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Abstract1

Knowledge graphs, modeling multi-relational data, improve numerous applications2

such as question answering or graph logical reasoning. Many graph neural networks3

for such data emerged recently, often outperforming shallow architectures. However,4

the design of such multi-relational graph neural networks is ad-hoc, driven mainly5

by intuition and empirical insights. Up to now, their expressivity, their relation to6

each other, and their (practical) learning performance is poorly understood. Here,7

we initiate the study of deriving a more principled understanding of multi-relational8

graph neural networks. Namely, we investigate the limitations in the expressive power9

of the well-known Relational GCN and Compositional GCN architectures and shed10

some light on their practical learning undertaking. By aligning both architectures with11

a suitable version of the Weisfeiler-Leman test, we establish under which conditions12

both models have the same expressive power in distinguishing non-isomorphic (multi-13

relational) graphs or nodes with different structural roles. Further, by leveraging14

recent progress in designing expressive graph neural networks, we introduce the15

k-RN architecture that provably overcomes the expressiveness limitations of the16

above two architectures. Empirically, we confirm our theoretical findings in a node17

classification setting over small and large multi-relational graphs.18

1 Introduction19

Recently, GNNs [1, 2] emerged as the most prominent graph representation learning architecture. No-20

table instances of this architecture include, e.g., Duvenaud et al. [3], Hamilton et al. [4], and Veličković21

et al. [5], which can be subsumed under the message-passing framework introduced in Gilmer et al.22

[1]. In parallel, approaches based on spectral information were introduced in, e.g., Defferrard et al.23

[6], Bruna et al. [7], Kipf and Welling [8], and Monti et al. [9]—all of which descend from early work24

in Scarselli et al. [2], Baskin et al. [10], Kireev [11], Micheli and Sestito [12], Merkwirth and Lengauer25

[13], Micheli [14] and Sperduti and Starita [15].26

By now, we have a deep understanding of the expressive power of GNNs [16]. To start with, connections27

between GNNs and Weisfeiler–Leman type algorithms have been shown. Specifically, Morris et al. [17]28

and Xu et al. [18] showed that the 1-WL limits the expressive power of any possible GNN architecture29

in terms of distinguishing non-isomorphic graphs. In turn, these results have been generalized to the30

k-WL, see, e.g., Morris et al. [17], Azizian and Lelarge [19], Geerts et al. [20], Geerts [21], Maron31

et al. [22], Morris et al. [23, 24], and connected to permutation-equivariant function approximation over32

graphs, see, e.g., Chen et al. [25], Geerts and Reutter [26], Maehara and NT [27]. Barceló et al. [28]33

further established an equivalence between the expressiveness of GNNs with readout functions and C2,34

the 2-variable fragment of first-order logic with counting quantifiers.35

Most previous works focus on graphs that admit labels on nodes but not edges. However, knowledge36

or multi-relational graphs, that admit labels on both nodes and edges play a crucial role in numerous37

applications, such as complex question answering in NLP [29] or visual question answering [30] in the38

intersection of NLP and vision. To extract the rich information encoded in the graph’s multi-relational39

structure and its annotations, the knowledge graph community has proposed a large set of relational40

GNN architectures, e.g., [31–33] tailored toward knowledge or multi-relational graphs, targeting tasks41

such as node and link prediction [31, 33, 34]. Notably, Schlichtkrull et al. [31] proposed the first42

architecture, namely, R-GCN, being able to handle multi-relational data. Further, Vashishth et al. [32]43
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proposed an alternative GNN architecture, CompGCN, using less number of parameters and reported44

improved empirical performance. In the knowledge graph reasoning area, R-GCN and CompGCN, being45

strong baselines, spun off numerous improved GNNs for node classification and transductive link46

prediction tasks [35–37]. They also inspired architectures for more complex reasoning tasks such as47

inductive link prediction [34, 38–40] and query answering [41–43].48

Although these approaches show meaningful empirical performance, their limitations in extracting49

relevant structural information, their learning performance, and their relation to each other are not50

understood well. For example, there is no understanding of these approaches’ inherent limitations51

in distinguishing between knowledge graphs with different structural features, explicitly considering52

the unique properties of multi-relational graphs. Hence, a thorough theoretical investigation of multi-53

relational GNNs’ expressive power and learning performance is yet to be established to become54

meaningful, vital components in today’s knowledge graph reasoning pipeline.55

Present work. Here, we initiate the study on deriving a principled understanding of the capabilities of56

GNNs for knowledge or multi-relational graphs. More concretely:57

• We investigate the expressive power of two well-known GNNs for multi-relation data, Relational58

GCNs (R-GCN) [31] and Compositional GCNs (CompGCN) [32]. We quantify their limitations59

by relating them to a suitable version of the established Weisfeiler-Leman graph isomorphism60

test [44]. In particular, we show under which conditions the above two architectures possess the61

same expressive power in distinguishing non-isomorphic, multi-relational graphs or nodes with62

different structural features.63

• To overcome both architectures’ expressiveness limitations, we introduce the k-RN architecture,64

which provably overcomes their limitations and show that increasing k always leads to strictly65

more expressive architectures.66

• Empirically, we confirm our theoretical findings on established small- and large-scale multi-67

relational node classification benchmarks.68

See Appendix A.1 for an expanded discussion of related work.69

2 Preliminaries70

As usual, let [n] = {1, . . . , n} ⊂ N for n ≥ 1, and let {{. . . }} denote a multiset.71

A (undirected) graph G is a pair (V (G), E(G)) with a finite set of vertices V (G) and a set of edges72

E(G) ⊆ {{u, v} ⊆ V | u ̸= v}. For notational convenience, we usually denote an edge {u, v} in73

E(G) by (u, v) or (v, u). We assume the usual definition of adjacency matrix A of G. A colored74

or labeled graph G is a triple (V (G), E(G), ℓ) with a coloring or label function ℓ : V (G) → N.75

Then ℓ(w) is a color or label of w, for w in V (G). The neighborhood of v in V (G) is denoted by76

N(v) = {u ∈ V (G) | (v, u) ∈ E(G)}.77

An (undirected) multi-relational graph G is a tuple (V (G), R1(G), . . . , Rr(G)) with a finite set of78

vertices V (G) and relations Ri ⊆ {{u, v} ⊆ V (G) | u ̸= v} for i in [r]. The neighborhood of v in79

V (G) with respect to the relation Ri is denoted by Ni(v) = {u ∈ V (G) | (v, u) ∈ Ri}. We define80

colored (or labeled) multi-relational graphs in the expected way.81

Two graphs G and H are isomorphic (G ≃ H) if there exists a bijection φ : V (G) → V (H) preserving82

the adjacency relation, i.e., (u, v) in E(G) if and only if (φ(u), φ(v)) in E(H). We then call φ an83

isomorphism from G to H . If the graphs have vertex labels, the isomorphism is additionally required to84

match these labels. In the case of multi-relational graphs G and H , the bijection φ : V (G) → V (H)85

needs to preserve all relations, i.e., (u, v) is in Ri(G) if and only if (φ(u), φ(v)) is in Ri(H) for each86

i in [r]. For labeled multi-relational graphs, the bijection needs to preserve the labels.87

We define the atomic type atp : V (G)k → N such that atp(v) = atp(w) for v and w in V (G)k88

if and only if the mapping φ : V (G) → V (G) where vi 7→ wi induces a partial isomorphism, i.e.,89

vi = vj ⇐⇒ wi = wj and (vi, vj) in E(G) ⇐⇒ (φ(vi), φ(vj)) in E(G).90

The Weisfeiler-Leman Algorithm. The 1-dimensional Weisfeiler-Leman algorithm (1-WL), or color91

refinement, is a simple heuristic for the graph isomorphism problem, originally proposed by Weisfeiler92
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and Leman [45].1 Intuitively, the algorithm determines if two graphs are non-isomorphic by iteratively93

coloring or labeling vertices. Given an initial coloring or labeling of the vertices of both graphs, e.g.,94

their degree or application-specific information, in each iteration, two vertices with the same label get95

different labels if the number of identically labeled neighbors is not equal. If, after some iteration, the96

number of vertices annotated with a specific label is different in both graphs, the algorithm terminates97

and a stable coloring, inducing a vertex partition, is obtained. We can then conclude that the two98

graphs are not isomorphic. It is easy to see that the algorithm cannot distinguish all non-isomorphic99

graphs [47]. Nonetheless, it is a powerful heuristic that can successfully test isomorphism for a broad100

class of graphs [48–50].101

Formally, let G = (V (G), E(G), ℓ) be a labeled graph. In each iteration, t > 0, the 1-WL computes a102

vertex coloring C(t) : V (G) → N, which depends on the coloring of the neighbors. That is, in iteration103

t > 0, we set104

C(t)(v) := RELABEL
((
C(t−1)(v), {{C(t−1)(u) | u ∈ N(v)}}

))
,

where RELABEL injectively maps the above pair to a unique natural number, which has not been105

used in previous iterations. In iteration 0, the coloring C(0) := ℓ. To test if two graphs G and H are106

non-isomorphic, we run the above algorithm in “parallel” on both graphs. If the two graphs have a107

different number of vertices colored c in N at some iteration, the 1-WL distinguishes the graphs as108

non-isomorphic. Moreover, if the number of colors between two iterations, t and (t + 1), does not109

change, i.e., the cardinalities of the images of C(t) and C(t+1) are equal, or, equivalently,110

C(t)(v) = C(t)(w) ⇐⇒ C(t+1)(v) = C(t+1)(w),

for all vertices v and w in V (G), the algorithm terminates. For such t, we define the stable coloring111

C∞(v) = C(t)(v) for v in V (G). The stable coloring is reached after at most max{|V (G)|, |V (H)|}112

iterations [51].113

Due to the shortcomings of the 1-WL in distinguishing non-isomorphic graphs, several researchers,114

e.g., [52, 53], devised a more powerful generalization of the former, today known as the k-dimensional115

Weisfeiler-Leman algorithm (k-WL), see Appendix A.2 for details.116

Graph Neural Networks. Intuitively, GNNs learn a vectorial representation, i.e., a d-dimensional117

vector, representing each vertex in a graph by aggregating information from neighboring vertices.118

Formally, let G = (V (G), E(G), ℓ) be a labeled graph with initial vertex features (h(0)
v )v∈V (G) in Rd

119

that are consistent with ℓ, that is, h(0)
u = h(0)

v if and only if ℓ(u) = ℓ(v), e.g., a one-hot encoding of the120

labelling ℓ. Alternatively, (h(0)
v )v∈V (G) can be arbitrary vertex features annotating the vertices of G.121

A GNN architecture consists of a stack of neural network layers, i.e., a composition of permutation-122

invariant or -equivariant parameterized functions. Similarly to 1-WL, each layer aggregates local123

neighborhood information, i.e., the neighbors’ features, around each vertex and then passes this124

aggregated information on to the next layer.125

GNNs are often realized as follows [17]. In each layer, t > 0, we compute vertex features126

h(t)
v := σ

(
h(t−1)
v W

(t)
0 +

∑
w∈N(v)

h(t−1)
w W

(t)
1

)
∈ Re, (1)

for v in V (G), where W (t)
0 and W

(t)
1 are parameter matrices from Rd×e and σ denotes an entry-wise127

non-linear function, e.g., a sigmoid or a ReLU function.2 Following Gilmer et al. [1] and Scarselli et al.128

[2], in each layer, t > 0, we can generalize the above by computing a vertex feature129

h(t)
v := UPD(t)

(
h(t−1)
v ,AGG(t)

(
{{h(t−1)

w | w ∈ N(v)}}
))

,

1Strictly speaking, 1-WL and color refinement are two different algorithms. That is, 1-WL considers neighbors
and non-neighbors to update the coloring, resulting in a slightly higher expressive power when distinguishing
vertices in a given graph, see Grohe [46] for details. For brevity, we consider both algorithms to be equivalent.

2For clarity of presentation, we omit biases.
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where UPD(t) and AGG(t) may be differentiable parameterized functions, e.g., neural networks.3 In the130

case of graph-level tasks, e.g., graph classification, one uses131

hG := READOUT
(
{{h(T )

v | v ∈ V (G)}}
)
,

to compute a single vectorial representation based on learned vertex features after iteration T . Again,132

READOUT may be a differentiable parameterized function. To adapt the parameters of the above133

three functions, they are optimized end-to-end, usually through a variant of stochastic gradient descent,134

e.g., [54], together with the parameters of a neural network used for classification or regression.135

Graph neural networks for multi-relational graphs. In the following, we describe GNN layers for136

multi-relational graphs, namely R-GCN [31] and CompGCN [32]. Initial features are computed in the137

same way as in the previous subsection.138

R-GCN. Let G be a labeled multi-relational graph. In essence, R-GCN generalizes Equation (1) by using139

an additional sum iterating over the different relations. That is, we compute a vertex feature140

h
(t)
v,R-GCN := σ

(
h
(t−1)
v,R-GCNW

(t)
0 +

∑
i∈[r]

∑
w∈Ni(v)

h
(t−1)
w,R-GCNW

(t)
i

)
∈ Re, (2)

for v in V (G), where W
(t)
0 and W

(t)
i for i in [r] are parameter matrices from Rd×e, and σ denotes141

a entry-wise non-linear function. We note here that the original R-GCN layer defined in [31] uses a142

mean operation instead of a sum in the most inner sum of Equation (2). We investigate the empirical143

advantages of this two layer variation in Section 5.144

CompGCN. Let G be a labeled multi-relational graph. A CompGCN layer generalizes Equation (1) by145

encoding relational information as edge features. That is, we compute a vertex feature146

h
(t)
v,CompGCN := σ

(
h
(t−1)
v,CompGCNW

(t)
0 +

∑
i∈[r]

∑
w∈Ni(v)

ϕ
(
h
(t−1)
w,CompGCN, z

(t)
i

)
W

(t)
1

)
∈ Re, (3)

for v in V (G), where W (t)
0 and W

(t)
1 are parameter matrices from Rd×e and Rc×e, respectively, and147

z
(t)
i in Rb is the learned edge feature for the i-th relation at layer t. Further, ϕ : Rd × Rb → Rc is a148

composition map, mapping two vectors onto a single vector in a non-parametric way, e.g., summation,149

point-wise multiplication, or concatenation. We note here that the original CompGCN layer defined150

in [32] uses an additional sum to differentiate between in-going and out-going edges and self loops,151

see Appendix E for details.152

3 Relational Weisfeiler–Leman algorithm153

In the following, to study the limitations in expressivity of the above two GNN layers, R-GCN and154

CompGCN, we define the multi-relational 1-WL (1-RWL). Let G = (V (G), R1(G), . . . , Rr(G), ℓ) be155

a labeled, multi-relational graph. Then the 1-RWL computes a vertex coloring C
(t)
R : V (G) → N for156

t > 0 by interpreting the different relations as edge types, i.e.,157

C
(t)
R (v) := RELABEL

((
C

(t−1)
R (v), {{(C(t−1)

R (u), i) | i ∈ [r], u ∈Ni(v)}}
))
, (4)

for v in V (G). In iteration 0, the coloring C
(0)
R := ℓ. In particular, two vertices v and w of the same158

color in iteration (t− 1) get different colors in iteration t if there is a relation Ri such that the number159

of neighbors in Ni(v) and Ni(w) colored with a certain color is different. We define the stable coloring160

C∞
R in the expected way, analogously to the 1-WL.161

Relationship between 1-RWL, R-GCN, and CompGCN Morris et al. [17], Xu et al. [18] established the162

exact relationship between the expressive power of 1-WL and GNNs. In particular, 1-WL upper bounds163

the capacity of any GNN architecture for distinguishing nodes in graphs. In turn, over every graph G164

there is a GNN architecture with the same expressive power as 1-WL for distinguishing nodes in G. In165

this section, we show that the same relationship can be established between multi-relational 1-WL, on166

the one hand, and the R-GCN and CompGCN architectures, on the other.167

3Strictly speaking, Gilmer et al. [1] consider a slightly more general setting in which vertex features are
computed by h

(t+1)
v := UPD(t+1)

(
h

(t)
v ,AGG(t+1)

(
{{(h(t)

v ,h
(t)
w , ℓ(v, w)) | w ∈ N(v)}}

))
.
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Let G = (V (G), R1(G), . . . , Rr(G), ℓ) be a labeled, multi-relational graph, and let

W
(t)
R-GCN =

(
W

(t′)
0 ,W

(t′)
i

)
t′≤t,i∈[r]

denote the sequence of R-GCN parameters given by Equation (2) up to iteration t. Analogously, we
denote by

W
(t)
CompGCN = (W

(t′)
0 ,W

(t′)
1 , z

(t′)
i )t′≤t,i∈[r]

the sequence of CompGCN parameters given by Equation (3) up to iteration t. We first show that the168

multi-relational 1-WL upper bounds the expressivity of both the R-GCN and CompGCN layers in terms169

of their capacity to distinguish nodes in labeled multi-relational graphs.170

Theorem 1. Let G = (V (G), R1(G), . . . , Rr(G), ℓ) be a labeled, multi-relational graph. Then for all171

t ≥ 0 the following holds:172

• For all choices of initial vertex features consistent with ℓ, sequences W(t)
R-GCN of R-GCN parameters,173

and nodes v and w in V (G),174

C
(t)
R (v) = C

(t)
R (w) =⇒ h

(t)
v,R-GCN = h

(t)
w,R-GCN.

• For all choices of initial vertex features consistent with ℓ, sequences W
(t)
CompGCN of CompGCN175

parameters, composition functions ϕ, and nodes v and w in V (G),176

C
(t)
R (v) = C

(t)
R (w) =⇒ h

(t)
v,CompGCN = h

(t)
w,CompGCN.

Noticeably, the converse also holds. That is, there is a sequence of parameter matrices W(t)
R-GCN such that177

R-GCN has the same expressive power in terms of distinguishing nodes in graphs as the coloring C
(t)
R .178

This equivalence holds provided the initial labels are encoded by linearly independent vertex features,179

e.g., using one-hot encodings. The result also holds for CompGCN as long as the composition map ϕ can180

express vector scaling, e.g., ϕ is point-wise multiplication or circular-correlation, two of the composition181

functions studied and implemented in the paper that introduced the CompGCN architecture [32].182

Theorem 2. Let G = (V (G), R1(G), . . . , Rr(G), ℓ) be a labeled, multi-relational graph. Then for all183

t ≥ 0 the following holds:184

• There are initial vertex features and a sequence W(t)
R-GCN of parameters such that for all v and w in185

V (G),186

C
(t)
R (v) = C

(t)
R (w) ⇐⇒ h

(t)
v,R-GCN = h

(t)
w,R-GCN.

• There are initial vertex features, a sequence W(t)
CompGCN of parameters and a composition function187

ϕ such that for all v and w in V (G),188

C
(t)
R (v) = C

(t)
R (w) ⇐⇒ h

(t)
v,CompGCN = h

(t)
w,CompGCN.

On the choice of the composition function for CompGCN architectures As Theorem 2 shows the189

expressive power of the 1-RWL is matched by that of the CompGCN architectures if we allow the latter to190

implement vector scaling in composition functions. However, not all composition maps that have been191

considered in relationship with CompGCN architectures admit such a possibility. Think, for instance, of192

natural composition maps such as point-wise summation or vector concatenation. Interestingly, we can193

show that CompGCN architectures equipped with these composition maps are provably weaker in terms194

of expressive power than the ones studied in the proof of Theorem 2, as they correlate with a weaker195

variant of 1-WL that we define next.196

Let G = (V (G), R1(G), . . . , Rr(G), ℓ) be a labeled, multi-relational graph. The weak multi-relational197

1-WL computes a vertex coloring C
(t)
WR : V (G) → N for t > 0 as follows:198

C
(t)
WR(v) := RELABEL

((
C

(t−1)
WR (v), {{C(t−1)

WR (u) | i ∈ [r], u ∈Ni(v)}}, |N1(v)|, . . . , |Nr(v)|
))

for v in V (G). In iteration 0, the coloring C
(0)
WR := ℓ. During aggregation, the weak variant does not199

take information about the relations into account. The only information relative to the different relations200

is the number of neighbors associated with each of them. We define the stable coloring C∞
WR analogously201

to the 1-WL. As it turns out, this variant is less powerful than the original one.202
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Proposition 3. There exist a labeled, multi-relational graph G = (V (G), R1(G), R2(G), ℓ) and two203

nodes v and w in V (G), such that C(1)
R (v) ̸= C

(1)
R (w) but C∞

WR(v) = C∞
WR(w).204

As shown next, the expressive power of CompGCN architectures that use point-wise summation or205

vector concatenation is captured by this weaker form of 1-RWL.206

Theorem 4. Let G = (V (G), R1(G), . . . , Rr(G), ℓ) be a labeled, multi-relational graph. Then for all207

t ≥ 0 the following holds:208

• For all choices of initial vertex features consistent with ℓ, sequence W
(t)
CompGCN of CompGCN209

parameters, and nodes v and w in V (G),210

C
(t)
WR(v) = C

(t)
WR(w) =⇒ h

(t)
v,CompGCN = h

(t)
w,CompGCN,

for either point-wise summation or concatenation as the composition map.211

• There exist initial vertex features and a sequence W(t)
CompGCN of CompGCN parameters, such that212

for all nodes v and w in V (G),213

C
(t)
WR(v) = C

(t)
WR(w) ⇐⇒ h

(t)
v,CompGCN = h

(t)
w,CompGCN,

for either point-wise summation or concatenation as the composition map.214

Together with Proposition 3 and Theorem 2, this result states that CompGCN architectures based on215

vector summation or concatenation are provably weaker in terms of their capacity to distinguish nodes216

in graphs than the ones that use vector scaling.217

We have shown that R-GCN and CompGCN with point-wise multiplication have the same expressive218

power in terms of distinguishing non-isomorphic multi-relational graphs or distinguishing nodes in a219

multi-relational graph. As it turns out, these two architectures actually define the same functions. A220

similar result holds between CompGCN with vector summation/subtraction and concatenation. See221

Appendix B.2 for details.222

4 Limitations and more expressive architectures223

Theorem 1 shows that both R-GCN as well as CompGCN have severe limitations in distinguishing224

structurally different multi-relational graphs. Indeed the following results shows that there exist pairs of225

non-isomorphic, multi-relational graphs that neither R-GCN nor CompGCN can distinguish.226

Proposition 5. For all r ≥ 1, there exists a pair of non-isomorphic graphs G =227

(V (G), R1(G), . . . , Rr(G), ℓ) and H = (V (H), R1(H), . . . , Rr(H), ℓ) that cannot be distinguished228

by R-GCN or CompGCN.229

We note here that the two graphs G and H from the above theorem can also be used to show that230

neither R-GCN nor CompGCN will be able to compute different features for nodes in G and H , making231

them indistinguishable. Hence, to overcome the limitations of the CompGCN and R-GCN, we introduce232

local k-order relational networks (k-RNs), leveraging recent progress in overcoming GNNs’ inherent233

limitations in expressive power [16, 17, 23, 24]. To do so, we first extend the local k-dimensional234

Weisfeiler–Leman algorithm [23], see Appendix A.2, to multi-relational graphs.235

Multi-relational local k-WL. Given a multi-relational graph G = (V (G), R1(G), . . . , Rr(G), ℓ),236

we define the multi-relational atomic type atpr : V (G)k → N such that atpr(v) = atpr(w) for v237

and w in V (G)k if and only if the mapping φ : V (G) → V (G) where vg 7→ wg induces a partial238

isomorphism, preserving the relations, i.e., we have vp = vq ⇐⇒ wp = wq and (vp, vq) ∈239

Ri(G) ⇐⇒ (φ(vp), φ(vq)) ∈ Ri(G) for i in [r]. The multi-relational local k-WL (k-RLWL)240

computes C(t)
k,r : V (G)k → N for t ≥ 0, where C(0)

k,r := atpr(v), and refines a coloring C
(t)
k,r (obtained241

after t iterations of the k-RLWL) via the aggregation function242

M (t)
r (v) :=

(
{{(C(t)

k,r(θ1(v, w)), i) | w ∈ Ni(v1) and i ∈ [r]}}, . . . ,

{{(C(t)
k,r(θk(v, w)), i) | w ∈ Ni(vk) and i ∈ [r]}}

)
,

(5)

where θj(v, w) := (v1, . . . , vj−1, w, vj+1, . . . , vk). That is, θj(v, w) replaces the j-th component of243

the tuple v with the vertex w. Like the local k-WL, the algorithm considers only the local j-neighbors,244
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i.e., vi and w must be adjacent, for each relation in each iteration and additionally differentiates between245

different relations. The coloring functions for the iterations of the multi-relational k-RLWL are then246

defined by247

C
(t+1)
k,r (v) := (C

(t)
k,r(v),M

(t)
r (v)).

In the following, we derive a neural architecture, the k-RN, that has the same expressive power as the248

k-RLWL in terms of distinguishing non-isomorphic multi-relational graphs.249

The k-RN architecture. Given a labeled, multi-relational graph G, for each k-tuple v in V (G)k, a250

k-RN architecture computes an initial feature h(0)
v consistent with its multi-relational atomic type, e.g.,251

a one-hot encoding of atpr(v). In each layer, t > 0, a k-RN computes a k-tuple feature252

h
(t)
v,k := UPD(t)

(
h
(t−1)
v,k ,AGG(t)

(
{{ϕ(h(t−1)

θ1(v,w),k, z
(t)
i ) | w ∈ Ni(v1) and i ∈ [r]}}, . . . ,

{{ϕ(h(t−1)
θk(v,w),k, z

(t)
i ) | w ∈ Ni(vk) and i ∈ [r]}}

))
∈ Re,

(6)

where the functions UPD(t) and AGG(t) for t > 0 may be a differentiable parameterized functions, e.g.,253

neural networks. Similarly to Equation (3), z(t)
i in Rc is the learned edge feature for the ith relation254

at layer t and ϕ : Rd × Rb → Rc is a composition map. In the case of graph-level tasks, e.g., graph255

classification, one uses256

hG := READOUT
(
{{h(T )

v | v ∈ V (G)k}}
)
∈ Re, (7)

to compute a single vectorial representation based on learned k-tuple features after iteration T . The257

following results shows that the k-RLWL upperbounds the expressivity of any k-RN in terms of258

distinguishing non-isomorphic graphs.259

Proposition 6. Let G = (V (G), R1(G), . . . , Rr(G), ℓ) be a labeled, multi-relational graph. Then for260

all t ≥ 0, r > 0, k ≥ 1, and all choices of UPD(t), AGG(t), and all v and w in V (G),261

C
(t)
k,r(v) = C

(t)
k,r(w) =⇒ h

(t)
v,k = h

(t)
w,k.

Moreover, we can also show the converse, resulting in the following theorem.262

Proposition 7. Let G = (V (G), R1(G), . . . , Rr(G), ℓ) be a labeled, multi-relational graph. Then for263

all t ≥ 0 and k ≥ 1, there exists UPD(t), AGG(t), such that for all v and w in V (G),264

C
(t)
k,r(v) = C

(t)
k,r(w) ⇐⇒ h

(t)
v,k = h

(t)
w,k.

The following result implies that increasing k leads to a strict boost in terms of expressivity of the265

k-RLWL and k-RN architectures in terms of distinguishing non-isomorphic multi-relational graphs.266

Proposition 8. For k ≥ 2 and r ≥ 1, there exists a pair of non-isomorphic multi-relational graphs267

Gr = (V (Gr), R1(Gr), . . . , Rr(Gr), ℓ) and H = (V (Hr), R1(Hr), . . . , Rr(Hr), ℓ) such that:268

• For all choices of UPD(t), AGG(t), for t > 0, and READOUT the k-RN architecture will not269

distinguish the graphs Gr and Hr.270

• There exists UPD(t), AGG(t), for t > 0, and READOUT such that the (k+1)-RN will distinguish271

them.272

Moreover, the following results shows that for k = 2 the k-RN architecture is strictly more expressive273

than CompGCN and R-GCN in distinguishing non-isomophics graphs.274

Corollary 9. There exists a 2-RN architecture that is strictly more expressive than the CompGCN and275

the R-GCN architecture in terms of distinguishing non-isomorphic graphs.276

See Appendix C for discussion on scalability and node-level prediction with a k-RN architecture.277
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(a) AIFB results with varying input feature dimension.
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(b) AM results with dim = 4.

Figure 1: Node classification performance of CompGCN and R-GCN on smaller (AIFB) and larger (AM)
graphs. Initial vertex feature dimensions higher than 4 do not improve the accuracy.

5 Experimental study278

Here, we investigate to what extend the above theoretical results hold for real-world data distribution.279

Specifically, we aim to answer the following questions.280

Q1 Does the theoretical equivalence of R-GCN and CompGCN hold in practice?281

Q2 Does the performance depend on the dimension of node features?282

Q3 Does CompGCN benefit from normalization and learnable edge weights?283

Q4 Does the theoretical difference in composition functions of CompGCN hold in practice?284

285

Datasets. To answer Q1 to Q4, we investige R-GCN and CompGCN’s empirical performance on the286

small-scale AIFB (6 000 nodes) and the large-scale AM (1.6 million nodes) [55] vertex classification287

benchmark dataset; see Appendix F for dataset statistics.288

Featurization. Most relational GNNs for vertex- and link-level tasks assume that the initial vertex states289

come from a learnable vertex embedding matrix [56, 57]. However, this vertex feature initialization290

or featurization method makes the model inherently transductive, i.e., the model must be re-trained291

when adding new vertices. Moreover, such an initialization strategy is incompatible with our Weisfeiler-292

Leman-based theoretical results since a learnable vertex embedding matrix will result in most initial node293

features being pair-wise different. Here, however, being faithful to the Weisfeiler-Leman formulation,294

we initialize all vertex features with the same d-dimensional vector4, namely, a standard basis vector of295

Rd, e.g., (1, 0, . . . , 0) in Rd. Relation-specific weight matrices in the case of R-GCN and edge features296

in the case of CompGCN are still learnable. We stress here that such a featurization strategy endows297

GNNs with inductive properties. Since we are using the same vertex feature initialization, we can298

perform inference on previously unseen vertices or graphs.299

Implementation. We use the R-GCN and CompGCN implementation provided by PyG framework [59].300

The source code of all methods and evaluation procedures is available at https://www.github.com/301

ABC/XXX.5 For the smaller AIFB dataset, both models use two GNN layers. For the larger AM dataset,302

R-GCN saturates with three layers. Following the theory, we do not use any basis decomposition of303

relation weights in R-GCN. We list other hyperparameters in Appendix F. We report averaged results of304

five independent runs using different random seeds. We conducted all experiments in full-batch mode305

on a single GPU using a Tesla V100 32 GB or RTX 8000.306

Discussion. Probing R-GCN with different aggregations and CompGCN on the smaller AIFB (Fig. 1a)307

and larger AM (Figure 1b) datasets, we largely confirm the theoretical hypothesis of their expressiveness308

equivalence (Q1) and observe similar performance of both GNNs. The higher variance on AIFB is due309

to the small test set size (36 nodes), i.e., one misclassified vertex drops accuracy by ≈ 3%.310

To test if increasing the input vertex feature dimensions leads to more expressive GNN architectures311

(Q2), we vary the initial vertex feature dimension in {2, 4, 8, . . . , 64, 128} on the smaller AIFB dataset312

(Figure 1a) and do not observe any significant differences starting from d = 4 and above. Having313

4We also probed a vector initialized with the Glorot and Bengio [58] strategy, showing similar results.
5Hidden for the anonymous review.
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Figure 2: CompGCN ablations. Directionality (-dir) and normalization (-norm) are the most crucial
components, i.e., their removal does lead to significant performance drops.
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Figure 3: CompGCN with different composition functions. No significant differences.

identified that, we report the best results of compared models on the larger AM graph with the vertex314

feature dimension d in {4, 8}.315

Following the theory where the sum aggregator is most expressive, we investigate this finding on the316

smaller AIFB dataset for both GNNs. R-GCN with mean aggregation shows slightly better results on the317

larger AM dataset, which we attribute to the unstable optimization process of the sum aggregator where318

nodes might have thousands of neighbors, leading to large losses and noisy gradients. We hypothesize319

that stabilizing the training process on larger graphs might improve performance.320

Furthermore, we perform an ablation study (Figure 2) of main CompGCN components (Q3), i.e.,321

direction-based weighting (over direct, inverse, and self-loop edges), relation projection update in each322

layer, and message normalization in the GCN style D− 1
2AD− 1

2 ; see also Appendices D and E.323

The crucial components for the smaller and larger graphs are (1) three-way direction-based message324

passing and (2) normalization. Replacing message passing over three directions (and three weight325

matrices) with one weight matrix using a single adjacency leads to a significant drop in performance.326

Removing normalization increases variance in the larger graph. Finally, removing both directionality327

and normalization leads to significant degradation in predictive performance.328

Studying composition functions (Figure 3), we do not find significant differences among non-parametric329

mult, add, rotate functions (Q4); see Appendix E. Performance of an MLP over a concatenation of330

node and edge features falls within confidence intervals of other compositions and does not exhibit a331

significant accuracy boost.332

6 Conclusion333

Here, we investigated the expressive power of two popular GNN architectures for knowledge or multi-334

relational graphs, namely, CompGCN and R-GCN. By deriving a variant of the 1-WL, we quantified335

their limits in distinguishing vertices in multi-relational graphs. Further, we investigated under which336

conditions, i.e., the choice of the composition function, CompGCN, reaches the same expressive power337

as R-GCN. To overcome the limitations of the two architectures, we derived the provably more powerful338

k-RN architecture. By increasing k, the k-RN architecture gets strictly more expressive. Empirically, we339

verified that our theoretical results translate largely into practice. Using CompGCN and R-GCN in a340

vertex classification setting over small and large multi-relational graphs shows that both architectures341

provide a similar performance level. We believe that our paper is the first step in a principled design of342

GNNs for knowledge or multi-relational graphs.343
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A Appendix491

A.1 Related work492

In the following, we expand on relevant related work.493

GNNs. Recently, GNNs [1, 2] emerged as the most prominent graph representation learning archi-494

tecture. Notable instances of this architecture include, e.g., Duvenaud et al. [3], Hamilton et al. [4]495

and Veličković et al. [5], which can be subsumed under the message-passing framework introduced496

in Gilmer et al. [1]. In parallel, approaches based on spectral information were introduced in, e.g., Def-497

ferrard et al. [6], Bruna et al. [7], Kipf and Welling [8] and Monti et al. [9]—all of which descend from498

early work in Scarselli et al. [2], Baskin et al. [10], Kireev [11], Micheli and Sestito [12], Merkwirth499

and Lengauer [13], Micheli [14] and Sperduti and Starita [15].500

Limits of GNNs and more expressive architectures. Recently, connections between GNNs and501

Weisfeiler–Leman type algorithms have been shown [17, 18]. Specifically, Morris et al. [17] and Xu502

et al. [18] showed that the 1-WL limits the expressive power of any possible GNN architecture in terms503

of distinguishing non-isomorphic graphs. In turn, these results have been generalized to the k-WL,504

see, e.g., Morris et al. [17], Azizian and Lelarge [19], Geerts et al. [20], Geerts [21], Maron et al.505

[22], Morris et al. [23, 24], and connected to permutation-equivariant function approximation over506

graphs, see, e.g., Chen et al. [25], Geerts and Reutter [26], Maehara and NT [27]. Barceló et al. [28]507

further established an equivalence between the expressiveness of GNNs with readout functions and C2,508

the 2-variable fragment of first-order logic extended by counting quantifiers.509

Relational GNNs. Relational GNNs enjoy a profound usage in many areas of machine learning, such510

as complex question answering in NLP [29] or visual question answering [30] in the intersection of NLP511

and vision. Notably, Schlichtkrull et al. [31] proposed the first architecture, namely, R-GCN, being able512

to handle multi-relational data. Further, Vashishth et al. [32] proposed an alternative GNN architecture,513

namely, CompGCN, using less number of parameters and reporting improved empirical performance. In514

the knowledge graph reasoning area, R-GCN and CompGCN, being strong baselines, spun off numerous515

improved GNNs for node classification and transductive link prediction tasks [35–37]. Furthermore, they516

inspired architectures for more complex reasoning tasks such as inductive link prediction [34, 38–40]517

and logical query answering [41–43].518

Despite various applications, there has not been any theoretical work shedding light on multi-relational519

GNNs’ expressive power and learning performance. Some recent empirical results highlight interesting520

properties of relational GNNs, e.g., a randomly initialized and untrained R-GCN still demonstrates521

non-trivial performance [60], or that random perturbation of the relations does not lead to performance522

drops for CompGCN [37].523

A.2 The Weisfeiler–Leman algorithm524

In the following, we briefly describe Weisfeiler-Leman-type algorithms, starting with the 1-dimensional525

Weisfeiler-Leman algorithm (1-WL).526

The 1-WL. The 1-WL, or color refinement, is a simple heuristic for the graph isomorphism problem,527

originally proposed by Weisfeiler and Leman [45].6 Intuitively, the algorithm determines if two graphs528

are non-isomorphic by iteratively coloring or labeling vertices. Given an initial coloring or labeling of529

the vertices of both graphs, e.g., their degree or application-specific information, in each iteration, two530

vertices with the same label get different labels if the number of identically labeled neighbors is not equal.531

If, after some iteration, the number of vertices annotated with a specific label is different in both graphs,532

the algorithm terminates and a stable coloring (partition) is obtained. We can then conclude that the two533

graphs are not isomorphic. It is easy to see that the algorithm cannot distinguish all non-isomorphic534

graphs [47]. Nonetheless, it is a powerful heuristic that can successfully test isomorphism for a broad535

class of graphs [48–50].536

Formally, let G = (V (G), E(G), ℓ) be a labeled graph. In each iteration, t > 0, the 1-WL computes a537

vertex coloring C(t) : V (G) → N, which depends on the coloring of the neighbors. That is, in iteration538

6Strictly speaking, 1-WL and color refinement are two different algorithms. That is, 1-WL considers neighbors
and non-neighbors to update the coloring, resulting in a slightly higher expressive power when distinguishing
vertices in a given graph, see Grohe [46] for details. For brevity, we consider both algorithms to be equivalent.
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t > 0, we set539

C(t)(v) := RELABEL
((
C(t−1)(v), {{C(t−1)(u) | u ∈ N(v)}}

))
,

where RELABEL injectively maps the above pair to a unique natural number, which has not been540

used in previous iterations. In iteration 0, the coloring C(0) := ℓ. To test if two graphs G and H are541

non-isomorphic, we run the above algorithm in “parallel” on both graphs. If the two graphs have a542

different number of vertices colored c in N at some iteration, the 1-WL distinguishes the graphs as543

non-isomorphic. Moreover, if the number of colors between two iterations, t and (t + 1), does not544

change, i.e., the cardinalities of the images of C(t) and C(t+1) are equal, or, equivalently,545

C(t)(v) = C(t)(w) ⇐⇒ C(t+1)(v) = C(t+1)(w),

for all vertices v and w in V (G), the algorithm terminates. For such t, we define the stable coloring546

C∞(v) = C(t)(v) for v in V (G). The stable coloring is reached after at most max{|V (G)|, |V (H)|}547

iterations [51].548

Due to the shortcomings of the 1-WL or color refinement in distinguishing non-isomorphic graphs,549

several researchers, e.g., [52, 53], devised a more powerful generalization of the former, today known as550

the k-dimensional Weisfeiler-Leman algorithm (k-WL).7551

Oblivious k-WL. Intuitively, to surpass the limitations of the 1-WL, the k-WL colors ordered subgraphs552

instead of a single vertex. More precisely, given a graph G, it colors the tuples from V (G)k for553

k ≥ 2 instead of the vertices. By defining a neighborhood between these tuples, we can define a554

coloring similar to the 1-WL. Formally, let G be a labeled graph, and let k ≥ 2. In each iteration555

t ≥ 0, the algorithm, similarly to the 1-WL, computes a coloring C
(t)
k : V (G)k → N. In the first556

iteration, t = 0, the tuples v and w in V (G)k get the same color if they have the same atomic type, i.e.,557

C
(0)
k (v) := atp(v). Now, for t ≥ 0, C(t+1)

k is defined by558

Ck
(t+1)(v) := RELABEL

((
C

(t)
k (v),M (t)(v)

))
,

with M (t)(v) the tuple559

M (t)(v) :=
(
{{C(t)

k (θ1(v, w)) | w ∈ V (G)}}, . . . , {{C(t)
k (θk(v, w)) | w ∈ V (G)}}

)
. (8)

We also call M (t) an aggregation function. Here560

θj(v, w) := (v1, . . . , vj−1, w, vj+1, . . . , vk).

That is, θj(v, w) replaces the j-th component of the tuple v with the vertex w. Hence, two tuples v and561

w with the same color in iteration t get different colors in iteration (t+ 1) if there exists a j ∈ [k] such562

that the number of j-neighbors of v and w, respectively, colored with a certain color is different.563

Hence, two tuples are adjacent or j-neighbors if they are different in the jth component (or equal, in the564

case of self-loops). Again, we run the algorithm until convergence, i.e.,565

C
(t)
k (v) = C

(t)
k (w) ⇐⇒ C

(t+1)
k (v) = C

(t+1)
k (w),

for all v and w in V (G)k holds, and call the partition of V (G)k induced by C
(t)
k the stable partition.566

For such t, we define C∞
k (v) := C

(t)
k (v) for v in V (G)k.567

To test whether two graphs G and H are non-isomorphic, we run the k-WL in “parallel” on both graphs.568

Then, if the two graphs have a different number of vertices colored c in N, the k-WL distinguishes the569

graphs as non-isomorphic. By increasing k, the algorithm becomes more powerful in distinguishing non-570

isomorphic graphs, i.e., for each k ≥ 1, there are non-isomorphic graphs distinguished by (k + 1)-WL571

but not by k-WL [47].572

7There exists two definitions of the k-WL, the so-called oblivious k-WL and the folklore or non-oblivious k-WL,
see Grohe [46]. There is a subtle difference in how they aggregate neighborhood information. Within the graph
learning community, it is customary to abbreviate the oblivious k-WL as k-WL, a convention that we follow in this
paper.
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Local δ-k-dimensional Weisfeiler–Leman algorithm. Morris et al. [23] introduced a more efficient573

variant of the k-WL, the local δ-k-dimensional Weisfeiler–Leman algorithm (δ-k-LWL). In contrast to574

the k-WL, the δ-k-LWL considers only a subset of the entire neighborhood of a vertex tuple. Let the575

tuple w = θj(v, w) be a j-neighbor of v. We say that w is a local j-neighbor of v if w is adjacent to576

the replaced vertex vj . Otherwise, the tuple w is a global j-neighbor of v. The δ-k-LWL considers577

only local neighbors during the neighborhood aggregation process, and discards any information about578

the global neighbors. Formally, the δ-k-LWL refines a coloring C
(t)
k,δ (obtained after t rounds of the579

δ-k-LWL) via the aggregation function580

M
(t)
δ (v) :=

(
{{C(t)

k,δ(θ1(v, w)) | w ∈ N(v1)}}, . . . , {{C(t)
k,δ(θk(v, w)) | w ∈ N(vk)}}

)
,

hence considering only the local j-neighbors of the tuple v in each iteration. The coloring functions for581

the iterations of the δ-k-LWL are then defined by582

C
(t+1)
k,δ (v) := RELABEL

((
C

(t)
k,δ(v),M

(t)
δ (v)

))
.

Note that the 1-WL is equivalent to the δ-1-LWL. Morris et al. [23] showed that, for each k, the δ-k-LWL583

can distinguish graphs that the k-WL cannot and derived a variation of the former that is strictly more584

powerful than the k-WL.585

B Missing proofs in Section 3586

Theorem 10 (Theorem 1 in the main text). Let G = (V (G), R1(G), . . . , Rr(G), ℓ) be a labeled,587

multi-relational graph. Then for all t ≥ 0 the following hold:588

• For all choices of initial vertex features consistent with ℓ, sequences W(t)
R-GCN of R-GCN parameters,589

and nodes v and w in V (G),590

C
(t)
R (v) = C

(t)
R (w) =⇒ h

(t)
v,R-GCN = h

(t)
w,R-GCN.

• For all choices of initial vertex features consistent with ℓ, sequences W
(t)
CompGCN of CompGCN591

parameters, composition functions ϕ, and nodes v and w in V (G),592

C
(t)
R (v) = C

(t)
R (w) =⇒ h

(t)
v,CompGCN = h

(t)
w,CompGCN.

Proof. We only prove it for CompGCN as the proof for R-GCN is analogous. Fix initial vertex features593

(h(0)
v )v∈V (G) for G consistent with ℓ, a sequence W(t)

CompGCN of parameters, a composition function ϕ,594

and two nodes v and w in V (G). We prove the result by induction on t ≥ 0. For t = 0, the statement595

follows immediately from the fact the initial features (h(0)
v )v∈V (G) are consistent with ℓ. Assume now596

that C(t)
R (v) = C

(t)
R (w), for t > 0. Hence, by Equation (4), it must be the case that597

• C
(t−1)
R (v) = C

(t−1)
R (w), and598

• {{C(t−1)
R (u) | u ∈Ni(v)}} = {{C(t−1)

R (u) | u ∈Ni(w)}}, for each i ∈ [r].599

Then, by induction hypothesis, it holds that:600

• h
(t−1)
v,CompGCN = h

(t−1)
w,CompGCN, and601

• {{h(t−1)
u,CompGCN | u ∈Ni(v)}} = {{h(t−1)

u,CompGCN | u ∈Ni(w)}}, for each i in [r].602

From these two we conclude by applying Equation (3) that h(t)
v,CompGCN = h

(t)
w,CompGCN. This is because

we have that h(t−1)
v,CompGCNW

(t)
0 = h

(t−1)
w,CompGCNW

(t)
0 and∑

u∈Ni(v)

ϕ
(
h
(t−1)
u,CompGCN, z

(t)
i

)
W

(t)
1 =

∑
u∈Ni(w)

ϕ
(
h
(t−1)
u,CompGCN, z

(t)
i

)
W

(t)
1 ,

for each i ∈ [r].603
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Theorem 11 (Theorem 2 in the main text). Let G = (V (G), R1(G), . . . , Rr(G), ℓ) be a labeled,604

multi-relational graph. For all t ≥ 0:605

• There exist initial vertex features and a sequence W(t)
R-GCN of parameters such that for all v and w606

in V (G),607

C
(t)
R (v) = C

(t)
R (w) ⇐⇒ h

(t)
v,R-GCN = h

(t)
w,R-GCN.

• There exist initial vertex features, a sequence W(t)
CompGCN of parameters and a composition function608

ϕ such that for all v and w in V (G),609

C
(t)
R (v) = C

(t)
R (w) ⇐⇒ h

(t)
v,CompGCN = h

(t)
w,CompGCN.

Proof. We focus on the case of CompGCN when the composition map ϕ is vector scaling, that is,610

ϕ(h, α) = αh, for h in Rd and α in R. As we explain later, this implies the cases of R-GCN, CompGCN611

with point-wise multiplication, and also CompGCN with circular-correlation.612

The proof is a refinement of [17, Theorem 2] for multi-relational graphs. For a matrix B, we denote
by Bi its i-th row. Let n = |V (G)| and without loss of generality assume V (G) = [n]. We represent
vertex features for G as a matrix F in Rn×d, where F v corresponds to the vertex feature of v. By
slightly abusing notation, we view vertex features as a coloring for G. In particular, we denote by
ΓG(F ) the application of one step of the 1-RWL on G. That is, ΓG(F ) is a coloring C : V (G) → N
such that for each v in V (G),

C(v) := RELABEL
((
CF (v), {{(CF (u), i) | i ∈ [r], u ∈Ni(v)}}

))
,

where CF is the coloring corresponding to the matrix F . On the other hand, the update rule of CompGCN
can be written as follows:

F ′ = σ(FW 0 +
∑
i∈[r]

αiAiFW 1 + bJ),

where W 0 and W 1 are the parameter matrices, αi are the scaling factors, Ai is the adjacency matrix613

for the relation Ri(G), and J is the all-one matrix of appropriate dimensions, representing the biases.614

Here we choose σ to be the sign function sign and the bias b to be b = −1. Using the same argument as615

in [17, Corollary 16], we can replace σ by the ReLU function.616

We need the following lemma shown in [17, Lemma 9].617

Lemma 12 ([17]). Let B in Ns×t be a matrix such that all the rows are pairwise distinct. Then there is618

a matrix X in Rt×s such that the matrix sign(BX − J) in {−1, 1}s×s is non-singular.619

Following [17], we say that a matrix is row-independent modulo equality if the set of all rows appearing620

in the matrix is linearly independent. For two colorings C and C ′ of G, we write C ≡ C ′ if the621

colorings define the same partition on V (G). The key lemma of the proof is the following:622

Lemma 13. Let F in Rn×d be row-independent modulo equality. Then there are matrices W 0 and
W 1 in Rd×e and scaling factors αi in R, for i in [r], such that the matrix

F ′ = sign(FW 0 +
∑
i∈[r]

αiAiFW 1 − J)

is row-independent modulo equality and F ′ ≡ ΓG(F ).623

Proof. Let q be the number of distinct rows in F and let F̃ in Rq×d be the matrix whose rows are
the distinct rows of F in an arbitrary but fixed order. We denote by Q1, . . . , Qq the associated color
classes, that is, a vertex v in [n] is in Qj if and only if F v = F̃ j . By construction, the rows of F̃ are
linearly independent, and hence there is a matrix M in Rd×q such that F̃M in Rq×q is the identity
matrix. It follows that the matrix FM in Rn×q has entries:

(FM)vj =

{
1 if v ∈ Qj

0 otherwise.
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Let D in Nn×q(r+1) be the matrix with entries:

Dvh =


|Ni(v) ∩Qj | if h = iq + j for i ∈ [r], j ∈ [q]

1 if h ∈ [q] and v ∈ Qh

0 otherwise.

So the v-th row of D is the concatenation of a one-hot vector encoding of the color of v and a vector
encoding for the multiset of the colors in Ni(v), for each i in [r]. We have

ΓG(F ) ≡ D

if we view D as a coloring of G. We can also see D as a block matrix D = [N0 N1 · · ·N r], where
N0 = FM in Nn×q and N i = AiFM in Nn×q for each i in [r]. Since 0 ≤ Dvh ≤ n− 1, for all
v in [n], h in [q(r + 1)], we have

D ≡ E

where
E = FM +

∑
i∈[r]

niAiFM .

Indeed, Evj is simply the n-base representation of the vector (Dvj ,Dv(qj), . . . ,Dv(rqj)), and hence624

Ev = Ew if and only if Dv = Dw.625

Let p be the number of distinct rows in E and let Ẽ in Np×q be the matrix whose rows are the distinct626

rows of E in an arbitrary but fixed order. We can apply Lemma 12 to Ẽ and obtain a matrix X in Rq×p
627

such that sign(ẼX − J) in Rp×p is non-singular. In particular, sign(EX − J) is row-independent628

modulo equality and sign(EX − J) ≡ E ≡ ΓG(F ). Let W 0 = W 1 = MX in Rd×p and αi = ni
629

for i in [r]. We have630

F ′ = sign(FW 0 +
∑
i∈[r]

αiAiFW 1 − J)

= sign(FMX +
∑
i∈[r]

αiAiFMX − J)

= sign(EX − J).

Hence F ′ is row-independent modulo equality and F ′ = sign(EX − J) ≡ ΓG(F ).631

Now the theorem follows directly from Lemma 13. We start with initial vertex features (h(0)
v )v∈V (G)632

consistent with ℓ such that different features are linearly independent. Hence the matrix F (0) representing633

the initial features is row-independent modulo equality and we can apply iteratively Lemma 13 to obtain634

the required sequence W
(t)
CompGCN such that C(t)

R ≡ F (t), where F (t) is the matrix representing the635

vertex features (h(t)
v,CompGCN)v∈V (G). In particular, C(t)

R (v) = C
(t)
R (w) ⇔ h

(t)
v,CompGCN = h

(t)
w,CompGCN,636

for all v and w in V (G).637

Remark 14. Note that the dimensions d × e of the parameter matrices at layer t correspond to the638

number of distinct colors before (q) and after (p) the application of the layer.639

The case of CompGCN with point-wise multiplication holds since we can simulate vector scaling as640

αh = h ∗ (α, . . . , α), where ∗ denotes point-wise multiplication. Similarly, the case of R-GCN follows641

as we can simulate vector scaling by setting W i = αiW 1, for each i in [r].642

Finally, we show that the result also holds for CompGCN with circular-correlation. This composition
map is defined as follows8:

(h ⋆ z)i =

d∑
j=1

hjz((i+j−2) mod d)+1,

8For 0-indexed vectors, this is simply (h ⋆ z)i =
∑d−1

j=0 hjz(i+j) mod d for 0 ≤ i ≤ d− 1.
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where h, z in Rd, h ⋆ z in Rd and i in [d]. We can easily simulate one layer of CompGCN with vector
scaling using two layers of CompGCN with circular-correlation. Indeed, for a layer of the form

hv = σ
(
gvW 0 +

∑
i∈[r]

∑
w∈Ni(v)

αigwW 1 + b
)
,

where gu in Rd, for all u in V (G), we first use a layer of the form

h̃v = gvP ,

where P in Rd×d reverts the vertex features, that is, all the entries are zero except for P (n−i+1)i = 1
for all i in [d], followed by a layer

hv = σ
(
h̃vPW 0 +

∑
i∈[r]

∑
w∈Ni(v)

(h̃v ⋆ (0, . . . , 0, αi))W 1 + b
)
.

643

B.1 On the choice of the composition function for R-GCN architectures644

Proposition 15 (Proposition 3 in the main text). There exist a labeled, multi-relational graph645

G = (V (G), R1(G), R2(G), ℓ) and two nodes v and w in V (G), such that C(1)
R (v) ̸= C

(1)
R (w)646

but C∞
WR(v) = C∞

WR(w).647

Proof. We have V (G) = {v, w, u1, u2}, R1(G) = {(v, u1), (w, u2)}, R2(G) = {(v, u2), (w, u1)},
ℓ(v) = ℓ(w) = 0, ℓ(u1) = 1 and ℓ(u2) = 2. Hence,

C
(1)
R (v) = RELABEL

((
0, {{(1, 1), (2, 2)}}

))
C

(1)
R (w) = RELABEL

((
0, {{(2, 1), (1, 2)}}

))
,

that is, C(1)
R (v) ̸= C

(1)
R (w). On the other hand,

C
(1)
WR (v) = RELABEL

((
0, {{1, 2}}, 1, 1

))
C

(1)
WR (w) = RELABEL

((
0, {{1, 2}}, 1, 1

))
and then C∞

WR(v) = C∞
WR(w).648

As shown next, the expressive power of CompGCN architectures that use point-wise summa-649

tion/substraction or vector concatenation is captured by this weaker form of multi-relational 1-WL.650

Theorem 16 (Theorem 4 in the main text). Let G = (V (G), R1(G), . . . , Rr(G), ℓ) be a labeled,651

multi-relational graph. Then:652

• For all t ≥ 0, choices of initial vertex features consistent with ℓ, sequence W(t)
CompGCN of CompGCN653

parameters, and nodes v, w in V (G),654

C
(t)
WR(v) = C

(t)
WR(w) =⇒ h

(t)
v,CompGCN = h

(t)
w,CompGCN,

for either point-wise summation/substraction or concatenation as the composition map.655

• For all t ≥ 0, there exist initial vertex features and a sequence W(t)
CompGCN of CompGCN parameters,656

such that for all nodes v, w in V (G),657

C
(t)
WR(v) = C

(t)
WR(w) ⇐⇒ h

(t)
v,CompGCN = h

(t)
w,CompGCN,

for either point-wise summation/substraction or concatenation as the composition map.658

Proof. We start with the first item. We focus first on the case of CompGCN with vector concatenation.
Note that if h in Rd, z in Rb and W in R(d+b)×e, then we have

(h, z)W = hX + zY ,
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where X in Rd×e is the matrix given by the first d rows of W , while Y in Rb×e is the matrix given by659

the last b rows of W . In particular, we can write660

h
(t)
v,CompGCN = σ

(
h
(t−1)
v,CompGCNW

(t)
0 +

∑
i∈[r]

∑
u∈Ni(v)

(h
(t−1)
u,CompGCN, z

(t)
i )W

(t)
1

)
= σ

(
h
(t−1)
v,CompGCNW

(t)
0 +

∑
i∈[r]

∑
u∈Ni(v)

h
(t−1)
u,CompGCNX

(t)
1 + z

(t)
i Y

(t)
1

)
= σ

(
h
(t−1)
v,CompGCNW

(t)
0 +

∑
i∈[r]

∑
u∈Ni(v)

h
(t−1)
u,CompGCNX

(t)
1 +

∑
i∈[r]

|Ni(v)|z(t)
i Y

(t)
1

)
.

Fix initial vertex features (h(0)
v )v∈V (G) for G consistent with ℓ, a sequence W

(t)
CompGCN of parameters661

and two nodes v and w in V (G). We proceed by induction on t ≥ 0. For t = 0 we are done as the662

features (h(0)
v )v∈V (G) are consistent with ℓ. Assume now that C(t)

WR(v) = C
(t)
WR(w), for t > 0. Then, by663

Section 3, we have that664

• C
(t−1)
WR (v) = C

(t−1)
WR (w),665

• {{C(t−1)
WR (u) | i ∈ [r], u ∈Ni(v)}} = {{C(t−1)

WR (u) | i ∈ [r], u ∈Ni(w)}},666

• |Ni(v)| = |Ni(w)| for each i ∈ [r].667

Then, by induction hypothesis, it holds that:668

• h
(t−1)
v,CompGCN = h

(t−1)
w,CompGCN, and669

• {{h(t−1)
u,CompGCN | i ∈ [r], u ∈Ni(v)}} = {{h(t−1)

u,CompGCN | i ∈ [r], u ∈Ni(w)}}.670

Then we have671

•
∑

i∈[r] |Ni(v)|z(t)
i =

∑
i∈[r] |Ni(w)|z(t)

i , and672

•
∑

i∈[r]

∑
u∈Ni(v)

h
(t−1)
u,CompGCN =

∑
i∈[r]

∑
u∈Ni(w) h

(t−1)
u,CompGCN.673

We conclude that h(t)
v,CompGCN = h

(t)
w,CompGCN.674

Note that the update rule for the case of point-wise summation/substraction is the same except that now675

X
(t)
1 = Y

(t)
1 . Hence exactly the same argument applies.676

We now turn to the second item. We follow the same strategy and terminology as in the proof of
Theorem 11. In this case, given a vertex feature matrix F in Rn×d, we denote by Γ̂G(F ) the application
of one step of the weak 1-RWL. Hence, Γ̂G(F ) is a coloring C : V (G) → N such that for each v in
V (G),

C(v) = RELABEL
((
CF (v), {{CF (u) | i ∈ [r], u ∈Ni(v)}}, |N1(v)|, . . . , |Nr(v)|

))
,

where CF is the coloring corresponding to the matrix F . In this case, the update rule for CompGCN
with vector concatenation can be written as follows:

F ′ = σ(FW 0 +
∑
i∈[r]

AiFX1 +
∑
i∈[r]

AiZiY 1 + bJ),

where W 0 in Rd×e and W 1 =

[
X1

Y 1

]
∈ R(d+b)×e, for X1 ∈ Rd×e, Y 1 ∈ Rb×e, are the parameter677

matrices, Zi ∈ Rn×b is the matrix where each row is a copy of the edge feature zi ∈ Rb associated678

with the relation Ri(G), Ai is the adjacency matrix for the relation Ri(G), and J is the all-one matrix679

of appropriate dimensions. We have the following:680
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Lemma 17. Let F in Rn×d be row-independent modulo equality. Then there are matrices W 0 in
Rd×e, X1 ∈ Rd×e, Y 1 ∈ Rb×e and vectors zi ∈ Rb, for i in [r] such that the matrix

F ′ = sign(FW 0 +
∑
i∈[r]

AiFX1 +
∑
i∈[r]

AiZiY 1 − J)

is row-independent modulo equality and F ′ ≡ Γ̂G(F ).681

Proof. Let q be the number of distinct rows in F and let F̃ in Rq×d be the matrix whose rows are
the distinct rows of F in an arbitrary but fixed order. We denote by Q1, . . . , Qq the associated color
classes, that is, a vertex v in [n] is in Qj if and only if F v = F̃ j . By construction, the rows of F̃ are
linearly independent, and hence there is a matrix M in Rd×q such that F̃M in Rq×q is the identity
matrix. It follows that the matrix FM in Rn×q has entries:

(FM)vj =

{
1 if v ∈ Qj

0 otherwise.

Let M0,M1 in Nd×(2q+r), M2 in Nr×(2q+r) be the block matrices M0 = [M OO′], M1 =682

[OM O′] and M2 = [O′′ O′′ I], where O in Rd×q , O′ in Rd×r , O′′ in Rr×q are all-0 matrices, and683

I in Rr×r is the identity matrix. For each i in [r], the required zi in Rr is the vector with all entries 0684

except for the i-th position which is 1. Let Zi be the corresponding matrix whose rows are copies of zi.685

We define D in Nn×(2q+r) as:686

D = FM0 +
∑
i∈[r]

AiFM1 +
∑
i∈[r]

AiZiM2

=
[
FM

∑
i∈[r] AiFM

∑
i∈[r] AiZi

]
.

The v-th row of FM encodes the color of v, the v-th row of
∑

i∈[r] AiFM encodes the multiset of
the colors of u, when we range over i in [r] and u in Ni(v), and the v-th row of

∑
i∈[r] AiZi contains

the sizes of Ni(v) for all i in [r]. Hence,

Γ̂G(F ) ≡ D

if we view D as a coloring of G.687

Let p be the number of distinct rows in D and let D̃ in Np×(2q+r) be the matrix whose rows are the688

distinct rows of D in an arbitrary but fixed order. We apply Lemma 12 to D̃ and obtain a matrix689

X in R(2q+r)×p such that sign(D̃X − J) in Rp×p is non-singular. In particular, sign(DX − J) is690

row-independent modulo equality and sign(DX − J) ≡ D ≡ Γ̂G(F ). Let W 0 = M0X in Rd×p,691

X1 = M1X in Rd×p, and Y 1 = M2X in Rr×p. We have692

F ′ = sign(FW 0 +
∑
i∈[r]

AiFX1 +
∑
i∈[r]

AiZiY 1 − J)

= sign(FM0X +
∑
i∈[r]

AiFM1X +
∑
i∈[r]

AiZiM2X − J)

= sign(DX − J).

Hence F ′ is row-independent modulo equality and F ′ = sign(DX − J) ≡ Γ̂G(F ).693

The theorem follows directly by iteratively applying Lemma 17 starting with vertex features694

(h(0)
v )v∈V (G) consistent with ℓ such that different features are linearly independent.695

The case of CompGCN with point-wise summation/substraction follows from the fact that this architecture
can simulate CompGCN with vector concatenation. Indeed, we can simulate one layer of CompGCN with
vector concatenation using two layers of CompGCN with point-wise summation/substraction. Take a
layer of the form

hv = σ
(
gvW 0 +

∑
i∈[r]

∑
w∈Ni(v)

(gw, zi)W 1 + b
)
,
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where gu in Rd, for u in V (G), W 0 ∈ Rd×e, W 1 ∈ R(d+b)×e and zi ∈ Rb. We first use a layer

h̃v = gvB,

where B ∈ Rd×(d+b) is the d × d identity matrix with b additional all-0 columns. So h̃v =
(gv, 0, . . . , 0) ∈ Rd+b. Then we apply a layer

hv = σ
(
h̃vW

′
0 +

∑
i∈[r]

∑
w∈Ni(v)

(h̃v + z′
i)W 1 + b

)
,

where W ′
0 ∈ R(d+b)×e is the matrix W 0 ∈ Rd×e with b additional all-0 rows, while z′

i =696

(0, . . . , 0, zi) ∈ Rd+b.697

Together with Proposition 15 and Theorem 11, this result states that CompGCN architectures based on698

vector summation or concatenation are provably weaker in terms of their capacity to distinguish nodes699

in graphs than the ones that use vector scaling.700

B.2 A comparison between R-GCN and CompGCN architectures701

We proved that R-GCN and CompGCN with point-wise multiplication have the same power discriminating702

nodes in (multi-relational) graphs. Here we show that these architectures actually define the same703

functions on multi-relational graphs.704

Theorem 18. The following statements hold:705

• For any sequence of parameters W(t)
CompGCN for CompGCN with point-wise multiplication, there is706

a sequence of parameters W(t)
R-GCN for R-GCN such that for each labeled, multi-relational graph707

G = (V (G), R1(G), . . . , Rr(G), ℓ) and choice of initial vertex features, we have h
(t)
v,R-GCN =708

h
(t)
v,CompGCN, for each v ∈ V (G).709

• Conversely, for any sequence of parameters W
(t)
R-GCN for R-GCN, there exists a sequence of710

parameters W
(2t)
R-GCN for CompGCN with point-wise multiplication such that for each labeled,711

multi-relational graph G = (V (G), R1(G), . . . , Rr(G), ℓ) and choice of initial vertex features,712

we have h
(2t)
v,CompGCN = h

(t)
v,R-GCN, for each v ∈ V (G).713

Proof. The first item follows since we can simulate one layer of CompGCN with point-wise multiplica-
tion using one layer of R-GCN. Indeed, take a layer of the form

hv = σ
(
gvW 0 +

∑
i∈[r]

∑
w∈Ni(v)

(gw ∗ zi)W 1

)
,

where gu, zi ∈ Rd. This is equivalent to

hv = σ
(
gvW 0 +

∑
i∈[r]

∑
w∈Ni(v)

gwW i

)
,

where W i = ΛiW 1, where Λi ∈ Rd×d is the diagonal matrix whose diagonal is precisely zi.714

For the second item, we can simulate one layer of R-GCN with two layers of CompGCN with point-wise
multiplication. Take a layer

hv = σ
(
gvW 0 +

∑
i∈[r]

∑
w∈Ni(v)

gwW i

)
,

where gu ∈ Rd, W 0 ∈ Rd×e, W i ∈ Rd×e. We first apply a layer

h̃v = gvB

where B ∈ Rd×dr is the concatenation of r copies of the d× d identity matrix. In particular, h̃v ∈ Rdr

is the vector gv repeated r times. Then we use the layer

hv = σ
(
h̃vW

′
0 +

∑
i∈[r]

∑
w∈Ni(v)

(h̃w ∗ zi)W
′
1

)
,
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where W ′
0 ∈ Rdr×e is the matrix W 0 ∈ Rd×e with d(r − 1) additional all-0 rows, W ′

1 ∈ Rdr×e is715

the (vertical) concatenation of the matrices W i for i ∈ [r], and zi ∈ Rdr is the vector with all entries 0716

except for the d positions (i− 1)d+ 1, . . . , (i− 1)d+ d which contain the value 1.717

Remark 19. A similar result holds for the case of CompGCN with point-wise summation/subtraction718

and CompGCN with vector concatenation. The simulations between these two architectures are implicitly719

given in the proof of Theorem 16.720

Remark 20. Note that, as a consequence of Theorem 11, Proposition 15 and the first item of Theorem721

16, there are functions defined by R-GCN or CompGCN with point-wise multiplication that cannot be722

expressed by CompGCN with point-wise summation/subtraction or vector concatenation. This even723

holds in the non-uniform sense, that is, if we focus on a single labeled multi-relational graph (the one724

from Proposition 15).725

C Missing proofs in Section 4726

Proposition 21 (Proposition 5 in the main text). For all r ≥ 1, there exists a pair of non-isomorphic727

graphs G = (V (G), R1(G), . . . , Rr(G), ℓ) and H = (V (H), R1(H), . . . , Rr(H), ℓ) that cannot be728

distinguished by R-GCN or CompGCN.729

Proof. We explicitly construct the graphs G and H for r ≥ 2. To do so, we take a pair of graphs730

A and B, non-distinguishable by 1-WL, and transform them into the multi-relational graphs G and731

H . Let A be a cycle on six vertices and B be the disjoint union of two three cycles. Clearly, the732

1-WL cannot distinguish the two graphs. Now let V (G) := V (A) and V (H) := V (B). Further, let733

Ri(G) := E(A) and Ri(H) := E(B) for i in [r]. Observe that the multi-relational 1-WL will reach734

the stable coloring after one iteration and it will not distinguish the multi-relational graphs G and H .735

Hence, by Theorem 10, the result follows.736

Proposition 22 (Proposition 6 in the main text). Let G = (V (G), R1(G), . . . , Rr(G), ℓ) be a labeled,737

multi-relational graph. Then for all t ≥ 0, r > 0, k ≥ 1, and all choices of UPD(t), AGG(t), and all v738

and w in V (G),739

C
(t)
k,r(v) = C

(t)
k,r(w) =⇒ h

(t)
v,k = h

(t)
w,k.

Proof sketch. The proof is analogous to the proof of Morris et al. [17, Proposition 3].740

Proposition 23 (Proposition 7 in the main text). Let G = (V (G), R1(G), . . . , Rr(G), ℓ) be a labeled,741

multi-relational graph. Then for all t ≥ 0 and k ≥ 1, there exists UPD(t), AGG(t), such that for all v742

and w in V (G),743

C
(t)
k,r(v) = C

(t)
k,r(w) ⇐⇒ h

(t)
v,k = h

(t)
w,k.

Proof. To prove the results, we need to ensure that there exists instantiations of UPD(t) and AGG(t)
744

that are injective. To show the existence of injective instantiations of AGG(t) for t > 0, we write AGG(t)
745

as746

AGG
(t)
out

(
AGG

(t)
in,1

(
{{ϕ(h(t−1)

θ1(v,w),k, z
(t)
i ) | w ∈ Ni(v1) and i ∈ [r]}}

)
, . . . ,

AGG
(t)
in,k

(
{{ϕ(h(t−1)

θk(v,w),k, z
(t)
i ) | w ∈ Ni(vk) and i ∈ [r]}}

))
,

where AGG
(t)
out and AGG

(t)
in,j for j in [k] may be a differentiable parameterized functions, e.g., neural747

networks. Observe that we can represent AGG(t)
in,j as748 ∑

i∈[r]

∑
w∈Ni(vj)

ϕ
(
h
(t−1)
θj(v,w), z

(t)
i

)
·W (t)

1 ,

for j in [k], resembling the aggregation of Equation (3), by Theorem 11, the injectiveness of the above749

aggregation function follows. A similar argument can be made for AGG(t)
out and UPD(t), implying the750

result.751
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Moreover, the following result implies that increasing k leads to a strict boost in terms of expressivity of752

the k-RLWL and k-RNs architectures in terms of distinguishing non-isomorphic multi-relational graphs.753

Proposition 24. For k ≥ 2 and r ≥ 1, there exists a pair of non-isomorphic multi-relational graphs754

Gr = (V (Gr), R1(Gr), . . . , Rr(Gr), ℓ) and Hr = (V (Hr), R1(Hr), . . . , Rr(Hr), ℓ) that can be755

distinguished by the (k + 1)-MLWL but not by the k-MLWL.756

Proof. See Appendix C.1.757

Corollary 25 (Proposition 8 in the main text). For k ≥ 2 and r ≥ 1, there exists a pair758

of non-isomorphic multi-relational graphs Gr = (V (Gr), R1(Gr), . . . , Rr(Gr), ℓ) and H =759

(V (Hr), R1(Hr), . . . , Rr(Hr), ℓ) such that:760

• For all choices of UPD(t), AGG(t), for t > 0, and READOUT the k-RN architecture will not761

distinguish the graphs Gr and Hr.762

• There exists UPD(t), AGG(t), for t > 0, and READOUT such that the (k+1)-RN will distinguish763

them.764

Proof. Follows from Proposition 23 and Proposition 24.765

Corollary 26. There exists a 2-RN architecture that is strictly more expressive than the CompGCN and766

the R-GCN architecture in terms of distinguishing non-isomorphic graphs.767

Proof. This follows from Corollary 25 and the fact that a 2-RN is capable to distinguish the graphs768

constructed in the proof of Proposition 21, which follows from the fact that the δ-2-LWL can distinguish769

the graphs A and B; see, e.g., the proof of Lemma 13 in [44].770

k-RNs for node-level prediction. As defined in Equations (6) and (7), an k-RN architecture either771

computes k-tuple- or graph-level features. However, it is straightforward to compute a vertex-level772

features, see, e.g., Morris et al. [44, Section 4.1].773

Scalability. Although the k-RN is provably expressive, see Proposition 8, it suffer some high memory774

requirement. Similar to the k-WL, it’s memory complexity can only be lower bounded in Ω(nk),775

making it not applicable for large knowledge graphs. However, recent progress in making higher-order776

architectures more scalable, e.g., [44, 61, 62], can be straightforwardly lifted to the multi-relational777

case.778

C.1 Proof of Proposition 24779

In the following, we outline the proof of Proposition 24. We modify the construction employed in [23],780

Appendix C.1.1., where they provide an infinite family of graphs (Gk, Hk)k∈N such that the k-WL does781

not distinguish Gk and Hk, although the δ-k-LWL distinguishes Gk and Hk. We recall some relevant782

definitions from their paper.783

Construction of Gk and Hk. Let K denote the complete graph on k + 1 vertices (without any784

self-loops). The vertices of K are indexed from 0 to k. Let E(v) denote the set of edges incident to785

v in K: clearly, |E(v)| = k for all v in V (K). We call the elements of V (K) base vertices, and the786

elements of E(K) base edges. Define the graph Gk as follows:787

1. For the vertex set V (Gk), we add788

(a) (v, S) for each v in V (K) and for each even subset S of E(v),789

(b) two vertices e1, e0 for each edge e in E(K).790

2. For the edge set E(Gk), we add791

(a) an edge {e0, e1} for each e in E(K),792

(b) an edge between (v, S) and e1 if v in e and e in S,793

(c) an edge between (v, S) and e0 if v in e and e not in S,794

23



Weisfeiler and Leman Go Relational

Define a companion graph Hk, in a similar manner to Gk, with the following exception: in Step 1(a),795

for the vertex 0 in V (K), we choose all odd subsets of E(0).796

Distance-two-cliques. A set S of vertices is said to form a distance-two-clique if the distance between797

any two vertices in S is exactly 2. The following results were shown in [23].798

Lemma 27 ([23]). The following holds for the graphs Gk and Hk defined above.799

• There exists a distance-two-clique of size (k + 1) inside Gk.800

• There does not exist a distance-two-clique of size (k + 1) inside Hk.801

Hence, Gk and Hk are non-isomorphic.802

Lemma 28 ([23]). The δ-k-LWL distinguishes Gk and Hk, while the k-WL does not distinguish Gk and803

Hk.804

Moreover, we need the following result showing that the δ-k-LWL forms a hierarchy.805

Lemma 29. For k ≥ 2, the δ-k-LWL distinguishes Gk and Hk, while the δ-(k − 1)-LWL does not806

distinguish Gk and Hk.807

Proof. The fact that δ-k-LWL distinguishes the graphs Gk and Hk follows from Lemma 28. We know808

argue that the δ-(k − 1)-LWL does not distinguish the two graphs. First, the (oblivious) k-WL has809

the same expressive power in distinguishing non-isomorphic graphs as the non-oblivious or folklore810

(k − 1)-WL; see [46] for details. The non-oblivious (k − 1)-WL [46] uses the following aggregation811

function812

M (t)((v1, . . . , vk−1)) := {{(C(t)
k (θ1(v, w)), . . . , C

(t)
k (θk−1(v, w))) | w ∈ V (G)}},

instead of Equation (8). Notice that from (C
(t)
k (θ1(v, w)), . . . , C

(t)
k (θk−1(v, w))) we can recover if813

there is an edge between the vertex w and a vertex vj for j in [k−1] in the underlying graph. Hence, the814

non-oblivious (k− 1)-WL is at least as powerful as the δ-(k− 1)-LWL, implying that the δ-(k− 1)-LWL815

is weaker than the δ-k-LWL.816

We now construct non-isomorphic multi-relational graphs Gr = (V (Gr), R1(Gr), . . . , Rr(Gr), ℓ)817

and Hr = (V (Hr), R1(Hr), . . . , Rr(Hr), ℓ) that can be distinguished by the (k + 1)-RLWL but not818

by the k-RLWL.819

Let V (Gr) := V (Gk) and V (Hr) := V (Hk). Further, let Ri(Gr) := E(Gk) and Ri(Hr) := E(Hk)820

for i in [r]. By a straightforward inductive argument it follows that M (t)
δ (v) = M

(t)
δ (w) implies821

M
(t)
r (v) = M

(t)
r (w) for all k-tuples v and w in V (Gk)

k or V (Hk)
k. This finishes the proof.822

D R-GCN823

Additionally, we probe a modification of the R-GCN model with an MLP transformation (denoted as824

R-GCN+MLP) to facilitate parameter sharing between different relation-specific message propagations:825

h
(t)
v,R-GCN := σ

(
h
(t−1)
v,R-GCN ·W (t)

0 +
∑
i∈[r]

MLP
( ∑
w∈Ni(v)

h
(t−1)
w,R-GCN ·W (t)

i

))
∈ Rd. (9)

This modification has a slightly higher count of learnable parameters.826

E CompGCN827

The original CompGCN architecture proposed in Vashishth et al. [32] considers directed graphs with828

self-loops, and uses an additional sum to differentiate between in-going, out-going, and self-loop edges,829

a degree-based normalization, and different weight matrices for these three cases, i.e.,830

h
(t)
v,CompGCN := σ

(
h
(t−1)
v,CompGCNW

(t)
0 +

∑
i∈[r]

∑
d∈D

1

cv,w

∑
w∈Nd

i (v)

ϕ
(
h
(t−1)
w,CompGCN, z

(t)
i

)
W

(t)
1,d

)
∈ Re,
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where D := {in, out}, representing in-going, out-going edges, respectively. Here, Nd
i (v) is the831

restriction of Nd
i (v) of Ni(v) to in-going, out-going, and self-loop edges incident to the vertex v.832

Further, cv,w :=
√
|Nd

i (v)| · |Nd
i (w)|. The update of the previous node state is performed via the833

self-loop direction which we separate into the term h
(t−1)
v,CompGCNW

(t)
0 for the sake of a unified notation.834

In the ablation studies, we probe the following modifications and combinations of those.835

• CompGCN without normalization (-norm):836

h
(t)
v,CompGCN := σ

(
h
(t−1)
v,CompGCNW

(t)
0 +

∑
i∈[r]

∑
d∈D

∑
w∈Nd

i (v)

ϕ
(
h
(t−1)
w,CompGCN, z

(t)
i

)
W

(t)
1,d

)
∈ Re,

• CompGCN without direction-specific weights (-dir): q837

h
(t)
v,CompGCN := σ

(
h
(t−1)
v,CompGCNW

(t)
0 +

∑
i∈[r]

1

cv,w

∑
w∈Ni(v)

ϕ
(
h
(t−1)
w,CompGCN, z

(t)
i

)
W

(t)
1

)
∈ Re,

(10)

• CompGCN without relations update: zt+1
i = zti (-rp).838

As a composition function ϕ(hw, zi) we probe several element-wise functions and an MLP:839

• add: ϕ(hw, zi) = hw + zi – element-wise addition840

• mult: ϕ(hw, zi) = hw ∗ zi – element-wise multiplication (Hadamard product)841

• rotate [63]: ϕ(hw, zi) = hw ⊙ zi – rotation in complex space842

• MLP: ϕ(hw, zi) = MLP([hw, zi]) where [·] is column-wise concatenation843

F Datasets and Hyperparameters844

Statistics about the datasets are presented in Table 1. As neither of the datasets contain an explicit845

validation set, we retain a random 15% sample of train nodes for validation and use it to optimize846

hyperparameters.847

Table 1: Vertex classification datasets statistics.

Dataset Vertices Edges Relations Train nodes Test nodes Classes

AIFB 8,285 29,043 45 140 36 4
AM 1,666,764 5,988,321 133 802 198 11

Final hyperparameters are listed in Table 2, the total parameter count for all trained models is presented848

in Table 3. Due to the size of the AM graph and identified stability of the initial node feature dimension,849

we only train models with dimension d = 4 on AM.850

Table 2: Hyperparameters

AIFB AM

R-GCN R-GCN + MLP CompGCN R-GCN R-GCN + MLP CompGCN

# Layers 2 2 2 3 3 2
LR 0.001 0.001 0.001 0.03 0.03 0.03
# epochs 8,000 8,000 8,000 100 400 800
Dropout 0.0 0.0
Optimizer Adam
Weight decay 0.0005
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Table 3: Parameters count

AIFB AM

dim R-GCN R-GCN + MLP CompGCN R-GCN R-GCN + MLP CompGCN

2 1,092 1,144 262
4 2,912 2,992 576 20,311 20,655 1,292
8 8,736 8,920 1,168

16 29,120 29,704 3,636
32 104,832 106,984 10,852
64 396,032 404,392 36,036

128 1,537,576 1,570,600 129,412
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