Under review as a conference paper at ICLR 2025

Appendix

A DATASET DETAILS

We use 5 node-level graph datasets (Cora, Citeseer (Kipf & Welling, 2017), Ogbn-arixv (Hu
etal., 2020a), Flickr (Zeng et al.,, 2020), and Reddit (Hamilton et al., 2017)) and 5 graph-level
graph datasets (GEOM (Axelrod & Gomez-Bombarelli, 2020), BACE (Wu et al., 2018), BBBP (Martins
etal, 2012),ClinTox (Gayvert et al., 2016), and SIDER (Kuhn et al., 2016)). We further provide
the statics of datasets in Table A 1.

Table A1: Statistics of datasets.

Level Dataset # Classes / # Tasks #Nodes / #Graphs # Edges # Features
Cora 7 2,708 5,429 1,433

Citeseer 6 3,327 4,732 3,703

Node-level Ogbn-Arxiv 40 169,343 1,166,243 128
Flickr 7 89,250 899,756 500

Reddit 210 232,965 57,307,946 602

BACE 1 1,513 - -

BBBP 1 2,039 - -

Graph-level 01§ 7ox 2 1,478 - -
Sider 27 1,427 - -

B SELF-SUPERVISED TEACHER TASKS

In the paper, we utilize different self-supervised task guided models as the way we extract the
“universal knowledge” from the original dataset G. Here, we present each model we used.

For node-level classification tasks, we follow AutoSSL (Jin et al., 2022a) and adopt five classic tasks:

* DGI (Velickovic et al., 2019): Maximizes the different views’ representations (graph v.s. nodes).
¢ CLU (You et al., 2020b): Predicts pseudo-labels from K -means clustering on node features.

* PAR (You et al., 2020b): Predicts pseudo-labels from Metis graph partition (Karypis & Kumar,
1998).

PAIRSIM (Jin et al., 2020): Predicts pairwise feature similarity between nodes.

PAIRDIS (Peng et al., 2020): Predicts the shortest path length between nodes.

In the graph-level classification tasks, we follow WAS (Fan et al., 2024) to adopt 7 classic tasks:

* AttrMask (Hu et al., 2020b): Learns the regularities of node/edge attributes.

e ContextPred (Hu et al., 2020b): Explores graph structures by predicting the contexts.

* EdgePred (Hamilton et al., 2017): Predicts the connectivity of node pairs.

¢ GPT-GNN (Hu et al., 2020c): Introduces an attributed graph generation task to pre-train GNNs.

¢ GraphLoG (Xu et al., 2021): Introduces a hierarchical prototype to capture the global semantic
clusters.

e GraphCL (You et al., 2020a): Constructs specific contrastive views of graph data.

¢ InfoGraph (Sun et al., 2019): Maximizes the mutual information between the representations of
the graph and substructures.

C PROOF OF THEOREM 1

Proof. We aim to prove that:
I(Y3Y!) < I(PT(X,A)Y). (A.D)

15

Under review as a conference paper at ICLR 2025

Since Y¢ and Y are obtained from P7 (X, A) and Y through kernel ridge regression—which is a
deterministic mapping, they can be expressed as:

Y:=f(PT(X A)), (A2)
Y! =g(Y), (A.3)
where f and g are the regression functions.

According to the data processing inequality (Beaudry & Renner, 2012), applying deterministic
functions to random variables does not increase mutual information. Therefore, we have:

I(YSYD) <I(PT(X,A)Y). (A.4)

O

D TIME COMPLEXITY ANALYSIS

ST-GCond primarily consists of two parts: sampling sub-tasks for meta updating and involving
self-supervised tasks to guide condensing. For the former, we can treat them as a composition of
bi-level optimization. Following GCond (Jin et al., 2022c¢), we start with an L-layer GCN, where
the large-scale graph has N nodes, the small yet informative condensed graph has m nodes, and the
hidden dimension is d. The computation cost for a single task involves a forward pass through the
GNN, which is O(Lm?d + Lmd), and through g, which is O(m?d?). The inner optimization of
kernel ridge regression can be expressed as O(Nmr? + Nm) (Wang et al., 2024). Therefore, the
single task complexity is O(Lm?2d + Lmd + m?d? + Nmr? + Nm). Denoting the split of tasks as
t, the complexity for the former part can be shown as tO(Lm?d + Lmd + m?d*> + Nmr? + Nm).

For the latter, the calculation process is similar to the former, although we introduce multiple self-
supervised models during the condensing stage. Thanks to the benefits of the offline strategy, we
only need the extra computation complexity of kO(LEd + LNd?), where k denotes the number
of self-supervised tasks. Therefore, the overall complexity can be expressed as (t + 1)O(Lm?2d +
Lmd + m?2d? + Nmr? + Nm) + kO(LEd + LNd?). Note that ¢ and k are not set to be too large.

To intuitively demonstrate the efficiency comparison, we present the running time (in seconds) of the
proposed ST-GCond and GCond over 50 epochs on a single A100 GPU. Thanks to the efficiency
of kernel ridge regression, we avoid the time-consuming triple-level optimization. As a result, our
method is empirically 1.14 to 2.17 times faster than the previous GCond method.

Table A2: Comparison of running time of GCond and ST-GCond(in seconds).

Ogbn-arxiv r=0.05% r=0.25% 1r=0.5%
GCond (Jinetal., 2022¢) 217.18 386.71 765.12
ST-GCond 178.27 278.44 399.15

E COMPUTATION RESOURCE

We conduct all experiments with:

* Operating System: Ubuntu 20.04 LTS.

* CPU: Intel(R) Xeon(R) Platinum 8358 CPU@2.60GHz with 1TB DDR4 of Memory.
* GPU: NVIDIA Tesla A100 SMX4 with 40GB of Memory.

* Software: CUDA 10.1, Python 3.8.12, PyTorch (Paszke et al., 2019) 1.7.0.

F PARAMETER SETTING

In our proposed ST-GCond, we mainly need to handle four hyperparameters Ir, o, 3, k, the actual
search space of them are:

16

Under review as a conference paper at ICLR 2025

Ir 0.1,0.01, 0.001

o (0.0, 1.0)
B (0.0, 1.0)
k 5

Note that the search space for o and 8 may change during training. For simplicity, we use 10 discrete
points. The actual time consumption will depend on the Cartesian product of the individual runs.

G ALGORITHMS

G.1 ALGORITHM 1

Algorithm 1 ST-GCond: Self-supervised and Transferable Graph Dataset Condensation

1: Input: Graph Dataset G = (X, A,Y), pre-trained teachers {f (), ..., f&(-)}. steps T, condensation
ratio 7.

2: Output: Condensed graph dataset G, = (X, A YR YY),

3: Initialize weights {\; = %}f{:l, X, by selecting 7% features/class, Y with labels.

4: Tnitialize A, = g¢(Xs), Y5 = L S N f7 (X, Ay).

5: fort=0,---, 7 —1do

6 Initialize 6 ~ Py.

7 while not converge do

8

9

D' =o.

Sample tasks 7. ~ p(Ty).
10: for 7; do
11: Sample G7 ~ G, 6T ~ G
12: // Meta-training
13: Adapt parameters with Lecir on GJi: 0; « 0 —)\1V9£Z—élf(GNN@7 Grl).
14: // Meta-updating
15: Combine representation: Y7+ = Zfil XS (G7H).
16: Compute L5, Lseif, and Ly on g7

D'« D + (V%CCT;S(GNN% LG 4+ Ve LT (YT, GT6) + BV g LT (Y5 Y.?))-

17: end for
18: Update {\;} £, X, Y2, ¢, and 6.
19: end while
20: end for

21: Generate the condensed graph: A, = ReLU(g4(Xs) — 9), Gs = (X5, A5, Y2, Y?)

H MORE EXPERIMENTS

H.1 PARAMETER SENSITIVITY

17

Under review as a conference paper at ICLR 2025

O
wn O

0. 03 05 07 09
B

—— Cora —&— Citeseer Reddit

Accuracy (%)
~J o0 (02e]
l{] (e]

~
e

Figure Al: Sensitive of 3

18

