
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix
A DATASET DETAILS

We use 5 node-level graph datasets (Cora, Citeseer (Kipf & Welling, 2017), Ogbn-arixv (Hu
et al., 2020a), Flickr (Zeng et al., 2020), and Reddit (Hamilton et al., 2017)) and 5 graph-level
graph datasets (GEOM (Axelrod & Gomez-Bombarelli, 2020), BACE (Wu et al., 2018), BBBP (Martins
et al., 2012), ClinTox (Gayvert et al., 2016), and SIDER (Kuhn et al., 2016)). We further provide
the statics of datasets in Table A1.

Table A1: Statistics of datasets.

Level Dataset # Classes / # Tasks #Nodes / #Graphs # Edges # Features

Node-level

Cora 7 2,708 5,429 1,433
Citeseer 6 3,327 4,732 3,703

Ogbn-Arxiv 40 169,343 1,166,243 128
Flickr 7 89,250 899,756 500
Reddit 210 232,965 57,307,946 602

Graph-level

BACE 1 1,513 - -
BBBP 1 2,039 - -

ClinTox 2 1,478 - -
Sider 27 1,427 - -

B SELF-SUPERVISED TEACHER TASKS

In the paper, we utilize different self-supervised task guided models as the way we extract the
“universal knowledge” from the original dataset G. Here, we present each model we used.

For node-level classification tasks, we follow AutoSSL (Jin et al., 2022a) and adopt five classic tasks:

• DGI (Velickovic et al., 2019): Maximizes the different views’ representations (graph v.s. nodes).
• CLU (You et al., 2020b): Predicts pseudo-labels from K-means clustering on node features.
• PAR (You et al., 2020b): Predicts pseudo-labels from Metis graph partition (Karypis & Kumar,

1998).
• PAIRSIM (Jin et al., 2020): Predicts pairwise feature similarity between nodes.
• PAIRDIS (Peng et al., 2020): Predicts the shortest path length between nodes.

In the graph-level classification tasks, we follow WAS (Fan et al., 2024) to adopt 7 classic tasks:

• AttrMask (Hu et al., 2020b): Learns the regularities of node/edge attributes.
• ContextPred (Hu et al., 2020b): Explores graph structures by predicting the contexts.
• EdgePred (Hamilton et al., 2017): Predicts the connectivity of node pairs.
• GPT-GNN (Hu et al., 2020c): Introduces an attributed graph generation task to pre-train GNNs.
• GraphLoG (Xu et al., 2021): Introduces a hierarchical prototype to capture the global semantic

clusters.
• GraphCL (You et al., 2020a): Constructs specific contrastive views of graph data.
• InfoGraph (Sun et al., 2019): Maximizes the mutual information between the representations of

the graph and substructures.

C PROOF OF THEOREM 1

Proof. We aim to prove that:

I(Ys
s;Y

h
s ) ≤ I(PT (X,A);Y). (A.1)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Since Ys
s and Yh

s are obtained from PT (X,A) and Y through kernel ridge regression—which is a
deterministic mapping, they can be expressed as:

Ys
s = f

(
PT (X,A)

)
, (A.2)

Yh
s = g(Y), (A.3)

where f and g are the regression functions.

According to the data processing inequality (Beaudry & Renner, 2012), applying deterministic
functions to random variables does not increase mutual information. Therefore, we have:

I
(
Ys

s;Y
h
s

)
≤ I

(
PT (X,A);Y

)
. (A.4)

D TIME COMPLEXITY ANALYSIS

ST-GCond primarily consists of two parts: sampling sub-tasks for meta updating and involving
self-supervised tasks to guide condensing. For the former, we can treat them as a composition of
bi-level optimization. Following GCond (Jin et al., 2022c), we start with an L-layer GCN, where
the large-scale graph has N nodes, the small yet informative condensed graph has m nodes, and the
hidden dimension is d. The computation cost for a single task involves a forward pass through the
GNN, which is O(Lm2d + Lmd), and through gϕ, which is O(m2d2). The inner optimization of
kernel ridge regression can be expressed as O(Nmr2 +Nm) (Wang et al., 2024). Therefore, the
single task complexity is O(Lm2d+ Lmd+m2d2 +Nmr2 +Nm). Denoting the split of tasks as
t, the complexity for the former part can be shown as tO(Lm2d+ Lmd+m2d2 +Nmr2 +Nm).

For the latter, the calculation process is similar to the former, although we introduce multiple self-
supervised models during the condensing stage. Thanks to the benefits of the offline strategy, we
only need the extra computation complexity of kO(LEd + LNd2), where k denotes the number
of self-supervised tasks. Therefore, the overall complexity can be expressed as (t+ 1)O(Lm2d+
Lmd+m2d2 +Nmr2 +Nm) + kO(LEd+ LNd2). Note that t and k are not set to be too large.

To intuitively demonstrate the efficiency comparison, we present the running time (in seconds) of the
proposed ST-GCond and GCond over 50 epochs on a single A100 GPU. Thanks to the efficiency
of kernel ridge regression, we avoid the time-consuming triple-level optimization. As a result, our
method is empirically 1.14 to 2.17 times faster than the previous GCond method.

Table A2: Comparison of running time of GCond and ST-GCond(in seconds).

Ogbn-arxiv r=0.05% r=0.25% r=0.5%
GCond (Jin et al., 2022c) 217.18 386.71 765.12

ST-GCond 178.27 278.44 399.15

E COMPUTATION RESOURCE

We conduct all experiments with:

• Operating System: Ubuntu 20.04 LTS.
• CPU: Intel(R) Xeon(R) Platinum 8358 CPU@2.60GHz with 1TB DDR4 of Memory.
• GPU: NVIDIA Tesla A100 SMX4 with 40GB of Memory.
• Software: CUDA 10.1, Python 3.8.12, PyTorch (Paszke et al., 2019) 1.7.0.

F PARAMETER SETTING

In our proposed ST-GCond, we mainly need to handle four hyperparameters lr, α, β, k, the actual
search space of them are:

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

lr 0.1, 0.01, 0.001

α (0.0, 1.0)
β (0.0, 1.0)
k 5

Note that the search space for α and β may change during training. For simplicity, we use 10 discrete
points. The actual time consumption will depend on the Cartesian product of the individual runs.

G ALGORITHMS

G.1 ALGORITHM 1

Algorithm 1 ST-GCond: Self-supervised and Transferable Graph Dataset Condensation

1: Input: Graph Dataset G = (X,A,Y), pre-trained teachers {fT
1 (·), . . . , fT

K (·)}, steps T , condensation
ratio r.

2: Output: Condensed graph dataset Gs = (Xs,As,Y
h
s ,Y

s
s).

3: Initialize weights {λi =
1
K
}Ki=1, Xs by selecting r% features/class, Yh

s with labels.
4: Initialize As = gϕ(Xs), Ys

s = 1
K

∑
λif

T
i (Xs,As).

5: for t = 0, · · · , T − 1 do
6: Initialize θ ∼ Pθ .
7: while not converge do
8: D′ = 0.
9: Sample tasks Tc ∼ p(TY ).

10: for Ti do
11: Sample GTi ∼ G, GTi

s ∼ Gs.
12: // Meta-training
13: Adapt parameters with Lself on GTi

s : θ
′
i ← θ − λ1∇θLTi

self (GNNθ,GTi
s ).

14: // Meta-updating
15: Combine representation: ŶTi =

∑K
i=1 λif

T
i (GTi).

16: Compute Lcls,Lself , and LMI on GTi :

D′ ← D′ +
(
∇θ′i
LTi

cls(GNNθ′i
,GTi) + α∇θ′i

LTi
self (Ŷ

Ti ,GTi) + β∇θ′i
LTi
MI(Y

s
s;Y

h
s )
)

.
17: end for
18: Update {λi}Ki=1, Xs, Ys

s , ϕ, and θ.
19: end while
20: end for
21: Generate the condensed graph: As = ReLU(gϕ(Xs)− δ), Gs = (Xs,As,Y

h
s ,Y

s
s)

H MORE EXPERIMENTS

H.1 PARAMETER SENSITIVITY

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0.1 0.3 0.5 0.7 0.9
70

75

80

85

90

A
cc

ur
ac

y 
(%

)

Cora Citeseer Reddit

Figure A1: Sensitive of β

18


