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A Additional Information for Hyperedge Prediction1

Table 1 shows the mean test auc and standard deviation over 10 different train-test splits. We compare2

HyperQuery with two other state of the art baseline methods. We find that our approach outperforms3

the other methods by a large margin, with high confidence.4

Augmented HyperQuery Classifier (Baseline): As discussed in the main paper, we evaluate the5

baseline that treats hyperedge prediction problem as a classification task where we add an extra label6

in our dataset that represents the negative hyperedges (hyperedges that do not exist) and use our7

classification framework without community detection.8

HyperQuery-minmax: The best performing hyperedge prediction formulation presented in this9

paper. We use operator minmax for the Ω aggregation function. We use 16 communities for our10

community detection step.11

NHP-minmax: GCN based hyperedge prediction that can be used for directed and undirected12

hypergraphs. We used the minmax operator for this approach as well.13

HyperSAGNN: A self attention approach for hyperedge prediction that can only be used for undi-14

rected hypergraphs. We used random-walk basd approach.15

Comparing the performance of HyperQuery with the baselines clearly demonstrates the effectiveness16

of leveraging community detection algorithms to improve prediction accuracy. Our explanation for17

this is that community detection algorithms minimize global objectives, such as approximations of18

the NP-Hard multiway cut problem, whereas existing algorithms rely on purely local approaches19

like random walks and graph convolutions to learn salient features. Our results demonstrate that20

partitioning with community detection can be an extremely powerful tool when one sets out to learn21

useful representations of hypergraph structured data.22

Table 1: Area Under Curve (AUC) scores for hyperedge prediction.

IAF1260B IJO1366 USPTO DBLP
AUC AUC AUC AUC

BASELINE 62.4 ±.4 60.4±1. 65.5±.1 65.1±1.
HYPERQUERY-MINMAX 72.2 ±.5 68.5±1. 75.7±.1 72.0±1.
NHP-MINMAX 64.3 ±3. 63.2 ±2. 74.2 ±2. 69.2 ±2.
HYPER-SAGNN 60.1 ±1. 56.3 ±2. 67.1 ±1. 65.2 ±1.
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Key Idea Summary: By assigning labels to known 
hyperedges, it’s possible to define a two step transformation 
that maps HyperQueries onto statistical features.  We 
then learn to predict the base label from these features.
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What is a HyperQuery?

A1: A HyperQuery consists of a collection of nodes in a 
fully labeled hypergraph.  

A2: A HyperQuery is a question.  Given a collection of 
nodes, our HyperQuery oracle will answer by predicting 
prospective label and class information for unsee edges.

Figure 1: In the body of the main paper, we evaluate our HyperQuery pipeline trained with different
sets of statistical features. In particular, HYPERQUERY-MEAN computes the coordinate wise mean
of the node feature distribution, and after bilinear lifting this feature corresponds to the covariance
matrix of this distribution. HYPERQUERY-VAR and HYPERQUERY-MINMAX measure the closely
related coordinate-wise sample range and sample variance, which perform somewhat similarly in
practice. The bilinear pooling operation in the case of variance can be thought of as computing a
particularly relevant slice of the full 4th order multivariate kurtosis tensor. While we have had trouble
finding an analogous measure in the literature, we find that using such “Sliced Multivariate Kurtosis”
features can improve hyperedge prediction accuracy, particularly on larger datasets. Our explanation
of this phenomena is that hypergraphs encode higher order relationships between nodes, and thus
capturing higher order statistics is essential to building reliable models for hyperedge prediction and
classification.

B Illuminating HyperQuery Representations23

While hyperedge prediction has been studied in a number of settings, our approach of using commu-24

nity detection algorithms to define categorical labels on hyperedges sets HyperQuery apart from prior25

art, both in terms of methodology and in terms of performance.26

In figure 1 we illustrate the zoo of statistical features that we evaluated. Though concatenating27

these features together can improve performance of our pipeline, however in our paper we focused28

on evaluating each statistical feature separately in order to more clearly illustrate their relative29

effectiveness for our benchmark tasks. In future work, it would be interesting to explore learned30

approaches to this feature generation step as well.31

C Time complexity32

We analyze the time complexity of our framework (i.e., Equations 9, 10,and 11 in the main paper in33

terms of the size of the hypergraph, assuming the number of labels is independent of the size of the34

hypergraph. Let m denote the number of hyperedges and n denote the number of nodes. Let deg(vi)35

denote the degree of node vi and let ∆ denote max1≤i≤ndeg(vi). For Equation 9, our framework36

takes O(n ·∆) time.37

For Equation 10, let deg(ei) denote the degree of hyperedge ei and let ∆ denote max1≤i≤mdeg(ei).38

Equation 10 takes O(m ·∆) time. Finally, the time complexity of Equation 11 is constant since the39

number of labels is independent of the size of the graph. Overall, our framework takes O(m ·∆) +40

O(n ·∆).41
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