exp

(
−Mε2

4K2

)
. (39)

For the conditional expectation, by symmetrization, we have

EW

[
g(W1:M ;X,y) | X,y

]
= EW

[
sup

V∈VM

∣∣∣ n∑
j=1

ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)
− EW

[
ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)]∣∣∣ | X,y]
≤ 2EW,ξ

[
sup

V∈VM

∣∣∣ n∑
j=1

ξjℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)∣∣∣ | X,y]
≲K1

√
log(dM) log (nNM)

n
(40)

for any X and y, where the last inequality uses Lemma B.3. Combining (39) and (40) and taking
ε = 2

√
K2 log (6/δ)/M , we have

sup
V∈VM

∣∣∣ 1
n

n∑
j=1

ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)
− EW

[ 1
n

n∑
j=1

ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)]∣∣∣
≲

√
K2

M

√
log

6

δ
+K1

√
log(dM) log (nNM)

n
, (41)

for any X and y. Since the right-hand side is irrelevant to X and y, we get (34). This proves Lemma
B.4.

Proof of Lemma B.5.

Let

h(x0:N ,y) = sup
V∈VM

∣∣∣EW

[ 1
n

n∑
j=1

ℓ
(
fWM , yj

)]
− EX,y,W

[ 1
n

n∑
j=1

ℓ
(
fWM , yj

)]∣∣∣. (42)
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For each i ∈ [n], let {X′,y′} differs with {X,y} only on i-th data point. We have

h(X,y)− h(X′,y′)

≤ sup
V∈VM

∣∣∣ 1
n

n∑
j=1

[
EW

[
ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)]
− EW

[
ℓ
(
fWM

(
x
(j)′
0:N ;V

)
, y′j

)]]∣∣∣
≤ sup

V∈VM

EW

[ 1
n

n∑
j=1

∣∣∣fWM (x(j)
0:N ;V

)
− fWM
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x
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0:N ;V

)∣∣∣]
≤ sup
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EW

[ 1

nN

∑
m∈[M ],k∈[N ]

[∣∣∣σ(Wm, x̃
(i)
0 x̃

(i)⊤
k )

∣∣∣+ ∣∣∣σ(Wm, x̃
(i)′
0 x̃

(i)′⊤
k )

∣∣∣] ∥vm∥2
]
.

≲
K1

n
.

Therefore, h(x0:N ,y) satisfies the bounded difference property with the parameter {Li}ni=1 uniformly
bounded by Θ(K1/n). By bounded difference inequality (Theorem A.2), there’s a constant C̃ such
that

P
[∣∣∣h(X,y)− EX

[
h(X,y)

]∣∣∣ ≥ ε
]
≤ 2 exp

(
− C̃nε

2

K1
2

)
.

Combining with Lemma B.3, we have

EX,y

[
h(X,y)

]
= EX,y

[
sup
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[ 1
n
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(
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− EX,y,W

[ 1
n

n∑
j=1

ℓ
(
fWM , yj
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≤ 2EX,y,ξ

[
sup
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∣∣∣ 1
n
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ξjEW

[
ℓ
(
fWM

(
x
(j)
0:N ;V

)
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≲K1

√
log(dM) log (nNM)

n
.

Therefore, by taking ε = 2K1[log (6/δ)/(nC̃)]
1/2, we have

sup
V∈VM

∣∣∣EW

[ 1
n

n∑
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ℓ
(
fWM , yj
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− EX,y,W
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(
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≲K1

√
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n
+K1

√
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n

with probability at least 1− δ. This proves Lemma B.5.

Proof of Lemma B.6.

Denote

φ(W1:M ) = sup
V∈VM

∣∣∣EX,y

[ 1
n

n∑
j=1

ℓ
(
fWM , yj

)]
− EX,y,W

[ 1
n
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ℓ
(
fWM , yj

)]∣∣∣.
Similar to the proof of Lemma B.4. Given W1:M = {Wm}Mm=1 and W′

1:M = {W′
m}Mm=1, define

∥W1:M −W′
1:M∥Fr =

√∑
m ∥Wm −W′

m∥2Fr. We have

φ(W1:M )− φ(W′
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≤ sup
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} ∣∣∣
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≤ sup
V∈VM

∣∣∣∑
m

2
√
2∥Wm −W′

m∥Fr∥vm∥2
∣∣∣

≲ ∥W1:M −W1:M∥Fr

√
K2

M
.

Since Wm has independent standard Gaussian entries, there is a constant C̃ s.t.

P
[∣∣∣φ(W1:M )− EW

[
φ(W1:M )

]∣∣∣ ≥ ε
]
≤ 2 exp

(
− C̃Mε2
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)
. (43)

For the expectation, we have
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n
, (44)

where the last inequality is by Lemma B.3. Combining (43) and (44) and taking ε =

[K2 log(6/δ)/(MC̃)]1/2, we get

sup
V∈VM

∣∣∣EX,y

[ 1
n

n∑
j=1

ℓ
(
fWM , yj

)]
− EX,y,W

[ 1
n

n∑
j=1

ℓ
(
fWM , yj

)]∣∣∣
≲

√
K2 log(1/δ)

M
+K1

√
log(dM) log (nNM)

n

with probability at least 1− δ. This proves Lemma B.6.

B.3 Proof of Theorem 2

Proof. Given any target function f⋆, by Lemma B.1, with probability larger than 1−δ/2 over W1:M ,
there exists Ṽ = {ṽm}Mm=1 such that

∥f⋆ − fWM (x0:N ; Ṽ)∥L2(P ) ≲

√
(d2 + logM)B(f⋆)δ−1

M
, (45)

with
M∑
m=1

∥∥∥ṽm∥∥∥
2
≲
√
B(f⋆) +

√
B(f⋆)δ−1

M
≲ 2
√
B(f⋆) and

M∑
m=1

∥∥∥ṽm∥∥∥2
2
≲
B(f⋆)δ

−1

M
. (46)

By our choice of K1 and K2, let fWv̂,M = fWM (·; V̂) denote the model trained by (11), and let

fWv∗,M = argmin
V∈VM

LD
(
fWM (·;V)

)
and fWṽ,M = fWM (x0:N ; Ṽ).

Then with probability at least 1− δ over W, X, and y, we have

LD
(
fWv̂,M

)
− LD(f

∗) (47)

≤ LD
(
fWv̂,M

)
− L̂D

(
fWv̂,M

)
+ L̂D

(
fWv̂,M

)
− L̂D

(
fWv∗,M

)
+ L̂D

(
fWv∗,M

)
− LD

(
fWv∗,M

)
+ LD

(
fWv∗,M

)
− LD

(
fWṽ,M

)
+ LD

(
fWṽ,M

)
− LD(f⋆) (48)

≤ LD
(
fWv̂,M

)
− L̂D

(
fWv̂,M

)
+ L̂D

(
fWv∗,M

)
− LD

(
fWv∗,M

)
+ LD

(
fWṽ,M

)
− LD(f

∗) (49)

≤ 2 sup
f∈VM

∣∣∣LD(f)− L̂D(f)
∣∣∣+ ∥fWṽ,M − f⋆∥L2(P ) (50)
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≲K1

√
log(dM) log (nNM)

n
+

√
log

(
1

δ

)(
K1√
n
+

√
K2

M

)
+

√
(d2 + logM)B(f⋆)δ−1

M

(51)

≲

√
B(f⋆)

n

(√
log(dM) log(nNM) +

√
log (δ−1)

)
+

√
(d2 + logM)B(f⋆)δ−1

M
(52)

≲

√
B(f⋆)[log(dM) log(nNM) + log(δ−1)]

n
+

√
(d2 + logM)B(f⋆)δ−1

M
, (53)

where from (48) to (49) we use the definition of fWv̂,M and fWv∗,M . From (49) to (50), we bound ≪Yu

notes: fix≫ LD(f
W
v̂,M ) − L̂D(f

W
v̂,M ) and LD(fWv∗,M ) − L̂D(f

W
v∗,M ) by supf |LD(f) − L̂D(f)| and

use the Lipschitzness of ℓ(f, y). From (50) to (51), we use Proposition B.1 and Lemma B.1. From
(51) to (52), we insert the value of K1 and K2 into the equation. This proves Theorem 2.

B.4 Proof of Examples in Section 3

B.4.1 Excess risk of RFMLP

Denote F to be the set of all functions in the function class (6) and (7), i.e.,

F =
{
f⋆(x0:N ) =

1

N

N∑
i=1

∞∑
r,s≥0

〈
x⊗r
0 ⊗ x⊗s

i , frs
〉
: frs ∈ Rd

r+s

symmetric , r, s ≥ 0
}
. (54)

Consider the RFMLP model

fMLP
M (x0:N ;v) =

M∑
m=1

σ
(
⟨wm, vec(x0:N )⟩

)
· vm, {wm}m∈[M ]∼iidN(0, I/(N + 2)), (55)

where vec(x0:N ) = [x0;x1; . . . ;xN ; 1] ∈ RdN+d+1. For target functions that take forms in (6) and
(7), define BMLP(f⋆) =

∑∞
k=0 C̃k

∑
r+s=k ∥frs∥2Fr with C̃k = k3.5(N + 2)2k. In case where f⋆

admits multiple representations of the form (7), BMLP(f⋆) is the infimum of the right-hand-side over
all such representations.

Then we consider the empirical risk minimizer over the RFMLP model:

v̂ = argminv∈VM
L̂D(f

MLP
M (·;v)), L̂D(f) =

1
n

∑n
j=1 ℓ(f(x

(j)
0:N ), yj), (56)

where the constrained class VMLP
M gives

VMLP
M =

{
v = {vm}Mm=1 :

∑M
m=1 |vm| ≤ K1,

∑M
m=1 v

2
m ≤ K2/M

}
. (57)

Proposition B.2 (The sample complexity of RFMLP). Let f⋆ = argminf∈F LD(f) be the population
risk minimizer within the target function class (54). Assume M > δ−1 and n > log(dM). Take
K1 = C

√
BMLP(f⋆) and K2 = CBMLP(f⋆)δ

−1 in (57), with C being a constant. Let f̂MLP
M =

fMLP
M (·; v̂) be empirical risk minimizer of model RFMLP. Then for any joint distribution P, with

probability at least 1− δ over {wm}m∈[M ] sampled according to (55) and {(x(j)
0:N , yj)}j∈[n] ∼iid P,

the excess risk is bounded by

LD(f̂
MLP
M )− LD(f⋆) ≤ Õ

(√
BMLP(f⋆)

[√
1

n
+

√
d2δ−1

M

])
. (58)

Proof of Proposition B.2. The proof is basically the same as that of RFA model. We only give a
sketch of the proof. Firstly, with a few modifications of the proof, we can show that Lemma B.1 also
holds for RFMLP, with B(f⋆) replaced with BMLP(f⋆). Lemma B.2 is slightly different, we have the
kernel expansion:

K(x0:N ,x
′
0:N ) =

∑
ℓ∈{0,1}∪{2k}k≥1

〈√
cℓ(N+2)−ℓ

[
vec(x0:N )

]⊗ℓ
,
√
cℓ(N+2)−ℓ

[
vec(x′

0:N )
]⊗ℓ〉

.
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Therefore we can rewrite f⋆ as

f⋆ =
∑

ℓ∈{0,1}∪{2k}k≥1

〈 (N + 2)ℓ

N
√
cℓ

N∑
i=1

∑
r+s=ℓ

f̃rs,i,
√
cℓ(N + 2)−ℓ

[
vec(x′

0:N )
]⊗ℓ〉

, (59)

where ⟨f̃rs,i, [vec(x′
0:N )]⊗ℓ⟩ = ⟨frs,x⊗r

0 ⊗ x⊗s
i ⟩. Thus,

∥f⋆∥2HK
≤

∞∑
k=0

C̃k
∑
r+s=k

∥frs∥2Fr with C̃k = k3.5(N + 2)2k.

The right-hand-side gives the formulation of BMLP(f⋆). Then, a similar version of Proposition B.1
holds for RFMLP model fWM , i.e., with probability at least 1− δ (w.r.t. W, y, and X),

sup
V∈VM

∣∣∣ 1
n

n∑
j=1

ℓ
(
fWM

(
x
(j)
0:N ;V

)
, yj

)
− E(x0:N ,y)∼Pℓ

(
fWM (x0:N ;V), y

)∣∣∣
≲K1

√
(N + 2) log(dM) log (nNM)

n
+
√
(N + 2) log (1/δ)

(
K1√
n
+

√
K2

M

)
. (60)

Then combining all of the above equations and following the proof in Section B.2, we get (58).

Remark 1. The representation in (59) is not unique. With a more careful choice of the representation
of the target function f⋆, we can get a better bound for BMLP(f⋆), which is given by

BMLP(f⋆) =

∞∑
k=0

C̃k
∑
r+s=k

∥frs∥2Fr with C̃k = k3.5[(N + 2)/2]2k. (61)

B.4.2 Proofs of Examples

Proposition B.3 (Restatement of Example 1). For functions of x0 of the form

f⋆(x0:N ) =

∞∑
k=0

〈
x⊗k
0 ,Ak

〉
, Ak ∈ Rd

k

,

we have that B(f⋆) =
∑∞
k=0 Ck ∥Ak∥2Fr. Setting M = Θ(d2n), the excess risk bound gives

Õ(
√∑∞

k=0 k
4.54k∥Ak∥2Fr/n). Moreover, consider f⋆(x0:N ) = (β⊤x0)

p. The above excess risk of
RFA model and the RFMLP model scales as

RFA : Õ
(
Poly(p)

√
4p∥β∥2p2 /n

)
, RFMLP : Õ

(
Poly(p)

√
((N + 2))p∥β∥2p2 /n

)
.

Proof of Proposition B.3. This follows by direct calculation.

Proposition B.4 (Restatement of Example 2). For f⋆ = 1
N

∑N
i=1 ψ(⟨β,xi⟩) with ψ(z) =

z arctan(z/η) with η > 2 and ∥β∥2 = 1. The excess risk bound of RFA model and the RFMLP model
are

RFA : Õ
(√∑∞

k=1 k
4.5(2/η)2k/n

)
= Õ(

√
1/n), RFMLP : Õ

(√∑∞
k=1 k

4.5[(N + 2)/2η]2k/n
)
.

Proof of Proposition B.4. Use the power series expansion of ψ, we have

f⋆ =
1

N

N∑
i=1

∞∑
k=1

(−1)k
⟨β,xi⟩2k

(2k − 1)η2k−1
.

Plug it into the formula of B(f⋆) (10) and BMLP(f⋆) (61), we get

B(f⋆) =

∞∑
k=1

(2k)4.542k∥β/η∥4k2 = Θ
( ∞∑
k=1

k4.5(2/η)2k
)
,

and BMLP(f⋆) = Θ(
∑∞
k=1 k

4.5[(N + 2)/2η]2k). Therefore, by Theorem 2 and Proposition B.2, we
get their excess risk. This proves Proposition B.4.
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Proposition B.5 (Restatement of Example 3). For f1,⋆ = 1
N

∑N
i=1 ⟨x0,xi⟩p, the excess risk bound

of RFA (by Theorem 2) and RFMLP scale as

RFA : Õ
(
Poly(p)

√
(4d)p/n

)
, RFMLP : Õ

(
Poly(p)

√
[(N + 2)d]p/n

)
.

For f2,⋆ = 1
N

∑N
i=1 cos(⟨x0,xi⟩)

〈
x⊗p
i ,G

〉
with ∥G∥Fr = 1. Then the excess risk bound of RFA and

RFMLP scale as

RFA : Õ
(
Poly(pd)

√
e4

√
d4p/n

)
, RFMLP : Õ

(
Poly(pNd)

√
e2(N+2)d(N + 2)p/n

)
.

Proof of Proposition B.5. For f1,⋆, direct calculation gives the value of B(f1,⋆) and the excess risk
follows. For f2,⋆, using the Taylor expansion of cos(z), we get

f2,⋆ =
1

N

N∑
i=1

∞∑
k=0

(−1)k
⟨x0,xi⟩2k

(2k)!

〈
x⊗p
i ,G

〉
=

1

N

N∑
i=1

∞∑
k=0

〈
(x0x

⊤
i )

⊗2k ⊗ x⊗p
i ,

(−1)k

(2k)!
I⊗2k
d ⊗G

〉
.

Plug it into the formula of B(f⋆) (10) and BMLP(f⋆) (61), we get

B(f2,⋆) = 4pPoly(p)

∞∑
k=0

(2k)4.542k
d2k

((2k)!)2
= 4pPoly(pd)Θ

( ∞∑
k=0

(4d)2k

((2k)!)2

)
.

Note that for any z > 0,

∞∑
k=0

(z)2k

((2k)!)2
≤
[ ∞∑
k=0

(
√
z)2k

(2k)!

]2
= Θ

(
e2

√
z
)
. (62)

Plug z = 4d into (62) for B(f2,⋆) gives the excess risk for RFA model. As for BMLP(f2,⋆), we have

BMLP(f2,⋆) = Poly(p)

∞∑
k=0

(N+2)p(4k)4.5(N+2)4k
d2k

((2k)!)2
= 4pPoly(pdN)Θ

( ∞∑
k=0

((N + 2)
√
d)4k

((2k)!)2

)
.

Using similar argument, we get thatBMLP(f2,⋆) is bounded by Θ(Poly(pdN)4p exp(2(N + 2)
√
d)).

Using Theorem 2 and Proposition B.2, we can get the excess risk bound. This proves Proposition
B.5.

B.5 Random Feature Attention with Exponential Activation

We give a brief discussion on our results with activation function replaced by the exponential function
σ′(t) = exp(t). The random feature attention model with exponential activation (we call it ERFA) is
given as follows.

fWM (x0:N ;V) =
∑M
m=1

1
N

∑N
i=1 σ

′( 〈Wm, x̃0x̃
⊤
i

〉 )
⟨vm, x̃i⟩ . (63)

We consider deriving the explicit form of the Kernel KERFA(x0:N ,x
′
0:N ) associated with ERFA model

KERFA(x0:N ,x
′
0:N ) =

1

N2
EW

[ N∑
i,j=1

exp(⟨W, x̃0x̃
⊤
i + x̃′

0(x̃
′
j)

⊤⟩)⟨x̃i, x̃′
j⟩
]

(64)

For any i, j ∈ [N ], let ui,j =
〈
x̃0x̃

⊤
i , x̃

′
0(x̃

′
j)

⊤〉 /4. For a single component in (64), we have

EW∼N(0,1/4)

[
exp(⟨W, x̃0x̃

⊤
i + x̃′

0(x̃
′
j)

⊤⟩)
]
⟨x̃i, x̃′

j⟩

= exp

(
1

8

∥∥x̃0x̃
⊤
i + x̃′

0(x̃
′
j)

⊤∥∥2
F

)
⟨x̃i, x̃′

j⟩

= exp (1 + ui,j)⟨x̃i, x̃′
j⟩

= e

( ∞∑
ℓ=0

1

ℓ!
uℓi,j

)
⟨x̃i, x̃′

j⟩
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=

∞∑
ℓ=0

dℓ
〈
x̃0x̃

⊤
i , x̃

′
0(x̃

′
j)

⊤〉ℓ 4−ℓ⟨x̃i, x̃′
j⟩

=

∞∑
ℓ=0

dℓ

〈
2−ℓ(x̃0x̃

⊤
i )

⊗ℓ ⊗ x̃i, 2
−ℓ(x̃′

0(x̃
′
j)

⊤)⊗ℓ ⊗ x̃′
j

〉
.

Here dℓ = e/ℓ! for any ℓ ≥ 0. Therefore, the kernel can be expressed as:

KERFA(x0:N ,x
′
0:N ) =

∞∑
ℓ=0

〈√dℓ
N

N∑
i=1

2−ℓ(x̃0x̃
⊤
i )

⊗ℓ ⊗ x̃i,

√
dℓ
N

N∑
j=1

2−ℓ(x̃′
0(x̃

′
j)

⊤)⊗ℓ ⊗ x̃′
j

〉
.

Thus, for any target function f⋆ that in the form of (6), we can redefine its complexity measure as

B(f⋆) =
∑∞
k=0 Ck

∑
max{r,s}=k ∥frs∥

2
Fr , Ck = k!4kk2 ∨ 1 (65)

and obtain the corresponding results of Theorem 1 and Theorem 2 by repeating the proof of these
two theorems.

C Proofs for Section 4

We consider the empirical risk minimizer over the BRFA model (15),

V̂ = argminV∈VM
L̂D(f

W,W0

M (·;V)), L̂D(f) =
1
n

∑n
j=1 ℓ(f(x

(j)
0:N ), yj), (66)

where the constrained class VM gives (12), copied here for reader’s convenience,

VM =
{
V = {vm}Mm=1 :

∑M
m=1 ∥vm∥2 ≤ K1,

∑M
m=1 ∥vm∥22 ≤ K2/M

}
. (67)

Denote G to be the set of all functions in the function class (16), i.e.,

G =
{
g⋆ =

1

N

N∑
i=1

F (⟨x0,xi⟩)G(x0,xi) : F (t) =

∞∑
k=0

akt
k, G =

〈
x̃⊗3
i ⊗ x̃⊗2

0 ,A⋆

〉}
. (68)

We restate Theorem 3 in Theorem C.1 with detailed assumptions.
Theorem C.1 (Restatement of Theorem 3). Assume M > δ−1, n > log(dM) and let L ∈ Z≥1. Let
g⋆ = argming∈G LD(g) be the population risk minimizer within the target function class G (68).
Take K1 = C

√
B(g⋆, L) and K2 = CB(g⋆, L)δ

−1 in (67), with C being a constant. Let f̂W,W0

M =

fW,W0

M (·; V̂) be empirical risk minimizer given by (66). Then for any joint distribution P, with
probability at least 1− δ over {Wm}m∈[M ] sampled according to (4) and {(x(j)

0:N , yj)}j∈[n] ∼iid P,
the excess risk is bounded by

LD(f̂
W,W0

M )− LD(g⋆)

≲ inf
L

{√
B(g⋆, L)

[√ log(dM) log(nNM) + log(δ−1)

n
+

√
(d2 + logM)δ−1

M

]
+ εL ∥g⋆∥∞

}
,

where εL = 1/[2L+1(L+ 1)!] and

B(g⋆, L) = ∥A⋆∥2Fr · (
∑∞
k=0 |ak| · Ck)2, with Ck = (2L+ k)(k+3)/28L+k/2. (69)

C.1 Auxiliary results for the proof of Theorem 3

In this section, we give some auxiliary results used in the proof of Theorem 3. The proof will be
given in Section C.2. We define the biased transformer with infinite width (informally corresponding
to Eq. (15) with M → ∞), given by

fW0
v (x0:N ) =

1

N

N∑
i=1

EW

[
σ
(〈
W +W0, x̃0x̃

⊤
i

〉)
⟨v(W), x̃i⟩

]
(70)
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=
1

N

N∑
i=1

EW

[
σ
(〈
W, x̃0x̃

⊤
i

〉
+ hi

)
⟨v(W), x̃i⟩

]
,

where hi := ⟨W0, x̃0x̃
⊤
i ⟩ and W is sampled according to (4). Here we set W0 =

[Id×d,0d×1;01×d, 0]. Then hi = ⟨x0,xi⟩.
We consider a class of target functions g̃⋆ : X → R that takes form

g̃⋆(x0:N ) =
1

N

N∑
i=1

∞∑
ℓ=0

⟨uℓ(x̃0, x̃i),Dℓ⟩ , (71)

for some coefficients {Dℓ ∈ R(d+1)2ℓ+1}ℓ≥0 and

uℓ(x̃0, x̃i) =

 [hiΦ(hi) + ϕ(hi)]x̃i (ℓ = 0),
Φ(hi)x̃0x̃

⊤
i ⊗ x̃i (ℓ = 1),

ϕ(hi)Heℓ−2(hi)(x̃0x̃
⊤
i )

⊗ℓ ⊗ x̃i (ℓ ≥ 2),

where ϕ and Φ are the PDF and CDF of the standard Gaussian random variable, respectively. Lemma
C.1 below provides a counterpart of Lemma B.2 for the BRFA model and the target function (71).
Lemma C.1. Any function g̃⋆ of form (71) can be expressed exactly as an infinite-head random
feature attention model (70)

g̃⋆(x0:N ) = fW0
v (x0:N ) =

1

N

N∑
i=1

EW

[
σ
(〈
W +W0, x̃0x̃

⊤
i

〉)
⟨v(W), x̃i⟩

]
, (72)

where the coefficients v(·) satisfy

EW

[
∥v(W)∥22

]
≤
∑
ℓ≥0

4ℓℓ! ∥Dℓ∥2Fr .

Given Lemma C.1, we can get a counterpart of Theorem 1 for the BRFA model as Proposition C.1
below.
Proposition C.1 (Counterpart of Theorem 1 for BRFA). Suppose function g̃⋆ : X → R takes form (71).
Then for any input distribution P on X , with probability at least 1− δ (over {Wm}m∈[M ] sampled
from (4)), there exists an M -head BRFA model (15) with coefficients V = {vm}m∈[M ] ⊆ Rd+1 that
approximates g̃⋆ in L2(P ) up to error

Ex0:N∼P

[(
g̃⋆(x0:N )− fWM (x0:N ;V)

)2] ≤ O
(
(d2 + logM)B(g̃⋆)δ

−1

M

)
. (73)

In addition, the norms of the weight of this random-feature attention model are bounded as
M∑
m=1

∥vm∥2 ≤ O
(√

B(g̃⋆) +

√
B(g̃⋆)δ−1

M

)
,

M∑
m=1

∥vm∥22 ≤ O
(
B(g̃⋆)δ

−1

M

)
. (74)

Here B(g̃⋆) is defined alternatively as

B(g̃⋆) =
∑∞
k=0 Ck∥Dk∥2Fr, with Ck = k!4k ∨ 1. (75)

Furthermore, we could approximate the target function in the form (16) to any precision by a function
that takes form (72) , which is discussed in Lemma C.2.
Lemma C.2. For any target function g⋆ in the form of (16), and for any precision εℓ := 1

2ℓ+1(ℓ+1)!
,

there exists a function fW0
v in the form of (72) such that∥∥g⋆ − fW0

v

∥∥
∞ ≤ ∥g⋆∥∞ εℓ,

and

EW

[
∥v(W)∥22

]
≤

( ∞∑
p=0

ap8
ℓ+ p+3

2 (2ℓ+ p)
p+3
2

)2

∥A⋆∥2Fr ,

where the tensor A⋆ ∈ Rd5 parameterizes g⋆.
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C.1.1 Proof of auxiliary lemmas

Proof of Lemma C.1.

The function (72) can be interpreted as a linear function of the feature map

Ψ(x0:N ) =
1

N

N∑
i=1

σ
(
⟨W, x̃0x̃

⊤
i ⟩+ hi

)
x̃i.

So the kernel w.r.t. the feature map takes the form that

K(x0:N ,x
′
0:N )

= EW[⟨Ψ(x0:N ),Ψ(x′
0:N )⟩]

=
1

N2

∑
1≤i,j≤N

EW

[
σ
(
⟨W, x̃0x̃

⊤
i ⟩+ hi

)
σ
(
⟨W, x̃′

0x̃
′⊤
j ⟩+ h′j

)]
⟨x̃i, x̃′

j⟩,

where hi = ⟨x0,xi⟩ and h′j =
〈
x′
0,x

′
j

〉
. Similar to the proof of Lemma B.2, we also consider a

single component of the equation above first, which has the form of

EW

[
σ
(
⟨W, x̃0x̃

⊤
i ⟩+ hi

)
σ
(
⟨W, x̃′

0x̃
′⊤
j ⟩+ h′j

)]
⟨x̃i, x̃′

j⟩. (76)

We expand σ
(
⟨W, x̃0x̃

⊤
i ⟩+ hi

)
by Hermite polynomials in the space L2(R, ϕ) using Lemma A.3,

EW

[
σ
(
⟨W, x̃0x̃

⊤
i ⟩+ hi

)
Heℓ
(〈
W, x̃0x̃

⊤
i

〉)]
= Ez∼N(0,1)[σ(z + hi)Heℓ(z)]

=

 hiΦ(hi) + ϕ(hi) (ℓ = 0),
Φ(hi) (ℓ = 1),

(−1)ℓϕ(hi)Heℓ−2(hi) (ℓ ≥ 2).

Therefore, we have

σ
(
⟨W, x̃0x̃

⊤
i ⟩+ hi

)
= hiΦ(hi) + ϕ(hi) + Φ(hi)He1

(〈
W, x̃0x̃

⊤
i

〉)
+

∞∑
ℓ=2

(−1)ℓ

ℓ!
ϕ(hi)Heℓ−2(hi)Heℓ

(〈
W, x̃0x̃

⊤
i

〉)
.

Using Lemma A.1, we obtain the expansion:

EW

[
σ
(
⟨W, x̃0x̃

⊤
i ⟩+ hi

)
σ
(
⟨W, x̃′

0x̃
′⊤
j ⟩+ h′j

)]
⟨x̃i, x̃′

j⟩
= [hiΦ(hi) + ϕ(hi)]

[
h′jΦ

(
h′j
)
+ ϕ

(
h′j
)]
⟨x̃i, x̃′

j⟩
+ 2−2Φ(hi)Φ

(
h′j
) 〈

x̃0x̃
⊤
i , x̃

′
0x̃

′⊤
j

〉
⟨x̃i, x̃′

j⟩

+

∞∑
ℓ=2

{
1

ℓ!
2−2ℓϕ(hi)ϕ

(
h′j
)
Heℓ−2(hi)Heℓ−2

(
h′j
) 〈

x̃0x̃
⊤
i , x̃

′
0x̃

′⊤
j

〉ℓ} ⟨x̃i, x̃′
j⟩

=

∞∑
ℓ=0

〈
φℓ(x̃0, x̃i), φℓ(x̃

′
0, x̃

′
j)
〉
,

where

φℓ(x̃0, x̃i) =

√
1

ℓ!
2−ℓuℓ(x̃0, x̃i) =


[hiΦ(hi) + ϕ(hi)]x̃i (ℓ = 0),
2−1Φ(hi)x̃0x̃

⊤
i ⊗ x̃i (ℓ = 1),√

1
ℓ!2

−ℓϕ(hi)Heℓ−2(hi)(x̃0x̃
⊤
i )

⊗ℓ ⊗ x̃i (ℓ ≥ 2).

Then by taking summation with respect to i and j, we derive the expansion of the kernel:

K(x0:N ,x
′
0:N ) =

∞∑
ℓ=0

〈 1

N

N∑
i=1

φℓ(x0,xi),
1

N

N∑
j=1

φℓ(x
′
0,x

′
j)
〉
.
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Then for the target function that takes the form in (71), we have the RKHS norm of g̃⋆ bounded by:

∥g̃⋆∥2HK
≤

∞∑
ℓ=0

(
2ℓ
√
ℓ!
)2

∥Dℓ∥2Fr =
∞∑
ℓ=0

4ℓℓ! ∥Dℓ∥2Fr

by the feature equivalence property (23). Thus, there exists coefficients v(W) such that

fW0
v (x0:N ) =

1

N

N∑
i=1

EW

[
σ
(〈
W +W0, x̃0x̃

⊤
i

〉)
⟨v(W), x̃i⟩

]
and

EW

[
∥v(W)∥22

]
≤
∑
ℓ≥0

4ℓℓ! ∥Dℓ∥2Fr ,

which proves Lemma C.1.

Proof of Proposition C.1.

Note that Lemma B.1 is also applicable to the model BRFA. Combining it with Lemma C.1 proves
Proposition C.1.

Proof of Lemma C.2.

Firstly, we consider approximating xp using the function class {ϕ(x)Heℓ(x)}n≥0, which is equivalent
to approximating xpϕ−1(x) using Hermite polynomials. We take p = 0 first and compute the
Hermite expansion of the 2ℓ-th-order term in the Taylor expansion of ϕ−1(x) = ex

2/2, i.e. ψℓ(x) =∑ℓ
n=0

x2n

2nn! . Using Lemma A.2, we have that:

ψℓ(x) =

ℓ∑
n=0

x2n

2nn!
=

ℓ∑
n=0

(2n)!

2nn!

n∑
m=0

He2n−2m(x)

2mm!(2n− 2m)!

=

ℓ∑
k=0

He2k(x)

ℓ−k∑
m=0

(2m+ 2k)!

2m+k(m+ k)!
· 1

2mm!(2k)!

=:
ℓ∑

k=0

cℓ,kHe2k(x),

where cℓ,k = 2k

(2k)!

∑ℓ−k
m=0

(2m+2k)!
22m+2k(m+k)!m!

. Similarly, for any p ≥ 0, define p0 = ⌊p2⌋ with r =

p− 2p0. We have that

ψℓ(x)x
p =

ℓ∑
n=0

x2n+2p0+r

2nn!
=

ℓ∑
n=0

(2n+ 2p0 + r)!

2nn!

n+p0∑
m=0

He2n+2p0+r−2m(x)

2mm!(2n+ 2p0 + r − 2m)!

=

ℓ+p0∑
k=0

He2k+r(x)

ℓ+p0−k∑
m=max(p0−k,0)

(2m+ 2k + r)!

2m+k−p0(m+ k − p0)!
· 1

2mm!(2k + r)!

=:

ℓ+p0∑
k=0

cℓ,k,p0He2k+r(x),

where cℓ,k,p0 =
∑ℓ+p0−k
m=max(p0−k,0)

(2m+2k+r)!
2m+k−p0 (m+k−p0)!

· 1
2mm!(2k+r)! . Then we can bound cℓ,k,p0 as

follows:

cℓ,k,p0 =

ℓ+p0−k∑
m=max(p0−k,0)

(2m+ 2k + r)!

2m+k−p0(m+ k − p0)!
· 1

2mm!(2k + r)!

≤
ℓ+p0−k∑
m=0

2p0
(m+ k)!

(m+ k − p0)!

(2m+ 2k + r)!

2m+k(m+ k)!
· 1

2mm!(2k + r)!
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≤ 2p0(ℓ+ p0)
p0(2l + p)r

ℓ+p0−k∑
m=0

(2m+ 2k)!

2m+k(m+ k)!
· 1

2mm!(2k)!
≤ (2ℓ+ p)p0+rcℓ+p0,k.

Next, we give an upper bound of cℓ,k:

cℓ,k =
2k

(2k)!

ℓ−k∑
m=0

(2m+ 2k)!

22m+2k(m+ k)!m!

=
2k

(2k)!

ℓ−k∑
m=0

(2m+ 2k)!

22m+2k(m+ k)!(m+ k)!
· (m+ k)!

m!

≤ 2k

(2k)!

ℓ−k∑
m=0

√
1

m+ k
· (m+ k)!

m!

=
2k

(2k)!

ℓ−k∑
m=0

√
m+ k · (m+ k − 1)!

m!

≤ 2k

(2k)!

√
ℓ
ℓ−k∑
m=0

(m+ k − 1)!

m!

=
2k

(2k)!

√
ℓ

ℓ!

k(ℓ− k)!
.

Here we use the inequality that√
2

π(2n+ 1)
≤ (2n)!

22nn!n!
≤
√

1

2n
,∀n ≥ 1.

and we will use it again in the following proof. Since the function

1

N
ϕ(⟨x0,xi⟩)ψℓ(⟨x0,xi⟩)

N∑
i=1

⟨x0,xi⟩p
〈
x̃⊗3
i ⊗ x̃⊗2

0 ,A⋆

〉
can be written as

1

N

N∑
i=1

ℓ+p0∑
k=0

〈
u2k+r+2(x̃0, x̃i), cℓ,k,p0A⋆ ⊗ e⊗(4k+2r)

〉
,

where e = diag(0, 0, ..., 1). By Lemma C.1, there exists vp,ℓ(W) s.t.

fW0
vp,ℓ

(x0:N ) = ϕ(⟨x0,xi⟩)ψℓ(⟨x0,xi⟩)
1

N

N∑
i=1

⟨x0,xi⟩p
〈
x̃⊗3
i ⊗ x̃⊗2

0 ,A⋆

〉
with

EW

[
∥vp,ℓ(W)∥22

]
≤ ∥A⋆∥2Fr

ℓ+p0∑
k=0

42k+r+2(2k + r + 2)!c2ℓ,k,p0 .

Notice that
ℓ+p0∑
k=0

42k+r+2(2k + r + 2)!c2ℓ,k,p0

≤
ℓ+p0∑
k=0

42k+r+2(2k + r + 2)!
[
(2ℓ+ p)p0+rcℓ+p0,k

]2
≤ (2ℓ+ p)2p0+2r

ℓ+p0∑
k=0

42k+r+2(2k + r + 2)!

[
2k

(2k)!

√
ℓ+ p0

(ℓ+ p0)!

k(ℓ+ p0 − k)!

]2
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≤ 4(2ℓ+ p)2p0+2r(2ℓ+ 2p0 + r + 2)

ℓp∑
k=0

42k+2(2k + 2)!

[
2k

(2k)!

√
ℓp

(ℓp)!

k(ℓp)!

]2
,

where ℓp = ℓ+ p0, and by the inequality that
ℓp∑
k=0

42k+2(2k + 2)!

[
2k

(2k)!

√
ℓp

(ℓp)!

k(ℓp)!

]2

=

ℓp∑
k=0

24k+4ℓp
(2k + 2)(2k + 1)

k2
22k

(2k)!

[
ℓp!

(ℓp − k)!

]2

≤
ℓp∑
k=0

24k+4ℓp
(2k + 2)(2k + 1)

k2

√
π

2
(2k + 1)

[
ℓp!

k!(ℓp − k)!

]2

≤ 8× 24ℓp+4ℓ
3
2
p

ℓ∑
k=0

[
ℓp!

k!(ℓp − k)!

]2
= 4

√
2× 24ℓp+4ℓ

3
2
p

(
2ℓp
ℓp

)
≤ 4

√
2× 24ℓp · (64)ℓp ,

we obtain an upper bound:

EW

[
∥vp,ℓ(W)∥22

]
≤ (2ℓ+ p)2p0+2r ∥A⋆∥2Fr

ℓ+p0∑
k=0

42k+r+2(2k + r + 2)!c2ℓ+p0,k

≤ ∥A⋆∥2Fr × 4(2ℓ+ p)2p0+2r(2ℓ+ 2p0 + r + 2)× 4
√
2× 24ℓp · (64)ℓp

≤ ∥A⋆∥2Fr (2ℓ+ p)p+r+182ℓ+2p0+3.

Finally, we consider the target function (16)

g⋆(x0:N ) =
1

N

N∑
i=1

F (⟨x0,xi⟩)G(x0,xi), F (t) =

∞∑
p=0

apt
p, G(x0,xi) =

〈
x̃⊗3
i ⊗ x̃⊗2

0 ,A⋆

〉
.

By approximating 1
N

∑N
i=1 ap ⟨x0,xi⟩pG(x0,xi) separately and adding the approximation functions

together, we obtain a vℓ s.t. fW0
vℓ

(x0:N ) = ϕ(⟨x0,xi⟩)ψℓ(⟨x0,xi⟩)g⋆(x0:N ) and

EW

[
∥vp,ℓ(W)∥22

]
≤

( ∞∑
p=0

ap8
ℓ+p/2+3/2(2ℓ+ p)

p+3
2

)2

∥A⋆∥2Fr = 83B(g⋆, L)

and
∥∥g⋆ − fW0

vℓ

∥∥
∞ = ∥(ϕψℓ − 1)g⋆∥∞ ≤ ∥ϕψℓ − 1∥∞ ∥g⋆∥∞ ≤ e

2ℓ+1(ℓ+1)!
∥g⋆∥∞ = ∥g⋆∥∞ εℓ.

This finishes the proof of Lemma C.2.

C.2 Proof of Theorem C.1

Proof. For any L > 0, using Lemma C.2, we can find a function fW0
vL

such that
∥∥g⋆ − fW0

vL

∥∥
∞ ≤

∥g⋆∥∞ εL with B(fW0
vL

) ≤ 83B(g⋆, L). Follow the same manner as the proof of Theorem 2. We can
get that

LD(f̂
W,W0

M )−LD(fW0
vL

)

≲
√
B(g⋆, L)

[√ log(dM) log(nNM) + log(δ−1)

n
+

√
(d2 + logM)δ−1

M

]
.

Therefore, we have that
LD(f̂

W,W0

M )− LD(g⋆)

= LD(f̂
W,W0

M )− LD(f
W0
vL

) + LD(f
W0
vL

)− LD(g⋆)

≲
√
B(g⋆, L)

[√ log(dM) log(nNM) + log(δ−1)

n
+

√
(d2 + logM)δ−1

M

]
+ εL ∥g⋆∥∞ . (77)

Taking infimum over L proves Theorem 3.
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C.3 Proof of Examples in Section 4

Proposition C.2 (Restatement of Example 4). Consider the target function

g⋆ =
1

N

N∑
i=1

⟨x⊗3
i ⊗ x⊗2

0 ,A⟩.

It has norm bound B(g⋆, L) = ∥A∥2Fr L382L. So for any η > 0, if we take n ≥ exp(exp(Θ(1/η))),
L = Θ((1+ log log n)−1 log n), and M = Θ(d2n), the excess risk will scale as Õ(

√
∥A∥2Fr/n1−η).

Proof of Proposition C.2. The value of B(g⋆, L) can be obtained by definition and by direct calcula-
tion. As for the second part of the proposition, take L = r log n, where r > 0 is a parameter that is to
be chosen to minimize the excess risk. Eq. (17) becomes

Õ(∥A∥Fr r
3/2n3r−1/2 + n−r log(2/e)−r log r−r log logn), (78)

where Õ hides all the logarithm factors and constants of n, d, and M . To minimize the excess risk,
we need to make the two terms in (78) have the same scale. So we set 3r − 1/2 = −r log(2/e)−
r log r − r log log n. Denoting the solution as r⋆, we get that

r⋆ =
1/2− r⋆ log r⋆

log(2e2) + log log n
.

So this gives r⋆ < (1/2 + 1/e)(log(2e2) + log log n)−1. Assume r⋆ < 1 (otherwise 3r⋆ >
1/2 and the excess risk is meaningless), then r⋆ > (2 log(2e2) + 2 log log n)−1. Therefore, we
get that r⋆ = C(1 + log log n)−1, with C being a constant. As a result, when choosing L =

r⋆ log n = Θ((1 + log log n)−1 log n), the excess risk Eq. (78) scales as Õ(∥A∥Fr n3r⋆−
1
2 ) =

Õ(∥A∥Fr nC/(1+log logn)− 1
2 ). As a result, let n > exp(exp(C/η − 1)) where C is a constant, we

get an excess risk that scales as Õ(
√

∥A∥2Fr/n1−η). This finishes the proof of Proposition C.2.

Proposition C.3 (Restatement of Example 5). Consider the target function

g⋆ =
1

N

N∑
i=1

⟨x0,xi⟩p ⟨β,xi⟩ , β ∈ Sd−1.

It has B(g⋆, L) = (2L+ p)p+382L+p. For any η > 0, choosing the same parameters (n,L,M) as
Example 4, the excess risk bound scales as Õ(

√
(log n+ p)(p+3)8p/n1−η).

Furthermore, to reach an accuracy of 0.01, the BRFA model requires n⋆ = Õ((8p+48)p+3), whereas
the RFA model requires n⋆ = Õ((4d)p).

Proof of Proposition C.3. The value of B(g⋆, L) can be obtained by direct calculation, and we use
the same method as the proof of Proposition C.2 to get the Õ(

√
1/n1−η) excess risk. To reach an

accuracy of 0.01, we can set L = 3, note that εL ∥g⋆∥∞ < 0.006. Therefore we just need to choose
n⋆ s.t. n > Õ((6 + p)p+386+p), and this gives n⋆ = Õ((8p+ 48)p+3) for the BRFA model. Direct
calculation using Theorem 2 gives the value of n⋆ for the model RFA. This finishes the proof of
Proposition C.3.

Proposition C.4 (Restatement of Example 6). Consider the target function that has the form

g⋆ =
1

N

N∑
i=1

cos(⟨x0,xi⟩)
〈
x⊗3
i ,G

〉
.

It has B(g⋆, L) = Θ((8e)2L). For any η > 0, choosing the same parameters as Example 4, the
excess risk bound scales as Õ(

√
1/n1−η).

Furthermore, to reach an accuracy of 0.01. The BRFA model requires n⋆ = Õ(1), whereas the
RFA model requires n⋆ = Õ(Poly(d) exp(

√
d)).
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Proof of Proposition C.4. We use the expansion of the cos function,

g⋆ =
1

N

N∑
i=1

∞∑
k=0

(−1)k

(2k)!
⟨x0,xi⟩2k

〈
x⊗3
i ,G

〉
.

Then use the Eq. (17), we get that

B(g⋆, L) =

∞∑
k=0

(2L+ 2k)k+3/28L+k

(2k)!
≤
∑
k

(2k + 3)k+3/28k

(2k)!
(8e)L = Θ((8e)L).

This gives the formula for B(g⋆, L). To reach an accuracy of 0.01, we set L = 3. Then B(g⋆, L) =

Θ(1). So BRFA needs n⋆ = Õ(1). And Theorem 2 and Example 3 show that RFA model would
require n⋆ = Õ(Poly(d) exp(

√
d)). This finishes the proof of Proposition C.4.

D Further experiments

In addition to Section 5, we perform further simulations to examine our theory upon the approximation
power of RFA (5), BRFA (15), and RFMLP (14). Besides the target function (21), we consider two
additional target functions of the form

f3,p(x0:N ) = ⟨β,x0⟩p , p ∈ N, β ∈ Sd−1, (79)

f4,γ(x0:N ) = 1
N

∑N
i=1 ⟨x0,Sxi⟩3 ⟨β,xi⟩ , β ∈ Sd−1, S = Z + γId. (80)

The target function (79) is a specific instance of Example 1, and the target function (80) is a specific
instance of Example 3. In (80), we sample Zij∼iidN(0, 1/d) for (i, j) ∈ [d]2 and vary γ in the
experiment. Other experimental settings are the same as in Section 5.

Figure 3 demonstrates the effect of sequence length N on the performance of three RF models when
fitting the target function f3,2 (79), which solely depends on x0. We observe that a larger sequence
lengthN leads to a larger separation of the test error between RFMLP and the other two random-feature
attention models. This result aligns with our sample complexity analysis detailed in Example 1,
where the sample complexity bound of RFMLP for learning average of functions of xi is found to be
O((N/4)p) times greater than that of RFA.

Figure 4 demonstrates the performance comparison between RFA and BRFA under different choices
of the token dimension d. As we can see from the left panel of Figure 4, in the case of d = 4, RFA
outperforms BRFA for large sample size, which may result from that BRFA has slower convergence
rate with respect to the sample size n as we state in Example 5. In the middle and the right panel (i.e.,
when d is larger), BRFA exceeds RFA, and the largest separation lies in the case of d = 32. This result
is consistent with our analyses that BRFA saves a Poly(d) factor in the sample complexity for d≫ p.

Figure 5 demonstrates that BRFA has no advantage in approximating the target function f4,γ for
γ = 0 (left panel; i.e., (Sij∼iidN(0, 1/d), for (i, j) ∈ [d]2). However, as γ increases, BRFA
outperforms RFA and their separation increases with a larger γ (middle and right panel). Notice that
limγ→∞ ⟨x0,Sxi⟩ /γ = ⟨x0,xi⟩. So this result also conforms to our analysis that BRFA is adept at
approximating functions of correlations as in Example 5.

In conclusion, RFA and BRFA have similar performance in fitting functions without correlation
structure, such as (20) and (79), and RFA may behave even better in some cases. However, BRFA is
presumably more powerful than RFA in approximating functions of correlations.

D.1 Weight matrices in BERT

As noted in Section 4, we plot the query-key matrices (weight matrices) of the BERT-Base model [29]6

and show that many query-key matrices are diagonally dominated. The BERT-Base model has 12
attention layers with 12 heads in each layer. Denote the query matrix in the i-th head of j-th layer as
Qij ∈ R768×64 and the key matrix as Kij ∈ R768×64. We compute Wij =

√
768 ·QijK⊤

ij for i, j
from 1 to 12, and then take the absolute value for each entry of the weight matrices Wij . Figure 1

6Downloaded from https://huggingface.co/bert-base-uncased.
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Figure 3: Test error of three RF models for learning f3,2 (79). We fix d = 16 while varying N = 4
(left), 8 (middle), and 16 (right). The other settings are the same as in Figure 2.
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Figure 4: Test error of three RF models for learning f2,3 (21). We fix N = 16 while vary d = 8
(left), 16 (middle), and 32 (right). For a fair comparison among RFA, BRFA, and RFMLP, the number
of heads of RFMLP is taken to be MRFMLP = 9000 (left), 17000 (middle), and 33000 (right). The other
settings are the same as in Figure 2.
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Figure 5: Test error of three RF models for learning f4,γ (80). We choose γ = 0 (left), 2 (middle),
and 8 (right). The other settings are the same as in Figure 2.
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shows the heat maps of weight matrices of the 2nd, 5th, 8th, and 11th layers, where all matrices are
clipped to the top-left 32×32 block. As we can see, a lot of weight matrices are diagonally dominated.
We remark that a very recent and concurrent paper [84] observed similar phenomena for the ViT-Tiny
model. They further show that diagonally dominated weight initialization of self-attention layers
allows training transformers faster and obtaining higher final accuracies on CIFAR-10 and ImageNet
datasets.
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