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A APPENDIX

A.1 METRIC FOR ASSESSING GNN STABILITY

In the context of single-label classification in graph nodes, consider an output vector y =
[y1, y2, ..., yk] corresponding to an input x, where k represents the total number of classes. The
model’s predicted class is denoted as ŷ = argmax

i
(yi). Now, let’s assume that the output vector

transforms to y0 = [y01, y
0
2, ..., y

0
k
], while preserving the ordinality of the elements, i.e., if yi > yj ,

then y0
i
> y0

j
. This condition ensures that ŷ0 = argmax

i
(y0

i
) = ŷ.

Relying solely on model accuracy can be deceptive, as it is contingent upon the preservation of
the ordinality of the output vector elements, even when the vector itself undergoes significant
transformations. This implies that the model’s accuracy remains ostensibly unaffected as long as the
ranking of the elements within the output vector is conserved. However, this perspective neglects
potential alterations in the model’s prediction confidence levels.

In contrast, the cosine similarity provides a more holistic measure as it quantifies the angle between
two vectors, thereby indicating the extent of modification in the output direction. This method offers
a more granular insight into the impact of adversarial attacks on the model’s predictions.

Moreover, it is crucial to consider the nature of the output space, Y . In situations where Y forms a
probability distribution, a common occurrence in classification problems, the application of a distribu-
tion distance measure such as the Kullback-Leibler (KL) divergence is typically more suitable. Unlike
the oversimplified perspective of accuracy, these measures can provide a nuanced understanding
of the degree of perturbation introduced in the predicted probability distribution by an adversarial
attack. This additional granularity can expose subtle modifications in the model’s output that might
be missed when solely relying on accuracy as a performance metric.

A.2 DIMENSIONALITY REDUCTION AND WEIGHTED SPECTRAL EMBEDDING MATRIX

In the exploration of dimensionality reduction techniques, principal component analysis (PCA) stands
as a well-established method. The essential concept in PCA is to retain the most salient information
from the input data while reducing the dimensionality. This is accomplished by transforming the
original dataset into a new set of uncorrelated variables, known as principal components, which
are ordered by the amount of variance each holds from the original data. The first few components
usually contain the bulk of the variance, and thus, keep the key information.

Similar to PCA, our approach aims to reduce the dimension of graphs while preserving the key
structural information. Here, the structural information of a graph is measured by resistance distance,
an effective metric for assessing the relationship between nodes.

In the realm of graph-based manifold problems, both geodesic and effective-resistance distances serve
as valid metrics for measuring the distance between nodes on a graph. Notably, effective-resistance
distances have been the subject of extensive study in contemporary spectral graph theory, revealing
their relevance to a multitude of significant problems. These include cover and commute times of
random walks (Chandra et al., 1996), the enumeration of spanning trees in a graph, and more.

We present Lemma 2 to elucidate the relationship between effective-resistance distance deff(p, q) and
geodesic distance dgeo(p, q):
Lemma 2. The effective-resistance distance deff(p, q) and the geodesic distance dgeo(p, q) between

any two nodes p and q within an N -node connected, undirected graph have the following relationship

(Cheng et al., 2021):

1. deff(p, q) = dgeo(p, q) if only one path exists between nodes p and q;

2. deff(p, q) < dgeo(p, q) otherwise.

This Lemma 2 asserts that the equality deff(p, q) = dgeo(p, q) consistently holds for tree structures,
given that a single path exists between any pair of nodes in a tree. For general graphs, the resistance
distance deff(p, q) is upper-bounded by the geodesic distance dgeo(p, q). The effective-resistance
distance deff(p, q) between any two nodes p and q for an undirected and connected graph G is given
by (Feng, 2021):
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deff(p, q) = e>
p,q

L+
G
ep,q = |U>

N
ep,q|22 =

|V |X

i=2

(uT

i
ep,q)2

�i

(9)

In this equation, ep,q = ep � eq, ep 2 RN is the standard basis vector with the p-th element being
1 and the rest being 0, L+

G
2 RN⇥N is the Moore–Penrose pseudoinverse of the graph Laplacian

matrix LG 2 RN⇥N , and UN is the eigensubspace matrix comprising N � 1 nontrivial weighted
Laplacian eigenvectors UN =

h
u2p
�2
, . . . , uNp

�N

i
2 RN⇥(N�1), 0 = �1 < �2, . . . , �N are the

ascending eigenvalues corresponding to their respective eigenvectors u1, . . . , uN .

A.3 DIMENSION REDUCTION VIA SPECTRAL EMBEDDING

Spectral Embedding is a potent technique for dimensionality reduction in graph-based data. It is
designed to preserve the data’s inherent structure while representing it in a lower-dimensional space.
This is achieved by computing the eigenvectors and eigenvalues of the Laplacian matrix, which is
derived from the input data graph. The primary objective of Spectral Embedding is to minimize the
following function (Belkin & Niyogi, 2003):

min
Y 2Rn⇥k

Tr(Y >LY ), subject to Y >DY = I (10)

In this equation, Tr denotes the trace of a matrix, and I is the identity matrix. The constraint
Y >DY = I ensures that the columns of Y are orthogonal with respect to D, which promotes a
unique and informative low-dimensional embedding.

According to (Belkin & Niyogi, 2003), the optimal solution to the optimization problem in Equation 10
is achieved by selecting the k smallest eigenvectors associated with the k smallest eigenvalues of
L. This underlines the pivotal role of eigenvalues and their corresponding eigenvectors in deriving a
lower-dimensional representation of the graph. By leveraging these properties, Spectral Embedding
effectively condenses the complexity of the graph while preserving its essential structure, thereby
facilitating more efficient data analysis and processing.

A.4 ALGORITHM FLOW OF SAGMAN

The Algorithm 1 shows the key steps in SAGMAN. The process of obtaining low-dimensional graphs
GX and GY involves several steps, starting with the reduction of the graph dimension of GX using
the weighted spectral embedding matrix. This matrix is denoted as UN =

h
u2p
�2
, . . . , uNp

�N

i
2

RN⇥(N�1), where 0 = �1 < �2, . . . , �N are the eigenvalues in ascending order. Following the
approach suggested by Deng et al. (2022), we enhance the graph construction by concatenating node
features with dominant eigenvectors. The next step involves constructing the input PGM. This is
achieved by first constructing a kNN dense graph using the embedding matrix E, and then sparsifying
this dense graph through short-cycle decomposition. The structure of the low-dimensional graph GX

is obtained with the assistance of the input PGM. This graph, along with the node feature X , is then
fed into a GNN to generate the output matrix Y . To construct the output PGM, we follow a similar
process as with the input PGM: we construct a kNN dense graph with Y and sparsify the dense graph
via short-cycle decomposition. This results in the low-dimensional graph GY , which is obtained with
the aid of the output PGM. From the graphs GX and GY , we derive the Laplacian matrices LX and
LY , respectively. The metric �M (p, qi) can then be calculated by evaluating V >

N
ep,qi . In Appendix

A.8, we provide a more detailed explanation of the relationship between V >
N
ep,qi and �M (p, qi).

Finally, the DMD score is obtained by averaging the DMD scores of node p and its neighbors.

A.5 DMD CALCULATION WITHOUT SAGMAN

In this study, we present the outcomes of stability quantification using original input and output
graphs, as depicted in Figure 4. We also demonstrate the Nettack result using the original input graph
in Table 3. Our experimental findings underscore a key observation: DMD calculations, when applied
to the original inputs of GNNs, do not adequately quantify the stability of samples.
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Algorithm 1 The algorithm flow of SAGMAN
Input: Input graph G, Node features X , GNN
Output: Average DMD for all nodes.
1: UN  compute_weighted_spectral_embedding(G)
2: E  concatenate(X,UN )
3: kNN_dense_graph construct_kNN_graph(E)
4: input_PGM  sparse_graph(kNN_dense_graph)
5: GX  get_low_dimensional_graph(input_PGM)
6: Y  GNN(GX , X)
7: kNN_dense_graph_Y  construct_kNN_graph(Y )
8: output_PGM  sparse_graph(kNN_dense_graph_Y )
9: GY  get_low_dimensional_graph(output_PGM)

10: LX  compute_laplacian(GX)
11: LY  compute_laplacian(GY )
12: VN  calculate_generalized_eigenvectors(LY , LX)
13: for each node p in GX do

14: Compute the average DMD for node p and its neighbors in MX :

1
|NX(p)|

X

qi2NX (p)

⇣
kV >

N ep,qk22
⌘

15: end for

Figure 4: The upper quartet of figures represents cosine similarities, while the lower quartet illustrates
KL divergence. "Random EdgesPT" corresponds to the DICE edge evasion attack. "Random
FeaturePT" refers to Gaussian noise evasion perturbation X + ⇠⌘, where X is feature matrix, ⌘ is
Gaussian noise, ⇠ is noise level controls

A.6 EFFECTIVE-RESISTANCE ESTIMATION

The effective-resistance between nodes (p, q) 2 |V | can be computed using the following equation:

Reff (p, q) =
NX

i=2

(u>
i
ep,q)2

u>
i
LGui

, (11)

where ui represents the eigenvector corresponding to �i eigenvalue of LG and ep,q = ep � eq. To
avoid the computational complexity associated with computing eigenvalues/eigenvectors, we leverage
a scalable algorithm that approximates the eigenvectors by exploiting the Krylov subspace. In this
context, given a nonsingular matrix AN⇥N and a vector c 6= 0 2 RN , the order-(m) Krylov subspace
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Table 3: Nettack adversarial attack targeting at selected Cora samples in GCN, we bold better results
Cosine Similarities: Stable/Unstable

Nettack Level DMD with Original Input and Output SAGMAN
1 0.90/0.96 0.99/0.90

2 0.84/0.93 0.98/0.84

3 0.81/0.91 0.97/0.81

Figure 5: Graph decomposition results with respect to effective-resistance (ER) diameter

generated by A from c is defined as:

m(A, c) := span(c, Ac,A2c, ..., Am�1c), (12)

where c denotes a random vector, and A denotes the adjacency matrix of graph G. We compute a
new set of vectors denoted as x(1), x(2), ..., x(m) by ensuring that the Krylov subspace vectors are
mutually orthogonal with unit length. We estimate the effective-resistance between node p and q
using Equation 11 by exploring the eigenspace of LG and selecting the vectors that capture various
spectral properties of G:

Reff (p, q) ⇡
mX

i=1

(x(i)>ep,q)2

x(i)>LGx(i)
, (13)

We control the diameter of each cycle by propagating effective resistances across multiple levels.
Let G = (V,E) represent the graph at the �-th level, and let the edge (p, q) 2 E be a contracted
edge that creates a supernode # 2 V (�+1) at level � + 1. We denote the vector of node weights as
⌘(�) 2 RV

(�)

�0 , which is initially set to all zeros for the original graph. The update of ⌘ at level �+1 is
defined as follows:

⌘# := ⌘(p(�)) + ⌘(q(�)) +R(�)
eff

(p, q). (14)

Consequently, the effective-resistance diameter of each cycle is influenced not only by the computed
effective-resistance (R(�)

e ) at the current level but also by the clustering information acquired from
previous levels.

The graph decomposition results with respect to effective-resistance (ER) diameter are illustrated in
Figure 5. The figure demonstrates that selecting a larger ER diameter leads to the decomposition of
the graph into a smaller number of partitions, with more nodes included in each cluster. On the left
side of the figure, the graph is decomposed into seven partitions: P1, ..., P7, by choosing a smaller
ER diameter. Conversely, increasing the ER diameter on the right side of the figure results in the
graph being partitioned into three clusters: P1, P2, and P3.

A.7 ADDITIONAL RESULTS

We present the additional results in Figure 6, Figure 7, Figure 8, and Table 5. Table 4 summarizes the
datasets utilized.

The horizontal axes denote the level of perturbation. ’Random FeaturePT’ corresponds to the DICE
adversarial attack. In this scenario, the horizontal axes represent deleting X edges within the same
class and adding X edges between different classes. On the other hand, ’Random FeaturePT’
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represents Gaussian noise perturbation, and the horizontal axes indicate the Gaussian noise level ⇠.
The subtitle of each graph presents the names of corresponding datasets and GNNs. Post-perturbation,
’stable’ samples should exhibit greater cosine similarities than ’unstable’ ones. Additionally, the KLD
of ’stable’ samples should be lower than that of ’unstable’ samples.

Table 4: Nettack adversarial attack targeting at selected Cora samples in GCN
Cosine Similarities: Stable/Unstable

Nettack Level SAGMAN
1 0.99/0.90
2 0.98/0.84
3 0.97/0.81

Table 5: Summary of datasets used in our experiments
Dataset Type Nodes Edges Classes Features

Cora Homophily 2,485 5,069 7 1,433
Cora-ML Homophily 2,810 7,981 7 2,879
Pubmed Homophily 19,717 44,324 3 500
Citeseer Homophily 2,110 3,668 6 3703

Chameleon Heterophily 2,277 62,792 5 2,325
Squirrel Heterophily 5,201 396,846 5 2,089

ogbn-arxiv Homophily 169,343 1,166,243 40 128

A.8 WHY GENERALIZED EIGENPAIRS ASSOCIATE WITH DMD

Cheng et al. (2021) propose a method to estimate the maximum distance mapping distortion (DMD),
denoted as �F

max
, by solving the following combinatorial optimization problem:

max �F = max
8p,q2V

p 6=q

e>
p,q

L+
Y
ep,q

e>
p,q

L+
X
ep,q

(15)

However, due to the discrete nature of ep,q , this problem has a super-linear complexity. To avoid this,
the Spectral Perturbation Analysis of Distortions score has been introduced, which can be computed
in nearly-linear time using fast Laplacian solvers. Given the Laplacian matrices LX and LY of the
input and output graphs GX and GY respectively, the stability score of a function (model) Y = F (X)
is defined as �max(L

+
Y
LX), where �max is the largest generalized eigenvalue.

Lemma 3. When computing �F
max

via effective-resistance distance, the stability score is an upper

bound of �F
max

.

A function Y = M(X) is called Lipschitz continuous if there exists a real constant K � 0 such that
for all xi, xj 2 X:

distY (M(xi),M(xj))  KdistX(xi, xj), (16)

where K is the Lipschitz constant for the function M . The smallest Lipschitz constant, denoted by
K⇤, is called the best Lipschitz constant.
Lemma 4. Let the resistance distance be the distance metric, we have:

�max(L
+
Y
LX) � K⇤ � �M

max
(17)

Lemma 4 indicates that the �max(L
+
Y
LX) is also an upper bound of the best Lipschitz constant K⇤

under the low dimensional manifold setting. A greater �max(L
+
Y
LX) of a function (model) implies

worse stability since the output will be more sensitive to small input perturbations.
Lemma 5. A node pair (p, q) is deemed non-robust if it exhibits a large DMD, i.e., �M (p, q) ⇡ �Mmax.

17



Under review as a conference paper at ICLR 2024

This lemma suggests that a non-robust node pair consists of nodes that are adjacent in the input graph
GX but distant in the output graph GY . To effectively identify such non-robust node pairs, the Cut
Mapping Distortion (CMD) metric was introduced:
Lemma 6. For two graphs GX and GY sharing the same node set V , let S ⇢ V denote a node

subset and S̄ denote its complement. Also, let cutG(S, S̄) denote the number of edges crossing S and

S̄ in graph G. The CMD ⇣(S) of node subset S is defined as:

⇣(S)
def
=

cutGY (S, S̄)

cutGX (S, S̄)
(18)

A small CMD score indicates that node pairs crossing the boundary of S are likely to have small
distances in GX but large distances in GY .
Lemma 7. Given the Laplacian matrices LX and LY of input and output graphs, respectively, the

minimum CMD ⇣min satisfies the following inequality:

⇣min = min
8S⇢V

⇣(S) � 1

�max(L
+
Y
LX)

(19)

Lemma 7 establishes a connection between the maximum generalized eigenvalue �max(L
+
Y
LX) and

⇣min, indicating the ability to exploit the largest generalized eigenvalues and their corresponding
eigenvectors to measure the stability of node pairs. Embedding GX with generalized eigenpairs. We
first compute the weighted eigensubspace matrix Vr 2 RN⇥r for spectral embedding on GX with N
nodes:

Vr

def
= [v1

p
�1, ..., vr

p
�r] , (20)

where �1,�2, ...,�r represent the first r largest eigenvalues of L+
Y
LX and v1, v2, ..., vr are the

corresponding eigenvectors. Consequently, the input graph GX can be embedded using Vr, so each
node is associated with an r-dimensional embedding vector. We can then quantify the stability of
an edge (p, q) 2 EX by measuring the spectral embedding distance of its two end nodes p and q.
Formally, we have the edge stability score defined for any edge (p, q) 2 EX as stabilityM (p, q)

def
=

kV >
r
ep,qk22

Lemma 8. Let u1, u2, ..., ur denote the first r dominant generalized eigenvectors of LXL+
Y

. If an

edge (p, q) is dominantly aligned with one dominant eigenvector uk, where 1  k  r, the following

holds:

(u>
i
ep,q)

2 ⇡
⇢
↵2
k
� 0 if (i = k)

0 if (i 6= k).
(21)

Then its edge stability score has the following connection with its DMD computed using effective-

resistance distances:

kV >
r
ep,qk22 /

�
�M (p, q)

�3
. (22)

The stability score of an edge (p, q) 2 EX can be regarded as a surrogate for the directional derivative
krvF (x)k under the manifold setting, where v = ±(xp � xq). An edge with a larger stability score
is considered more non-robust and can be more vulnerable to attacks along the directions formed by
its end nodes.

Last, The node DMD score can be calculated for any node (data sample) p 2 V as follows:

1

|NX(p)|
X

qi2NX(p)

�
kV >

N
ep,qk22)

�
/ 1

|NX(p)|
X

qi2NX(p)

�
�M (p, qi)

�3
(23)

where qi 2 NX(p) denotes the i-th neighbor of node p in graph GX , and NX(p) 2 V denotes the
node set including all the neighbors of p. The DMD score of a node (data sample) p can be regarded
as a surrogate for the function gradient krF (x)k where x is near p under the manifold setting. A
node with a larger stability score implies it is likely more vulnerable to adversarial attacks.

In this study, we restrict our calculations of DMD scores to the two largest generalized eigenpairs.
We also show results of the third and fourth largest generalized eigenpairs, as well as the fifth and
sixth largest generalized eigenpairs in Table 6.
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Table 6: Cosine Similarity and KL Divergence for DICE Edges Perturbation and Random Feature
Perturbation. We bold the better results.

Largest Generalized Eigenpairs: 1st,2nd/3rd,4th/5th,6th
Method PT Level Cos Cos KL KL

Stable Unstable Stable Unstable
EdgesPT 1 0.99/0.98/0.99 0.97/0.96/0.91 0.04/0.25/0.12 0.46/0.73/1.83

EdgesPT 2 0.96/0.87/0.96 0.92/0.89/0.86 0.82/1.17/1.11 2.43/2.01/3.47

EdgesPT 3 0.88/0.81/0.90 0.92/0.87/0.84 2.18/2.29/2.04 2.71/3.79/5.34

EdgesPT 4 0.83/0.80/0.85 0.88/0.85/0.85 4.57/3.29/3.83 4.16/4.23/5.25

EdgesPT 5 0.81/0.78/0.82 0.88/0.83/0.76 3.88/4.56/5.28 4.92/4.07/6.02

FeaturePT 0.4 1.00/0.84/0.81 1.00/0.75/0.68 0.00/2.16/5.70 0.00/4.57/8.24

FeaturePT 0.8 1.00/0.79/0.75 1.00/0.73/0.71 0.00/4.00/6.49 0.01/4.87/8.29

FeaturePT 1.2 0.98/0.78/0.76 0.98/0.70/0.69 0.02/6.11/6.65 0.08/5.47/9.33

FeaturePT 1.6 0.97/0.69/0.71 0.93/0.70/0.64 0.01/8.94/8.85 1.09/7.07/8.41

FeaturePT 2.0 0.80/0.67/0.70 0.82/0.72/0.66 1.72/8.57/9.53 4.02/5.45/9.40

A.9 BROADER IMPACT

Our research into the stability analysis of Graph Neural Networks (GNNs) holds profound implications
for various applications utilizing GNNs, ranging from social network analytics to bioinformatics. By
investigating the stability of these models, we aim to boost their reliability in real-world scenarios.
Stability is paramount to ensure that minor perturbations in input do not lead to drastic changes in
output. In scenarios where GNNs are used to make critical decisions, such as disease diagnosis
or financial fraud detection, instability could lead to severe negative consequences. Therefore,
enhancing the stability of GNNs could have a positive societal impact by increasing the reliability of
such systems and reducing erroneous decisions. Our work in identifying and addressing instability
issues in GNNs could also contribute to the development of more robust defense mechanisms against
adversarial attacks. These attacks, which introduce small, intentionally designed perturbations to
mislead models, pose a significant threat to machine learning systems, including GNNs. Hence,
our stability analysis can help improve the security of GNN-based systems. On the other hand,
we acknowledge that our research might also be used inappropriately. For instance, adversaries
could potentially exploit our analysis to devise more sophisticated attacks that specifically target the
identified instability issues. Therefore, while our work is geared towards improving the robustness of
GNNs, it is crucial to consider and guard against potential misuse.

Overall, our research serves as an essential step towards more robust and reliable GNN models,
though vigilance and continuous research are necessary to mitigate potential negative consequences.

A.10 CONSTRUCTED GRAPH AND THE ORIGINAL GRAPH

As shown in Appendix A.2, Equation 9 suggests that effective-resistance distances computed with the
first k smallest eigenpairs can serve as a good approximation of the original distances, particularly
when there is a large eigengap �k ⌧ �k+1.

To validate this, we compare the exact resistance distances computed using all eigenpairs with the
approximate ones obtained using the first few eigenpairs. The comprehensive results of resistance
correlation coefficients for 100 randomly selected node pairs in the Cora graph are reported in Table 7.
As observed, even a small number of eigenpairs can provide a satisfactory approximation of the
original effective-resistance distances. In this work, spectral embedding utilizes the smallest 50
eigenpairs.

We also show the comparison of the resistance correlation coefficient based on principal component
analysis (PCA) in Table 8, which indicates PCA fails to estimate the resistance distances of the
original graph.
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Table 7: Resistance correlation coefficients for Cora graph with various numbers of eigenvectors
Number of Eigenvectors Resistance Correlation Coefficient

20 0.69
30 0.78
40 0.79
50 0.82
100 0.87
200 0.93
300 0.96
400 0.97
500 0.99

Table 8: Resistance correlation coefficient based on PCA. We selected 100 randomly selected node
pairs in the Cora graph. Larger resistance correlation coefficients indicate better estimation.

Number of Resistance Principal Components Correlation Coefficient

20 -0.03
30 -0.01
40 0.09
50 0.15

100 0.14
200 0.15
300 0.14
400 0.13
500 0.12

A.11 EVALUATE THE ENTIRE DATASET

Previous works (Cheng et al., 2021; Hua et al., 2021; Chang et al., 2017) highlighted that only
part of the dataset plays a crucial role in model stability, so we want to focus on the difference
between the most "stable" and "unstable" parts. However, it is certainly feasible to evaluate the entire
graph. Table 9 shows the result regarding the Pubmed dataset in GPRGNN under Gaussian noise
perturbation. Samples were segmented based on SAGMAN ranking, with the bottom 20% being the
most "stable", the middle 60% as intermediate, and the top 20% representing the most "unstable". As
anticipated, the "stable" category (representing the bottom 20%) should exhibit the lowest average
KL divergences. This is followed by the intermediate category (covering the mid 60%), and finally,
the "unstable" category (comprising the top 20%) should display the highest divergences.

Table 9: KL Divergence for different FeaturePT values.
FeaturePT KL divergence KL divergence KL divergence

(bottom 20%) (mid 60%) (top 20%)
0.4 0.01 0.03 0.03
0.8 0.09 0.16 0.19
1.2 0.43 0.56 0.59
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Figure 6: Figures represent cosine similarities and KL divergence. "Random EdgesPT" corresponds
to the DICE edge evasion attack. "Random FeaturePT" refers to Gaussian noise evasion perturbation
X + ⇠⌘, where X is feature matrix, ⌘ is Gaussian noise, ⇠ is noise level controls
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Figure 7: Figures represent cosine similarities and KL divergence. "Random EdgesPT" corresponds
to the DICE edge evasion attack. "Random FeaturePT" refers to Gaussian noise evasion perturbation
X + ⇠⌘, where X is feature matrix, ⌘ is Gaussian noise, ⇠ is noise level controls
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Figure 8: The top four plots show cosine similarities, and the bottom four depict KLD. "Random
EdgesPT" stands for DICE edge evasion, where the x-axis marks the number of same-class edges
deleted and inter-class edges added. "Random FeaturePT" signifies Gaussian noise evasion, with the
x-axis denoting the added noise level X⌘, scaled by the data’s standard deviation ⌘.
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