
A THE DPO FORMALISM

We denote the parsed text of document i by parser j as
xji = ϕj(di) with accuracy (e.g., BLEU score) yji . Hence,
the dataset D = {(xi, yi)}Ni=1 represents the (parsed) text
inputs with Rm-valued responses (i.e., a document-wise
accuracy vector). We post-train a model to predict the ac-
curacies of all parsers given the default parser’s text ϕ11 in
three steps. First, supervised fine-tuning yields the estimate
θ̂1 through minimization of the ℓ2 loss
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.

Second, πθ̂1 is augmented into an encoder-decoder model
gφ, with Encφe
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upon convergence yields the estimate θ̂2 = φ̂e. Finally, the
updated encoder is fine-tuned on D with a lowered learning
rate to obtain θ̂3 which produces the final model.

In our setting, the regression dataset contains N=29,200
pairs, each consisting of a single document text and its
associated BLEU score. The output dimension is m=6, since
we predict the accuracy for each parser. The preference
dataset contains M=712 pairs. We found it advantageous in
step 1 to predict pagewise accuracy (i.e., predict the accuracy
of the given page’s parsed text), while the regression data
in the third step are used to infer document-level accuracy
based on the first page’s text, as processed by AdaParse.

B QUANTIFICATION OF THE DPO IMPACT

We quantify the benefit of direct preference optimization
(DPO) by evaluating a range of prediction models. As
a baseline, we apply support vector classification (SVC)
to metadata features (e.g., publisher, year of publication,
PDF format, and producer). LLM-based prediction of the
document text is performed with SciBERT, BERT, MiniLM,
and SPECTER (Cohan et al., 2020; Wang et al., 2020). The
metrics of the reference models (BLEU-maximal/minimal
and random selection) are provided for context.

Given the six parsers, predicting the optimal choice for
any PDF is challenging. The assignment of the BLEU-
maximal parser to each document yields a BLEU score
of 56.8%. Although metadata-driven classification delivers
(mostly) favorable results, text-driven regression with LLMs
outperforms them across all metrics. Post-training through
DPO further boosts BLEU, CAR, and win rate. Transformer-
based models pre-trained on extensive scientific corpora,

Table 4. Evaluation of various prediction models across different
features. Word-level (BLEU, ROUGE) and character level accu-
racy (CAR) accuracies. WR=Win rate. All %.

Features (Model) BLEU ROUGE CAR WR ACC
CLS III: Document Text
Text (SciBERT + DPO) 52.7 69.4 68.0 31.4 36.7
Text (SciBERT) 51.6 69.5 66.9 25.0 48.3
Text (BERT) 49.7 66.0 63.4 24.8 40.0
CLS II: Metadata and Title Text
Title + Metadata (SPECTER) 47.9 64.5 62.9 25.2 18.1
Title (SPECTER) 46.4 63.3 61.8 26.2 15.2
Title + Metadata (MiniLM-L6) 44.7 62.2 60.4 28.4 10.1
CLS I: Metadata
Format + Producer (SVC) 47.7 64.0 60.2 28.5 14.6
Format (SVC) 47.5 64.1 60.7 29.5 16.6
Year + Producer (SVC) 47.3 63.7 60.1 28.8 14.8
Publisher + (Sub-)category (SVC) 46.4 63.7 60.9 21.7 14.8
(Sub-)category (SVC) 43.6 63.5 62.5 24.9 12.9
Reference
BLEU-maximal selection 56.8 72.3 70.4 26.5 100.0
Random selection 44.0 61.7 57.4 20.5 16.7
BLEU-minimal selection 21.5 44.2 44.6 18.1 0.0

such as SciBERT and SPECTER, outperform models trained
on conventional web-scale data like BERT and MiniLM-
v6. AdaParse (LLM) leverages SciBERT with DPO post-
training for parser selection.

C SOLVING THE OPTIMIZATION PROBLEM

For scalability reasons, AdaParse limits itself to two parsers:
PyMuPDF and Nougat. The problem turns to picking ei-
ther ϕNougat or ϕPyMuPDF for any document di. The average
computational cost of a parser can be determined from our
scaling experiments and is documented in the legend of
Figure 3. They are denoted by T avg

Nougat and T avg
Nougat. The pa-

rameter α ∈ [0, 1] limits the fraction of documents parsed
with Nougat. The constraint
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The objective function is now maximized when sorting the
documents (by expected accuracy improvement of Nougat
over PyMuPDF) and allowing the first ⌊αn⌋ documents to
be parsed by Nougat. AdaParse conducts this on a per-batch
basis to further increase throughput (i.e. for a batch of size k
at most ⌊αk⌋ documents will be parsed by Nougat). While
this per-batch approach may yield a suboptimal solution, the
optimality gap is negligible as the batch size is large (e.g.
k=256 in our case).



D ARTIFACT APPENDIX

D.1 Artifact check-list (meta-information)
• Algorithm: AdaParse

• Program: Python

• Compilation: Not applicable (pure Python)

• Transformations: YAML configuration for workflow

• Binary: N/A

• Data set: Arbitrary (zipped) PDFs provided by the user

• Run-time environment: Python 3.12, conda environment

• Hardware: GPU required

• Execution: Command-line interface

• Metrics: Throughput, accuracy of PDF parsing, and quality
of parser outputs

• Output: N/A (functionality only)

• Experiments: Demonstrate functionality

• How much disk space required (approximately)?: Less
than a few GBs for a small dataset

• How much time is needed to prepare workflow (approxi-
mately)?: 15–30 minutes for setup

• How much time is needed to complete experiments (ap-
proximately)?: 15 minutes per job

• Publicly available?: https://github.com/7shoe/AdaParse

• Code licenses (if publicly available)?: MIT License

• Workflow framework used?: Custom Python scripts inte-
grated with PBS scheduling

D.2 Installation

The steps below enable any of the parsers:

conda create -n adaparse python=3.12 -y
conda activate adaparse

# git repo (machine-agnostic)
git clone git@github.com:7shoe/AdaParse.git
cd AdaParse
pip install --upgrade pip setuptools wheel
pip install -e .

D.3 Artifact Configuration File

The artifact requires adoption of the file in
https://github.com/7shoe/AdaParse/blob/
main/examples/pymupdf/pymupdf_test.yaml.
In particular, ensure the paths pdf_dir and out_dir
are valid. For example, the YAML file should include:

# The directory containing the pdfs
pdf_dir: {path_to_(zipped)_pdfs}

# The directory for converted texts
out_dir: {output_directory}

# The settings for the pdf parser
parser_settings:
# The name of the parser to use
name: pymupdf

https://github.com/7shoe/AdaParse/blob/main/examples/pymupdf/pymupdf_test.yaml
https://github.com/7shoe/AdaParse/blob/main/examples/pymupdf/pymupdf_test.yaml

