
Reproducibilty Report

PMI-guided Masking Strategy to Enable Few-shot Learning for Genomic
Applications

Here we provide the following resources required for: (a) Computing Normalized-PMIn for all
6-mers based on the Human Reference Genome. (b) PMI-best - pretraining and finetuning (c)
Datasets of Prom-core, Prom-300, and Cohn-enh used for the different few-shot settings. (d) de novo
motif discovery using the rGADEM R package.

DNABert

1. Clone or download the GitHub repository from https://github.com/jerryji1993/DNABERT, as
provided by the authors of DNABert.
2. Follow the exact environment setup instructions as mentioned under Section 1.
3. After completing this stage, the virtual environment with Python 3.6 will be ready with the
packages and dependencies installed as provided by the requirements.txt file
under ./examples/ subdirectory. Here "." refers to the root directory (head).
4. Pretraining: The authors provide only a template file as pretraining data with 3000 examples, so
we create the pretraining data from scratch based on the Human Reference Genome.

a) Code-A: Creation of pretraining data in k-mer format from the Human Reference Genome.
b) Store the pretraining data created at ./examples/sample_data/pre
c) Code-B: We modify the run_pretrain.py file provided by the authors and thus provide the
modified code.

i. This step has a data dependency of the ranked list of 6-mers based on Normalized-PMIn
ii. Code-C: We provide the code to create the ranked list given the Human Reference
Genome as input
iii. Data-A: Final ranked list with PMI scores.

d) Script-A: As mentioned in the paper, we update the hyperparameters for PMI-best without
HGA to adapt to the few-shot setting for model training and provide the training script to run
5. Finetuning: The authors only provide a template file from the Prom-core dataset. Thus we have to
build the dataset from scratch based on the instructions mentioned by the authors.

a) Data-B:We provide the datasets for Prom-core, Prom-300, and Cohn-enh for all the few-shot
settings. Create a folder at ./examples/sample_data/ft-fewshot, and a separate sub-directory for
each few-shot setting can be created.
b) Code-D: We modify the run_finetune.py file provided by the authors and thus provide the
modified code.
c) Script-B: We have two finetuning settings - one for 10, 50, and 100-shot (with FS) and the
other for 500 and 1000-shot (without FS).

6. Prediction: We do not use any development set for hyperparameter optimization because it is the
standard setup for few-shot text classification. Thus we use Script-B itself for testing. We put the test
dataset in the directory of the DATA_PATH environment variable, the same directory as the training
data. We also remove the evaluate_during_training flag so that the test dataset is only evaluated after
completing the training.

LOGO

LOGO required a significant amount to reproduce, although the authors made the codes available at
https://github.com/melobio/LOGO. The codes contained hard-coded path mentions, and the

https://github.com/jerryji1993/DNABERT

documentation was insufficient to resolve them. We then did a more in-depth analysis and noticed
the following in their model pretraining code, which is available
at https://github.com/melobio/LOGO/blob/master/01_Pre-training_Model/02_train_gene_transforme
r_lm_hg_bert4keras_tfrecord.py
1. Lines 27 and 28 correspond to Albert's config, and the model is commented.
2. Lines 261 to 294, here they define the model configuration based on the Bert model instead of
Albert. They take the Bert-base model and modify the configuration files to resemble Albert's setup.

Based on the above observations, we decided to use the DNABert model (based on Bert-base) and
change the model configuration to that used by the authors of LOGO. The comparison between
DNABert and LOGO is mentioned in Table 4 of the Appendix. Specifically, we modify the
DNABert's 6-mer configuration file found at ./src/transformers/dnabert-config-6/config.json and
provide modified code (Code-E).

Please store the modified configuration JSON file at ./src/transformers/logo-config-6/config.json and
copy the remaining files from the dnabert-config-6 subdirectory.

We follow the same pretraining and finetuning process as done in the case of DNABert, as described
above. We have to add an extra parameter (one line) to Script-A:

--config_name=$SOURCE/src/transformers/dnabert-config/logo-config-$KMER/config.json \

Motif Analysis

Code-F:We provide the code to reproduce the de novo motif discovery results using the rGADEM R
package as described in Section 6.3 (Motif Analysis). The approach is based on the following
resource: Unsupervised motif discovery tutorial from
https://compgenomr.github.io/book/motif-discovery.html

https://github.com/melobio/LOGO/blob/master/01_Pre-training_Model/02_train_gene_transformer_lm_hg_bert4keras_tfrecord.py
https://github.com/melobio/LOGO/blob/master/01_Pre-training_Model/02_train_gene_transformer_lm_hg_bert4keras_tfrecord.py

