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A IMPLEMENTATION DETAILS

A.1 NOTATION

Table 1: Notation used throughout this work

Variable Description

pi Position of node i
ui Velocity of node i
xi State (Position & Velocity) of node i
vi Augmented State (Position & Velocity & Orientation) of node i
hi Hidden vector of node i
�j|i Variable � of node j expressed at local coordinate frame of node i
fi External force exerted at node i

fv, fe, gv MLPs
[·, ·] Vector concatenation (along the feature dimension)

A.2 AETHER

Here we present the full Aether architecture. We first describe the details of the neural field used
for field discovery, and then we describe our graph network formulated as a variational autoencoder
(Kingma & Welling, 2014; Rezende et al., 2014).

A.2.1 NEURAL FIELD

In its general form, the neural field takes as inputs query positions p ∈ R2 and orientations θ ∈ S1,
as well as a latent code z ∈ RDz used to condition the field, and predicts latent forces at the query
positions-orientations. Thus, it is defined as f : R2 × S1 × RDz → R2. Depending on the task at
hand, we can omit the latent code z, e.g. if we are modelling a static field, or the orientations θ, if we
have prior knowledge that the field is independent to them.

Encoding positions We encode the input positions using Gaussian random Fourier features (Tancik
et al., 2020), γ(p) = [cos(2πBp), sin(2πBp)]

>
, where B ∈ R

Dc
2 ×2 is a matrix with entries

sampled from a Gaussian distribution, Bkl ∼ N (0, σ2). Throughout the experiments, we use a unit
variance σ2 = 1, and Dc

2 = 256. Thus, the encoded positions have a dimension of 512.

Encoding orientations For the orientations θ, we follow Kofinas et al. (2021), and use the angles
of the velocity vectors as a proxy. We represent orientations as unit vectors θ = [cos θ, sin θ]

>, and
encode them with a linear layer δ(θ) = Wωθ, where Wω ∈ RDc×2. Finally, we concatenate the
encoded positions and orientations in a single vector before we feed them as input to the neural field.

Latent code The latent code z “summarizes” the input graph such that it isolates global field effects.
We employ a simple global spatio-temporal attention mechanism, similar to Li et al. (2016), that
aggregates the input system in a latent vector representation. First, we define object embeddings
oi = GRU

(
Wgx

1:T
i

)
, where Wg ∈ RDo×Din is a matrix used to linearly transform the inputs, and

GRU is the Gated Recurrent Unit (Cho et al., 2014). We also define temporal embeddings t = PE(t),
where PE are positional encodings (Vaswani et al., 2017), defined as:

PE(t)2i = sin
(
t/100002i/Ds

)
, (13)

PE(t)2i+1 = cos
(
t/100002i/Ds

)
, (14)

where i is the i-th dimension.

The aggregation is then defined as follows:

z =
∑
i,t

softmax
(
fa
(
sti
))
· fb
(
sti
)
, with sti =

[
xti,oi

]
+ t, (15)
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where fa : RDs → R, fb : RDs → RDz are 2-layer MLPs with SiLU activations Ramachandran et al.
(2018) in between. They can be summarized as:

fa := {Linear(Ds, Dz)→ SiLU→ Linear(Dz, 1)}, (16)
fb := {Linear(Ds, Dz)→ SiLU→ Linear(Dz, Dz)}. (17)

In all experiments, we use Do = 512, Ds = Do +Din = 516, Dz = 512.

Neural field conditioning We condition the neural field using FiLM (Perez et al., 2018). Following
the implementation details of FiLM, in practice, we use the following equation for a FiLM layer:

h′ := FiLM(h, z) = (1 + α(z))� h + β(z), (18)

where h is the encoded input in the first FiLM layer, or the conditioned input in subsequent FiLM
layers, and α : RDz → RDh , β : RDz → RDh are MLPs. This equation deviates slightly from
section 2.3, since it predicts the residual of a multiplicative modulation. This approach can be
beneficial during the early stages of training, since it initially defaults to an identity transformation
for zero-initialized weights, while the alternative can “zero out” the network outputs. For both α and
β we use 2-layer MLPs with SiLU activations in-between.

α := {Linear(Dz, Dh)→ SiLU→ Linear(Dh, Dh)} (19)
β := {Linear(Dz, Dh)→ SiLU→ Linear(Dh, Dh)}. (20)

In all experiments, we use Dh = 512.

Full neural field The full neural field is a 3-layer MLP with SiLU (Ramachandran et al., 2018)
activations in-between, and FiLM layers after the first two linear layers, and outputs a latent force
field. The neural field can be summarized as

f(p,θ, z) = {Linear→ FiLM→ SiLU→ Linear→ FiLM→ SiLU→ Linear} (21)

A.2.2 AETHER AS A VARIATIONAL AUTOENCODER

Here we present our graph network architecture that closely follows Graber & Schwing (2020);
Kofinas et al. (2021). The model is formulated as a variational autoencoder (Kingma & Welling,
2014; Rezende et al., 2014) with latent edge types that infers a latent graph structure. The encoder is
tasked with predicting interactions between object pairs, while the decoder uses the sampled graph
structure to make predictions. As mentioned in section 3.3, our full architecture also integrates
G-LoCS, i.e. the augmented node states include the predicted forces exerted at the target node, as
well as the state of the auxiliary origin-node, expressed in the local frame of the target node.

Encoder Equations (22) to (24) describe the message passing steps of our graph network. In these
equations, we process each timestep independently.Then, in eqs. (25) and (26) we compute the
evolution of edge embeddings over time with LSTMs (Hochreiter & Schmidhuber, 1997), and in
eqs. (27) and (28) we estimate the posterior and the learned prior over our edges.

h
(1),t
j,i = f (1)e

([
vtj|i, f tj|i ,v

t
i|i, f ti|i ,v

t
O|i

])
(22)

h
(1),t
i = f (1)v

g(1)v ([vti|i, f ti|i ,v
t
O|i

])
+

1

|N (i)|
∑

j∈N (i)

h
(1),t
j,i

 (23)

h
(2),t
j,i = f (2)e

([
h
(1),t
i ,h

(1),t
j,i ,h

(1),t
j

])
(24)

ht(j,i),prior = LSTMprior

(
h
(2),t
j,i ,ht−1(j,i),prior

)
(25)

ht(j,i),enc = LSTMenc

(
h
(2),t
j,i ,ht+1

(j,i),enc

)
(26)

pφ
(
zt|x1:t, z1:t−1

)
= softmax

(
fprior

(
ht(j,i),prior

))
(27)

qφ
(
ztj,i|x

)
= softmax

(
fenc

([
ht(j,i),prior,h

t
(j,i),enc

]))
(28)

The functions f (1)e , f
(1)
v , f

(2)
e , g

(1)
v , fprior, fenc denote MLPs.
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Decoder The decoder samples zt(j,i) using Gumbel-Softmax (Maddison et al., 2017; Jang et al.,
2017). The following equations formalize a message passing scheme performed for the current
timestep, and another one performed for the hidden node states. Both are used to update the hidden
node states, and to make predictions for the next timestep. As mentioned in section 2.2, we make
predictions in the local coordinate frame of each node. Thus, we perform an inverse transformation
for each node to transform the predictions back to the global coordinate frame.

mt
j,i =

∑
k

zt(j,i),kf
k

([
vtj|i, f tj|i ,v

t
i|i, f ti|i ,v

t
O|i

])
(29)

mt
i = f (3)v

g(3)v ([vti|i, f ti|i ,v
t
O|i

])
+

1

|N (i)|
∑

j∈N (i)

mt
j,i

 (30)

htj,i =
∑
k

zt(j,i),kg
k
([

htj ,h
t
i

])
(31)

nti =
1

|N (i)|
∑

j∈N (i)

ht(j,i) (32)

ht+1
i = GRU

([
nti,mi

t
]
,hti
)

(33)

µt+1
i = xti + Rt

i · f (4)v

(
ht+1
i

)
(34)

p(xt+1
i |x

1:t, z1:t) = N
(
µt+1
i , σ2I

)
(35)

A.2.3 G-LOCS

Encoder
h
(1),t
j,i = f (1)e

([
vtj|i,v

t
i|i,v

t
O|i

])
(36)

h
(1),t
i = f (1)v

g(1)v ([vti|i,vtO|i])+
1

|N (i)|
∑

j∈N (i)

h
(1),t
j,i

 (37)

h
(2)
j,i = f (2)e

([
h
(1),t
i ,h

(1),t
j,i ,h

(1),t
j

])
(38)

ht(j,i),prior = LSTMprior

(
h
(2),t
j,i ,ht−1(j,i),prior

)
(39)

ht(j,i),enc = LSTMenc

(
h
(2),t
j,i ,ht+1

(j,i),enc

)
(40)

pφ
(
zt|x1:t, z1:t−1

)
= softmax

(
fprior

(
ht(j,i),prior

))
(41)

qφ
(
ztj,i|x

)
= softmax

(
fenc

([
ht(j,i),prior,h

t
(j,i),enc

]))
(42)

Decoder
mt
j,i =

∑
k

zt(j,i),kf
k
([

vtj|i,v
t
i|i,v

t
O|i

])
(43)

mt
i = f (3)v

g(3)v ([vti|i,vtO|i])+
1

|N (i)|
∑

j∈N (i)

mt
j,i

 (44)

htj,i =
∑
k

zt(j,i),kg
k
([

htj ,h
t
i

])
(45)

nti =
1

|N (i)|
∑

j∈N (i)

ht(j,i) (46)

ht+1
i = GRU

([
nti,mi

t
]
,hti
)

(47)

µt+1
i = xti + Rt

i · f (4)v

(
ht+1
i

)
(48)

p(xt+1
i |x

1:t, z1:t) = N
(
µt+1
i , σ2I

)
(49)
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Training Our full VAE model is trained by minimizing the negative Evidence Lower Bound
(ELBO), which comprises the reconstruction loss of the predicted trajectories (positions and velocities)
and the KL divergence.

L(φ, θ) = Eqφ(z|x)[log pθ(x|z)]−KL[qφ(z|x)||pφ(z|x)] (50)

Following Graber & Schwing (2020), the reconstruction loss and the KL divergence take the following
form:

Eqφ(z|x)[log pθ(x|z)] = −
∑
i

∑
t

||xti − µti||
2σ2

+
1

2
log
(
2πσ2

)
, (51)

KL[qφ(z|x)||pφ(z|x)] =

T∑
t=1

H(qφ(ztji|x))−
∑
ztji

qφ(ztji|x) log pφ(ztji|x1:t, z1:t−1)

, (52)

where H denotes the entropy operator. In all experiments, we set the variance σ2 = 10−5.

We train Aether using Adam (Kingma & Welling, 2014). In all experiments, we use a learning rate of
5e−4.

A.2.4 SOURCE ORACLE

The source oracle modifies LoCS (Kofinas et al., 2021) to use virtual nodes. Since graph networks
are permutation invariant, we cannot just include the sources as nodes of the graph and perform
message passing, as the network would not be able to distinguish particles from sources. Thus, we
treat the sources separately in the message passing so that the network can identify them. More
specifically, we introduce a new message function that computes field source→ particle messages.
Furthermore, we introduce a separate aggregation function in the update step that only aggregates
the messages from field sources. We denote the set of field sources as S. The state of a field source
s ∈ S is denoted as vs, while the same state expressed in the local coordinate frame of node i is
denoted as vs|i. The source oracle graph network is defined as follows:

htj,i = fe

([
vtj|i,v

t
i|i

])
, (53)

hts,i = fs

([
vts|i,v

t
i|i

])
, (54)

∆xt+1
i|i = fv

gv(vti|i

)
+

1

|N (i)|
∑

j∈N (i)

htj,i +
1

|S|
∑
j∈S

hts,i

, (55)

where fs is an MLP.

A.3 COMPUTING RESOURCES

All experiments were performed on single GPUs. We used 2 different GPU models, namely the
Nvidia RTX 2080 Ti, and Nvidia GTX 1080 Ti. Our source code was written in PyTorch (Paszke
et al., 2019), version 1.4.0, and CUDA 10.0.

B DATASET DETAILS

B.1 CHARGED PARTICLES

Kipf et al. (2018) introduced a dataset of interacting charged particles. Charged particles interact
via electrostatic Coulomb forces. We assume a set of N particles, and each particle has a position
pti ∈ RD and a charge qi ∈ R. The force f tj,i exerted from particle j to particle i is computed as
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follows:
ptj,i = ptj − pti (56)

p̂tj,i =
ptj,i∥∥ptj,i∥∥ (57)

f tj,i = C · qiqj
p̂tj,i∥∥ptj,i∥∥2 (58)

Since forces only depend on positions at the current timestep, in the following equations, we omit the
time indices to reduce clutter. The total force exerted at particle i is

fi =

N∑
j=1,j 6=i

fj,i = C · qi
N∑

j=1,j 6=i

qj
p̂j,i

‖pj,i‖2
(59)

The electric field is a vector field, whose value at the test position pi assumes a positive test charge
qi = 1, and is defined as:

Ej,i =
fj,i
qi

= C · qj
p̂j,i

‖pj,i‖2
(60)

Ei =

N∑
j=1,j 6=i

Ej,i = C ·
N∑

j=1,j 6=i

qj
p̂j,i

‖pj,i‖2
(61)

Our first experiment aims to study the effect of static fields, i.e. a single field across all train, validation,
and test simulations. We extend the charged particles dataset by adding a number of immovable
sources. Overall, these sources act like regular particles, exerting forces on the observable particles,
except we ignore any forces exerted to them, and fix their positions and velocities to zero. We use
N = 5 “observable” particles and M = 20 “source” particles. In all experiments, we assume unit
charges, qi = ±1, and C = 1. The probabilities of positive or negative charges are equal. Then, the
forces and the electric field can be simplified as:

fj,i = sign(qiqj)
p̂j,i

‖pj,i‖2
(62)

Ei =

N∑
j=1,j 6=i

sign(qj)
p̂j,i

‖pj,i‖2
(63)

The net force exerted at a particle i ∈ {1, . . . , N} is computed as

fi =

N+M∑
j=1,j 6=i

fj,i =

N∑
j=1,j 6=i

fj,i︸ ︷︷ ︸
particles

+

N+M∑
j=N+1

fj,i︸ ︷︷ ︸
field

(64)

We generate a dataset of 50,000 simulations for training, 10,000 for validation and 10,000 for testing.
The datasets contains only the positions and velocities for the “observable” particles, while the field
sources are only used for visualization. Following Kipf et al. (2018), each simulation lasts for 49
timesteps. During inference, we use the first 29 steps as input and predict the remaining 20 steps.

B.2 TRAFFIC SCENES - IND

InD (Bock et al., 2020) is a real-world traffic scenes dataset that comprises trajectories of pedestrians,
vehicles, and cyclists. It contains 33 recordigns, recorded at 4 different locations in Aachen, Germany.
We hypothesize that discovering a latent traffic force field will be beneficial for trajectory forecasting
in traffic scenes. For simplicity, we focus on static field discovery in traffic scenes. We create a subset
that contains scenes from a single location. Namely, we choose “Frankenburg, Aachen”, since it is
the location with most interactions in the dataset. The subset corresponds to 12 recordings; we use 8
for training, 2 for validation, and 2 for testing. We follow a similar experimental setting with Graber
& Schwing (2020); Kofinas et al. (2021). We divide each scene into 18-step sequences. We use the
first 6 time steps as input and predict the next 12 time steps.
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Figure 10: Static field visualization

B.3 GRAVITATIONAL N-BODY DATASET

In this experiment, we study the influence of dynamic fields, i.e. fields that are different across
simulations. Similar to the charged particles setting, we extend the gravitational n-body dataset by
Brandstetter et al. (2022) by adding gravitational sources. The equation that describes the forces is
similar to eq. (58). Namely, we have

f tj,i = C ·mimj

p̂tj,i∥∥ptj,i∥∥2 , (65)

where mi,mj are the particle masses. We create a dataset of 5,000 simulations for training, 1,000 for
validation and 1,000 for testing. We use N = 5 particles and M = 1 source. We set the masses of
particles to mp = 1, while the source has a mass of ms = 10. Similarly to all our experiments, the
datasets contains only the positions and velocities for the “observable” particles, while the field source
is only used for visualization. We generate trajectories of 49 timesteps. We use the first 44 timesteps
as input and predict the remaining 5 steps. All other dataset details are identical to Brandstetter et al.
(2022).
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C QUALITATIVE RESULTS

C.1 CHARGED PARTICLES

Figure 11 shows qualitative results on charged particles. The predictions start where markers have
black edges. The markers get bigger and more opaque as trajectories evolve in time. Lighter colors
indicate predictions, and darker colors indicate the groundtruth. The background streamplots indicate
the groundtruth field, and are not given as input to the networks. Similarly, the blue ⊕ markers and
the red 	 markers, are merely shown for illustrative purposes, indicating the charges of the field
sources, and are not given as input to the networks.

(a) Aether (b) G-LoCS (c) LoCS (d) dNRI

Figure 11: Predictions on charged particles. Lighter colors indicate predictions, and darker colors
indicate the groundtruth. Predictions start where markers have black edges. Markers get bigger and
more opaque as trajectories evolve in time. The background streamplots, blue ⊕ markers, and red 	
markers indicate the groundtruth field, and are merely shown for illustrative purposes, they are not
given as input to the networks. Best viewed in color.

C.1.1 DISCOVERED ELECTROSTATIC FIELD

In fig. 12 we visualize the discovered electrostatic field compared to the groundtruth one.
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Figure 12: Learned Field (left) in charged particle settings compared to groundtruth (right).

C.2 IND

Figure 13 shows qualitative results on inD (Bock et al., 2020).
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(a)

(b)

(c)

Figure 13: Aether predictions (right) on inD, compared to groundtruth (left). Predictions start where
markers are colored black. Best viewed in color.
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(a)

(b)

(c)

Figure 14: G-LoCS predictions (right) on inD, compared to groundtruth (left). Predictions start where
markers are colored black. Best viewed in color.
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(a)

(b)

(c)

Figure 15: LoCS predictions (right) on inD, compared to groundtruth (left). Predictions start where
markers are colored black. Best viewed in color.
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(a)

(b)

(c)

Figure 16: dNRI predictions (right) on inD, compared to groundtruth (left). Predictions start where
markers are colored black. Best viewed in color.

C.2.1 DISCOVERED TRAFFIC FORCE FIELD

In fig. 17 we visualize the discovered traffic force field on inD.
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Figure 17: Discovered field on inD (Bock et al., 2020). For simplicity, we only visualize the field for
discrete input orientations in C4 =

{
0, π2 , π,

3π
2

}
. Best viewed in color.

C.3 GRAVITY

Figure 18 shows qualitative results on the gravitational n-body problem.

(a) Aether (b) G-LoCS (c) LoCS (d) dNRI

Figure 18: Predictions on gravity. Lighter colors indicate predictions, and darker colors indicate the
groundtruth. Predictions start where markers have black edges. Markers get bigger as trajectories
evolve. Best viewed in color.

C.3.1 DISCOVERED GRAVITATIONAL FIELDS

Figure 19 shows examples of discovered fields compared to the groundtruth ones.
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Figure 19: Learned dynamic fields (left) in n-body problem vs groundtruth (right).
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D QUANTITATIVE RESULTS

In all settings, we report the total errors, i.e. the mean squared errors of positions and velocities
over time, E(t) = 1

ND

∑N
n=1 ‖xtn − x̂tn‖22. Following Kofinas et al. (2021), we also separately

report the L2 norm position errors, Ep(t) = 1
N

∑N
n=1‖ptn − p̂tn‖2, and velocity errors, Eu(t) =

1
N

∑N
n=1‖utn − ûtn‖2.

D.1 CHARGED PARTICLES

1 5 9 13 17 20
Step

0.0

0.2

0.4

0.6

0.8

L
2

E
rr

or

Position Errors

1 5 9 13 17 20
Step

0.00

0.25

0.50

0.75

1.00

1.25

L
2

E
rr

or

Velocity Errors

1 5 9 13 17 20
Step

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

Total Errors

dNRI LoCS G-LoCS Aether

Figure 20: Results in charged particles

D.2 IND
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Figure 21: inD results
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D.3 GRAVITY
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Figure 22: Gravity results

D.4 ABLATION STUDIES
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Figure 23: Ablation results in charged particles
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