A THE DPO FORMALISM

We denote the parsed text of document ¢ by parser j as
x] = ¢;(d;) with accuracy (e.g., BLEU score) y;. Hence,
the dataset D = {(z;,v;)}}_, represents the (parsed) text
inputs with R™-valued responses (i.e., a document-wise
accuracy vector). We post-train a model to predict the ac-
curacies of all parsers given the default parser’s text ¢} in
three steps. First, supervised fine-tuning yields the estimate
0, through minimization of the /5 loss

Lrec(0) = Ep [Hﬂé)(fl) - y||§] .

Second, m; is augmented into an encoder-decoder model
gy, with Ency,, (z) = h and Decy,(h) = z, where ¢ =
(¢e, q) and . := 0y initially. We utilize a preference
dataset Dprer = {(:v?““, x?"’_) M., of text pairs obtained
through different parsers ¢, and ¢, where the former is
preferred by the user. Minimizing

_ g¢($+) _ 950(37_)
Foro = ~Bw [loga (9 8 i) % gia)

upon convergence yields the estimate by = e Finally, the
updated encoder is fine-tuned on D with a lowered learning
rate to obtain 63 which produces the final model.

In our setting, the regression dataset contains N=29,200
pairs, each consisting of a single document text and its
associated BLEU score. The output dimension is m=6, since
we predict the accuracy for each parser. The preference
dataset contains M=712 pairs. We found it advantageous in
step 1 to predict pagewise accuracy (i.e., predict the accuracy
of the given page’s parsed text), while the regression data
in the third step are used to infer document-level accuracy
based on the first page’s text, as processed by AdaParse.

B QUANTIFICATION OF THE DPO IMPACT

We quantify the benefit of direct preference optimization
(DPO) by evaluating a range of prediction models. As
a baseline, we apply support vector classification (SVC)
to metadata features (e.g., publisher, year of publication,
PDF format, and producer). LLM-based prediction of the
document text is performed with SciBERT, BERT, MiniLM,
and SPECTER (Cohan et al., 2020; Wang et al., 2020). The
metrics of the reference models (BLEU-maximal/minimal
and random selection) are provided for context.

Given the six parsers, predicting the optimal choice for
any PDF is challenging. The assignment of the BLEU-
maximal parser to each document yields a BLEU score
of 56.8%. Although metadata-driven classification delivers
(mostly) favorable results, text-driven regression with LLMs
outperforms them across all metrics. Post-training through
DPO further boosts BLEU, CAR, and win rate. Transformer-
based models pre-trained on extensive scientific corpora,

Table 4. Evaluation of various prediction models across different
features. Word-level (BLEU, ROUGE) and character level accu-
racy (CAR) accuracies. WR=Win rate. All %.

Features (Model) ‘ BLEU ‘ ROUGE ‘ CAR ‘ WR ‘ ACC
CLS III: Document Text

Text (SciBERT + DPO) 52.7 69.4 68.0 | 314 | 36.7
Text (SciBERT) 51.6 69.5 669 | 25.0 | 483
Text (BERT) 49.7 66.0 634 | 248 | 40.0
CLS II: Metadata and Title Text

Title + Metadata (SPECTER) 47.9 64.5 629 | 252 | 18.1

Title (SPECTER) 46.4 63.3 61.8 | 262 | 152
Title + Metadata (MiniLM-L6) 44.7 62.2 604 | 284 | 10.1
CLS I: Metadata

Format + Producer (SVC) 47.7 64.0 60.2 | 285 | 14.6
Format (SVC) 47.5 64.1 60.7 | 29.5 | 16.6
Year + Producer (SVC) 47.3 63.7 60.1 | 28.8 | 14.8
Publisher + (Sub-)category (SVC) 46.4 63.7 609 | 21.7 14.8
(Sub-)category (SVC) 43.6 63.5 625 | 249 | 129
Reference

BLEU-maximal selection 56.8 72.3 70.4 | 26.5 | 100.0
Random selection 44.0 61.7 574 | 20.5 16.7
BLEU-minimal selection 21.5 442 44.6 18.1 0.0

such as SciBERT and SPECTER, outperform models trained
on conventional web-scale data like BERT and MiniLM-
v6. AdaParse (LLM) leverages SciBERT with DPO post-
training for parser selection.

C SOLVING THE OPTIMIZATION PROBLEM

For scalability reasons, AdaParse limits itself to two parsers:
PyMuPDF and Nougat. The problem turns to picking ei-
ther @Nougat OF @pymuppE for any document d;. The average
computational cost of a parser can be determined from our
scaling experiments and is documented in the legend of
Figure 3. They are denoted by Tyorey and Tiowey- The pa-
rameter v € [0, 1] limits the fraction of documents parsed

with Nougat. The constraint

n
ST (04 di) = an (Tt — Tessturor) + W Tisturor
i=1
<T
is (approximately) satisfied for any

_ ve
o < T-n PyMuPDF

- Vg Vg
n Nougat ~ /PyMuPDF

The objective function is now maximized when sorting the
documents (by expected accuracy improvement of Nougat
over PyMuPDF) and allowing the first |an| documents to
be parsed by Nougat. AdaParse conducts this on a per-batch
basis to further increase throughput (i.e. for a batch of size k
at most | @k | documents will be parsed by Nougat). While
this per-batch approach may yield a suboptimal solution, the
optimality gap is negligible as the batch size is large (e.g.
k=256 in our case).

D ARTIFACT APPENDIX

D.1 Artifact check-list (meta-information)

* Algorithm: AdaParse

* Program: Python

* Compilation: Not applicable (pure Python)

* Transformations: YAML configuration for workflow

e Binary: N/A

* Data set: Arbitrary (zipped) PDFs provided by the user

* Run-time environment: Python 3.12, conda environment
* Hardware: GPU required

* Execution: Command-line interface

* Metrics: Throughput, accuracy of PDF parsing, and quality
of parser outputs

* Output: N/A (functionality only)
» Experiments: Demonstrate functionality

* How much disk space required (approximately)?: Less
than a few GBs for a small dataset

* How much time is needed to prepare workflow (approxi-
mately)?: 15-30 minutes for setup

¢ How much time is needed to complete experiments (ap-
proximately)?: 15 minutes per job

* Publicly available?: https://github.com/7shoe/AdaParse
¢ Code licenses (if publicly available)?: MIT License

* Workflow framework used?: Custom Python scripts inte-
grated with PBS scheduling

D.2 Installation
The steps below enable any of the parsers:

conda create —-n adaparse python=3.12 -y
conda activate adaparse

git repo (machine-agnostic)

D.3 Artifact Configuration File

The artifact requires adoption of the file in
https://github.com/7shoe/AdaParse/blob/
main/examples/pymupdf/pymupdf_test.yaml.
In particular, ensure the paths pdf_dir and out_dir
are valid. For example, the YAML file should include:

The directory containing the pdfs
pdf_dir: {path_to_(zipped)_pdfs}

The directory for converted texts
out_dir: {output_directory}

The settings for the pdf parser
parser_settings:
The name of the parser to use

name: pymupdf

git clone git@github.com:7shoe/AdaParse.git

cd AdaParse

pip install --upgrade pip setuptools wheel

pip install -e

https://github.com/7shoe/AdaParse/blob/main/examples/pymupdf/pymupdf_test.yaml
https://github.com/7shoe/AdaParse/blob/main/examples/pymupdf/pymupdf_test.yaml

