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ABSTRACT

Deploying reinforcement learning (RL) systems requires robustness to uncertainty
and model misspecification, yet prior robust RL methods typically only study noise
introduced independently across time. However, practical sources of uncertainty
are usually coupled across time. We formally introduce temporally-coupled pertur-
bations, presenting a novel challenge for existing robust RL methods. To tackle
this challenge, we propose GRAD, a novel game-theoretic approach that treats
the temporally-coupled robust RL problem as a partially-observable two-player
zero-sum game. By finding an approximate equilibrium within this game, GRAD
optimizes for general robustness against temporally-coupled perturbations. Experi-
ments on continuous control tasks demonstrate that, compared with prior methods,
our approach achieves a higher degree of robustness to various types of attacks on
different attack domains, both in settings with temporally-coupled perturbations
and decoupled perturbations.

1 INTRODUCTION

In recent years, reinforcement learning (RL) has demonstrated success in tackling complex decision-
making problems in various domains. However, the vulnerability of deep RL algorithms to test-time
changes in the environment or adversarial attacks has raised concerns for real-world applications.
Developing robust RL algorithms that can defend against these adversarial attacks is crucial for the
safety, reliability and effectiveness of RL-based systems.

In most existing research on robust RL (Huang et al., 2017; Liang et al., 2022; Sun et al., 2022;
Tessler et al., 2019; Zhang et al., 2020), the adversary is able to perturb the observation or action every
timestep under a static constraint. Specifically, the adversary’s perturbations are constrained within
a predefined space, such as an Lp norm, which remains unchanged from one timestep to the next.
This standard assumption in the robust RL literature can be referred to as a non-temporally-coupled
assumption. However, this static constraint can lead to unrealistic perturbations: for example, the
attacker may be able to blow the wind hard southeast at time t but northwest at time t+ 1. Providing
robustness against such an perturbations may result in an overly conservative policy.

However, the set of perturbations faced in the real world are typically temporally-coupled: if the
wind blows in one direction at one time step, it will likely blow in a similar directly at the next step.
In this paper, we will treat the robust RL problem as a partially-observable two-player game and
use tools from game theory to acquire robust policies, both for the non-temporally-coupled and the
temporally-coupled settings.

In this paper, we propose a novel approach: Game-theoretic Response approach for Adversarial
Defense (GRAD) that leverages Policy Space Response Oracles (PSRO) (Lanctot et al., 2017) for
robust training. GRAD is more general than prior adversarial defenses in the sense that it does not
target certain adversarial scenarios and converges to the approximate equilibrum training with an
adversary policy set. While prior methods often assume the worst case and aim to improve against
them, they lack adaptability to specific attacks such as these adversaries under temporally-coupled
constraints. We formulate the interaction between the agent and the temporally-coupled adversary as
a two-player zero-sum game and employ PSRO to ensure the agent’s best response against the learned
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Our robust model: more robust and stable under different types of  attacks

Robust baselines: robust under standard attacks, fall down under the temporally-coupled attacks

Standard Attacks Temporally-coupled Attacks

Figure 1: The robust GRAD agents (top) and the state-of-the-art robust WocaR-RL (Liang et al., 2022) (bottom)
exhibit distinct learned behaviors. Under standard non-temporally-coupled attacks, both agents maintain basic
body stability, with the GRAD agent making an effort to avoid lateral rotations. Notably, WocaR-RL focuses on
enhancing robustness in worst-case scenarios, but our experiments reveal its vulnerability to temporally-coupled
attacks, leading to a tendency to fall towards one side. In contrast, GRAD showcases superior robustness in both
non-temporally-coupled and temporally-coupled adversarial settings.

adversary and find an approximate equilibrium. This game-theoretic framework empowers our
approach to effectively maximize the agent’s performance by adapting to the adversary’s strategies.

Our contributions are three-fold. First, we propose a novel class of temporally-coupled adversarial
attacks to identify the realistic pitfalls of prior threat models as a challenge for existing robust RL
methods. Second, we introduce a game-theoretic response approach, referred to as GRAD. We high-
light the significant advantages of GRAD in terms of convergence and policy exploitability. Notably,
GRAD demonstrates adaptability to adversaries in both temporally-coupled and non-temporally-
coupled settings. Furthermore, GRAD serves as a versatile and flexible solution for adversarial RL,
enhancing robustness against diverse types of adversaries.

Third, we provide empirical results that demonstrate the effectiveness of our approach in defending
against both temporally-coupled and non-temporally coupled adversaries on various attack domains.
Figure 1 illustrates how a robustness to temporally-coupled perturbations induces different behavior
than robustness to standard perturbations.

2 PRELIMINARIES

Notations and Background. A Markov decision process (MDP) can be defined as a tuple
⟨S,A,P,R, γ⟩, where S and A represent the state space and the action space, R is the reward
function: R : S × A → R, P : S × A → ∆(S) represents the set of probability distributions
over the state space S and γ ∈ (0, 1) is the discount factor. The agent selects actions based on
its policy, π : S → ∆(A), which is represented by a function approximator (e.g. a neural net-
work) that is updated during training and fixed during testing. The value function is denoted by
Uπ(s) := EP,π[

∑∞
t=0 γ

tR(st, at) | s0 = s], which measures the expected cumulative discounted
reward that an agent can obtain from state s ∈ S by following policy π.

State or Action Adversaries. State adversary is a type of test-time attacker that perturbs the agent’s
state observation returned by the environment at each time step and aims to reduce the expected
episode reward gained by the agent. While the input to the agent’s policy is perturbed, the underlying
state in the environment remains unchanged. State adversaries, such as those presented in (Zhang
et al., 2020; 2021; Sun et al., 2022), typically consider perturbations on a continuous state space under
a certain attack budget ϵ. The attacker perturbs a state s into s̃ ∈ Bϵ(s), where Bϵ(s) is a ℓp norm
ball centered at s with radius ϵ. Moreover, Action adversaries’ goal is to manipulate the behavior of
the agent by directly perturbing the action a executed by the agent to ã with the probability α as an
uncertainty constraint before the environment receives it (altering the output of the agent’s policy),
causing it to deviate from the optimal policy (Tessler et al., 2019). In this paper, we focus solely on
continuous-space perturbations and employ an admissible action perturbation budget as a commonly
used ℓp threat model.
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Algorithm 1 Policy Space Response Oracles (Lanctot et al., 2017)

Result: Nash Equilibrium
Input: Initial population Π0

repeat {for t = 0, 1, . . .}
πr ← NE in game restricted to strategies in Πt

for i ∈ {1, 2} do
Find a best response βi ← BRi(π

r
−i)

Πt+1
i ← Πt

i ∪ {βi}
end for

until Approximate exploitability is less than or equal to zero
Return: πr

Problem formulations as a zero-sum game. We model the game between the agent and the
adversary as a two-player zero-sum game that is a tuple ⟨S,Πa,Πv,P,R, γ⟩, where Πa and Πv

denote the sets of policies for the agent and the adversary, respectively. In this framework, both the
transition kernels P and the reward functionR of the victim agent depend on not only its own policy
πa ∈ Πa, but also the adversary’s policy πv ∈ Πv. The adversary’s reward R(st, āt) is defined
as the negative of the victim agent’s reward R(st, at), reflecting the zero-sum nature of the game.
The expected value uπa

a (h) for the agent is the expected sum of future rewards in history h and
the robuat RL problem as a two-player zero-sum game has uπv

v (h) + uπa
a (h) = 0 for all agent and

adversary strategies. A Nash equilibrium (NE) is a strategy profile such that, if all players played
their NE strategy, no player could achieve higher value by deviating from it. Formally, π∗

a is a NE if
ua(π

∗
a) = maxπa

ua(πa, π
∗
v). A best response BR strategy BRa(πv) for the agent a to a strategy πv

is a strategy that maximally exploits πv : BRa(πv) = argmaxπa
ua(πa, πv). In this paper, our goal

is to converge to the approximate NE for the zero-sum game.

Double Oracle Algorithm (DO) and Policy Space Response Oracles (PSRO). Double ora-
cle (McMahan et al., 2003) is an algorithm for finding a Nash Equilibrium (NE) in normal-form
games. The algorithm operates by keeping a population of strategies Πt at time t. Each iteration, a
NE π∗,t is computed for the game restricted to strategies in Πt. Then, a best response BRi(π

∗,t
−i ) to

this NE is computed for each player i and added to the population, Πt+1
i = Πt

i ∪ {BRi(π
∗,t
−i )} for

i ∈ {1, 2}. Although in the worst case DO must expand all pure strategies before π∗,t converges to
an NE in the original game, in many games DO terminates early and outperforms alternative methods.
An interesting open problem is characterizing games where DO will outperform other methods.

Policy Space Response Oracles (PSRO) (Lanctot et al., 2017; Muller et al., 2019; Feng et al., 2021;
McAleer et al., 2022b;a), shown in Algorithm 1 are a method for approximately solving very large
games. PSRO maintains a population of reinforcement learning policies and iteratively trains the best
response to a mixture of the opponent’s population. PSRO is a fundamentally different method than
the previously described methods in that in certain games it can be much faster but in other games it
can take exponentially long in the worst case.

3 ROBUSTNESS TO TEMPORALLY-COUPLED ATTACKS

In this section, we first formally define temporally-coupled attacks. Then, we introduce our algorithm,
a game-theoretic response approach for adversarial defense against the proposed attacks.

3.1 TEMPORALLY-COUPLED ATTACK

Robust and adversarial RL methods restrict the power of the adversarial by defining a set of admissible
perturbations:

Definition 3.1 (ϵ-Admissible Adversary Perturbations). An adversarial perturbation pt is considered
admissible in the context of a state adversary if, for a given state st at timestep t, the perturbed state
s̃t defined as s̃t = st + pt satisfies ∥st − s̃t∥ ≤ ϵ, where ϵ is the state budget constraint. Similarly, if
pt is generated by an action adversary, the perturbed action ãt defined as ãt = at + pt should be
under the action constraint of ∥at − ãt∥ ≤ ϵ.
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While the budget constraint ϵ is commonly applied in prior adversarial attacks, it may not be applicable
in many real-world scenarios where the attacker needs to consider the past perturbations when
determining the current perturbations. Specifically, in the temporal dimension, perturbations exhibit a
certain degree of correlation. To capture this characteristic, we introduce the concept of temporally-
coupled attackers. We propose a temporally-coupled constraint as defined in Definition 3.2, which
sets specific limitations on the perturbation at the current timestep based on the previous timestep’s
perturbation.
Definition 3.2 (ϵ̄-Temporally-coupled Perturbations). A temporally-coupled state perturbation pt is
deemed acceptable if it satisfies the temporally-coupled constraint ϵ̄: ∥st − s̃t − (st+1 − s̃t+1)∥ ≤
ϵ̄ where s̃t and s̃t+1 are the perturbed states obtained by adding pt and pt+1 to st and st+1,
respectively. For action adversaries, the temporally-coupled constraint ϵ̄ is similarly denoted as
∥at − ãt − (at+1 − ãt+1)∥ ≤ ϵ̄, where ãt and ãt+1 are the perturbed actions.

Standard
Perturbations

Temporally-coupled
Perturbations

Figure 2: Standard perturbations and temporally-
coupled perturbations in a 2d example.

We illustrate this definition in Fig. 2. When an ad-
versary is subjected to both of these constraints, it
is referred to as a temporally-coupled adversary in
this paper. For a temporally-coupled adversary, each
timestep’s perturbation is restricted within a certain
range ϵ, similar to other regular adversarial attacks.
However, it is further confined within a smaller range
ϵ̄ based on the previous timestep’s perturbation. This
design offers two significant benefits.

Firstly, it enables the adversary to consider the tem-
poral coupling between perturbations over time. By
constraining the perturbations to a smaller range and
discouraging drastic changes in direction, the adversary can launch continuous and stronger attacks
while preserving a certain degree of stability. Intuitively, if the adversary consistently attacks in
one direction, it can be more challenging for the victim to preserve balance and defend effectively
compared to when the perturbations alternate between the left and right directions.

Then, the temporally-coupled constraint also enables the adversary to efficiently discover the optimal
attack strategy by narrowing down the range of choices for each timestep’s perturbation. Reducing
the search space does not necessarily weaken the adversary; in fact, it can potentially make the
adversary stronger if the optimal attack lies within the temporally-determined search space, which is
supported by our empirical results. By constraining the adversary to a more focused exploration of
attack strategies, the temporally-coupled constraint facilitates the discovery and exploitation of more
effective and targeted adversarial tactics that exhibit less variation at consecutive timesteps. This
characteristic enhances the adversary’s ability to launch consistent and potent attacks.

Practically, it is crucial to carefully determine ϵ̄ to guarantee that this additional temporally-coupled
constraint does not impede the performance of attacks but rather amplifies their effectiveness. The
effectiveness of different choices for ϵ̄ was empirically evaluated in our empirical studies, highlighting
the benefits it brings to adversarial learning. Temporally-coupled perturbations represent a novel
case to challenge the existing methods. Our empirical experiments demonstrate that, even with the
introduction of temporally-coupled constraints, these perturbations can have a notable impact on
existing robust models, showcasing the need for addressing such scenarios in robust RL.

3.2 GRAD: GAME-THEORETIC APPROACH FOR ADVERSARIAL DEFENSE

Building upon prior robust RL methods, we develop a robust RL algorithm for the temporally-coupled
setting. Our resulting method uses tools from game theory to enhance robustness against adversaries
with different settings including non-temporally-coupled and temporally-coupled constraints.

In our Game-theoretic Response approach for Adversarial Defense (GRAD) framework as a mod-
ification of PSRO (Lanctot et al., 2017), an agent and a temporally-coupled adversary are trained
as part of a two-player game. They play against each other and update their policies in response
to each other’s policies. The adversary is modeled as a separate agent who attempts to maximize
the impact of attacks on the original agent’s performance and whose action space is constrained by
both ϵ and ϵ̄. Our method adapts the ϵ-budget assumption from prior work (Liang et al., 2022) to
handle temporally-coupled constraints. Meanwhile, the original agent’s objective function is based
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Algorithm 2 Game-theoretic Response approach for Adversarial Defense (GRAD)

Input: Initial policy sets for the agent and adversary Π : {Πa,Πv}
Compute expected utilities as empirical payoff matrix UΠ for each joint π : {πa, πv} ∈ Π
Compute meta-Nash equilibrium σa and σv over policy sets (Πa,Πv)
for epoch in {1, 2, . . .} do

for many iterations Nπa do
Sample the adversary policy πv ∼ σv

Train π′
a with trajectories against the fixed adversary πv: Dπ′

a
:= {(ŝkt , akt , rkt , ŝkt+1)}

∣∣B
k=1

(when the fixed adversary only attacks the action space, ŝt = st.)
end for
Πa = Πa ∪ {π′

a}
for many iterations Nπv

do
Sample the agent policy πa ∼ σa

Train the adversary policy π′
v with trajectories: Dπ′

v
:= {(skt , ākt ,−rkt , skt+1)}

∣∣B
k=1

(π′
v applies attacks to the fixed victim agent πa based on āt using different methods)

end for
Πv = Πv ∪ {π′

v}
Compute missing entries in UΠ from Π
Compute new meta strategies σa and σv from UΠ

end for
Return: current meta Nash equilibrium on whole population σa and σv

on the reward obtained from the environment, taking into account the perturbations imposed by the
adversary. The process continues until an approximate equilibrium is reached, at which point the
original agent is considered to be robust to the attacks learned by the adversary. We show our full
algorithm in Algorithm 2.

Under some assumptions (see Appendix A for details), GRAD convergence to an approximate Nash
Equilibrium (NE):

Proposition 3.3. For a finite-horizon MDP with a fixed number of discrete actions, GRAD converges
to an approximate Nash Equilibrium (NE) of the two-player zero-sum adversarial game.

In GRAD, both the agent and the adversary have two policy sets. During each training epoch, the agent
aims to find an approximate best response to the fixed adversary, and vice versa for the adversary.
This iterative process promotes the emergence of stable and robust policies. After each epoch, the new
trained policies are added to the respective policy sets, which allows for a more thorough exploration
of the policy space.

For different types of attackers, the agent generates different trajectories while training against a
fixed attacker. If the attacker only targets the state, then the agent’s training data will consist of the
altered state ŝ after adding the perturbations from the fixed attacker. If the attacker targets the agent’s
action, the agent’s policy output a will be altered as â by the attacker, even if the agent receives the
correct state s during training. As for the adversary’s training, after defining the adversary’s attack
method and policy model, the adversary applies attacks to the fixed agent and collects the trajectory
data and the negative reward to train the adversary. The novelty of GRAD lies in its scalability and
adaptability in robust RL which converges to the approximate equilibrium without only considering
certain adversarial scenarios. Our work formulates the robust RL objective as a zero-sum game and
demonstrates the efficacy of game-theoretic RL in tackling this objective, rather than being solely
reliant on the specific game-theoretic RL algorithm of PSRO or focusing on defense against specific
types of attackers.GRAD provides a more versatile and adaptive solution.

As in Definition 3.2, which is actually a generalization of the original attack space. We have
∥st − s̃t − (st+1 − s̃t+1)∥ ≤ ∥st − s̃t∥ + ∥st+1 − s̃t+1∥ ≤ 2ϵ, so when ϵ̄ > 2ϵ, it converges to
the non-coupled attack scenario. Consequently, our defense strategy is not specific to a narrow
attack set In the next section, we empirically demonstrate that our approach exhibits superior and
comprehensive robustness, which is capable of adapting to various attack scenarios and effectively
countering different types of adversaries on continuous control tasks.
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(a) Non-temporally-Coupling State Attacks
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Figure 3: Average episode rewards ± standard deviation over 100 episodes under the strongest non-temporally-
coupling and temporally-coupling state attacks for state robust baselines and GRAD on five control tasks.

4 EXPERIMENTS

In our experiments, we investigate various types of attackers on different attack domains including
state perturbations, action perturbations, model uncertainty and mixed perturbations. We will study a
diverse set of attack and compare with state-of-the-art baselines.

Experiment setup. Our experiments are conducted on five various and challenging MuJoCo
environments: Hopper, Walker2d, Halfcheetah, Ant, and Humanoid, all using the v2 version of
MuJoCo. We use the Proximal Policy Optimization (PPO) algorithm as the policy optimizer for
GRAD training. For attack constraint ϵ, we use the commonly adopted values ϵ for each environment.
We set the temporally-coupled constraint ϵ̄ = ϵ/5 (with minor adjustments in some environments).
Ablation experiments study the choice ofOther choices of ϵ̄ will be further discussed in the ablation
studies. Our experiments are conducted on five various and challenging MuJoCo environments:
Hopper, Walker2d, Halfcheetah, Ant, and Humanoid, all using the v2 version of MuJoCo. We
use the Proximal Policy Optimization (PPO) algorithm as the policy optimizer for GRAD training.
For attack constraint ϵ, we use the commonly adopted values ϵ for each environment. We set the
temporally-coupled constraint ϵ̄ = ϵ/5 (with minor adjustments in some environments). Ablation
experiments study the choice of ϵ̄.

We report the average test episodic rewards both under no attack and against the strongest adversarial
attacks to reflect both the natural performance and robustness of trained agents, by training adversaries
targeting the trained agents from scratch. For reproducibility, we train each agent configuration with
10 seeds and report the one with the median robust performance, rather than the best one. More
implementation details are in Appendix C.1.

Case I: Robustness against state perturbations. In this experiment, our focus is on evaluating
the robustness of our methods against state adversaries that perturb the states received by the agent.
Among the alternating training (Zhang et al., 2021; Sun et al., 2022) methods, PA-ATLA-PPO is
the most robust, which trains with the standard strongest PA-AD attacker. As a modification, we
train PA-ATLA-PPO* with a temporally-coupled PA-AD attacker. WocaR-PPO (Liang et al., 2022)
is the state-of-the-art defense method against state adversaries. Our GRAD method utilizes the
temporally-coupled PA-AD attacker for training. Figure 3 presents the performance of baseline and
GRAD under both non-temporally-coupled and temporally-coupled state perturbations.

Despite being trained to handle temporally-coupled adversaries, our method also demonstrates strong
performance in the non-robust (“natural”) setting, expecially on the high-dimensional Humanoid task.
Under our temporally-coupled attacks, the average performance of GRAD is 45% higher than the
strongest baseline.

Case II: Robustness against action uncertainty. Beyond assessing the susceptibility of GRAD to
state attacks, we also investigate its robustness against action uncertainty, where the agent intends
to execute an action but ultimately takes a different action than anticipated. We scrutinize two
specific forms of action uncertainty, as outlined in prior work (Tessler et al., 2019). The first one is
action perturbations, introduced by an action adversary, which strategically adds noise to the agent’s
intended action. The second scenario revolves around model uncertainty, where, with a probability
denoted as α, an alternative action replaces the originally planned action output by the agent. These
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Figure 4: Average episode rewards ± standard deviation over 100 episodes for GRAD and action robust models
against the strongest non-temporally-coupled and temporally-coupled action perturbations on five MuJoCo tasks.
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Figure 5: Robustness to Model Uncertainty Across Various α Values. The noisy probability α represents the
likelihood of a randomly sampled noise replacing the initially selected action.

scenarios closely parallel real-world control situations, such as dealing with mass uncertainty (e.g.,
when a robot’s weight changes) or facing sudden, substantial external forces (e.g., when an external
force unexpectedly pushes a robot).

In our baseline comparisons, we include PR-MDP and NR-MDP (Tessler et al., 2019), which are
robust to action noise and model uncertainty. We also incorporate WocaR-PPO into our baseline
evaluations. We train GRAD using a temporally-coupled action adversary and evaluate its robustness
in both action perturbation and model uncertainty scenarios.

Action Perturbations. To obtain a stronger evasion action perturbation rather than OU noise and
parameter noise, we are the first to train an RL-based action adversary following the trajectory outlined
in Algorithm 2. This strategy aims to showcase the worst-case performance of our robust agents under
action perturbations. For evaluation, we train both temporally-coupled and non-temporally-coupled
action adversaries for each robust model. In Figure 4, we present the exceptional performance of
GRAD against standard and temporally-coupling action perturbations. GRAD demonstrates a high
degree of robustness. For example, on the Humanoid task it outperforms the baselines by a 17%
margin for standard attacks and by a 40% advantage against temporally-coupling action attacks.
These results provide evidence of GRAD’s defense mechanism against various types of adversarial
attacks in the action space.

Model Uncertainty. To evaluate robustness under model uncertainty, we consider a range of noise
probabilities denoted as α in the range of [0, 0.05, 0.1, 0.15, 0.2]. These values represent the
probability of a randomly generated noise replacing the action selected by the victim agent. As
depicted in Figure 5, GRAD exhibits superior robustness compared to action-robust baselines across a
spectrum of α uncertainty value without explicit exposure to model uncertainty noises during training.

Case III: Robustness against mixed adversaries. In prior works, adversarial attacks typically
focused on perturbing either the agent’s observations or introducing noise to the action space.
However, in real-world scenarios, agents may encounter both types of attacks simultaneously. To
address this challenge, we propose a mixed adversary, which allows the adversary to perturb the
agent’s state and action at each time step. We employ alternating training to create a baseline as
Mixed-ATLA using this mixed adversary type. Our GRAD model and Mixed-ATLA are trained with
temporally-coupled mixed attackers. The detailed algorithm for the mixed adversary is provided in
Appendix 5.

Our results in Figure 6 indicate that the combination of two different forms of attacks can target robust
agents in most scenarios, providing strong evidence of their robustness. GRAD outperforms other
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Figure 6: Average episode rewards ± standard deviation of GRAD and baselines over 100 episodes under the
strongest non-temporally-coupling and temporally-coupling mixed attacks.
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Figure 7: GRAD achieves higher returns in the robust setting without sacrificing performance in the non-robust
(“natural”) setting.

methods in all five environments against non-temporally-coupled mixed adversaries, with a margin
of over 20% in the Humanoid environment. Moreover, when defending against temporally-coupled
mixed attacks, GRAD outperforms baselines by 30% in multiple environments, with a minimum
improvement of 10%.

Natural Performance. We also evaluate the natural performance of GRAD and the baselines, as
shown in Figure 7, which compares natural rewards vs. rewards under the strongest temporally-
coupled attacks. It is evident that while achieving robustness, GRAD maintains a comparable
natural performance with the baselines; the agent’s performance does not degrade significantly in
environments without adversaries. The natural performance comparing GRAD with action-robust
models can be found in Appendix C.5.
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Figure 8: Ablated studies for ϵ̄.

Ablation studies for temporally-coupled constraint ϵ̄. As
defined in our framework, the temporally-coupled constraint
ϵ̄ limits the perturbations within a range that varies between
timesteps. When ϵ̄ is set too large, the constraint becomes
ineffective, resembling a standard attacker. Conversely,
setting ϵ̄ close to zero overly restricts perturbations, leading
to a decline in attack performance. An appropriate value
for ϵ̄ is critical for effective temporally-coupled attacks.
Figure 8 illustrates the performance of robust models against
temporally-coupled state attackers trained with different
maximum ϵ̄. For WocaR-PPO, the temporally-coupled attacker
achieves good performance when the values of ϵ̄ are set to 0.02.
As the ϵ̄ values increase and the temporally-coupled constraint
weakens, the agent’s performance improves, indicating a
decrease in the adversary’s attack effectiveness. In the case of
GRAD agents, they consistently maintain robust performance as the ϵ̄ values become larger. This
observation highlights the impact of temporal coupling on the vulnerability of robust baselines to
such attacks. In contrast, GRAD agents consistently demonstrate robustness against these attacks.

5 RELATED WORK

Robust RL against adversarial perturbations. Existing defense approaches for RL agents are
primarily designed to counter adversarial perturbations in state observations. These methods encom-
pass a wide range of strategies, including regularization techniques (Zhang et al., 2020; Shen et al.,
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2020; Oikarinen et al., 2021), attack-driven approaches involving weak or strong gradient-based
attacks (Kos & Song, 2017; Behzadan & Munir, 2017; Mandlekar et al., 2017; Pattanaik et al., 2018;
Franzmeyer et al., 2022; Vinitsky et al., 2020), RL-based alternating training methods (Zhang et al.,
2021; Sun et al., 2022), and worst-case motivated methods (Liang et al., 2022). Furthermore, there
is a line of research that delves into providing theoretical guarantees for adversarial defenses in
RL (Lütjens et al., 2020; Oikarinen et al., 2021; Fischer et al., 2019; Kumar et al., 2022; Wu et al.,
2022; Sun et al., 2023), exploring a variety of settings and scenarios where these defenses can be
effectively applied.Aversarial attacks can take various forms. For instance, perturbations can affect
the actions executed by the agent (Pan et al., 2022; Tessler et al., 2019; Lanier et al., 2022; Lee et al.,
2020). Additionally, the study of adversarial multi-agent games has also received attention (Gleave
et al., 2020; Pinto et al., 2017).

Robust Markov decision process and safe RL. There are several lines of work that study RL
under safety/risk constraints (Heger, 1994; Gaskett, 2003; Garcıa & Fernández, 2015; Bechtle et al.,
2020; Thomas et al., 2021) or under intrinsic uncertainty of environment dynamics (Lim et al., 2013;
Mankowitz et al., 2020). In particular, several works discuss coupled or non-rectangular uncertainty
sets, which allow less conservative and more efficient robust policy learning by incorporating realistic
conditions that naturally arise in practice. Mannor et al. (2012) propose to model coupled uncertain
parameters based on the intuition that the total number of states with deviated parameters will be
small. Mannor et al. (2016) identify “k-rectangular” uncertainty sets defined by the cardinality
of possible conditional projections of uncertainty sets, which can lead to more tractable solutions.
Another recent work (Goyal & Grand-Clement, 2023) proposes to model the environment uncertainty
with factor matrix uncertainty sets, which can efficiently compute a robust policies.

Two-player zero-sum games. There are a number of related deep reinforcement learning methods
for two-player zero-sum games. CFR-based techniques such as Deep CFR (Brown et al., 2019),
DREAM (Steinberger et al., 2020), and ESCHER (McAleer et al., 2023), use deep reinforcement
learning to approximate CFR. Policy-gradient techniques such as NeuRD (Hennes et al., 2020),
Friction-FoReL (Perolat et al., 2021; 2022), and MMD (Sokota et al., 2022), approximate Nash
equilibrium via modified actor-critic algorithms. Our robust RL approach takes the double oracle
techniques such as PSRO (Lanctot et al., 2017) as the backbone. PSRO-based algorithms have been
shown to outperform the previously-mentioned algorithms in certain games (McAleer et al., 2021).

A more detailed discussion of related works in robust RL and game-theoretic RL are in Appendix B.

6 CONCLUSION AND DISCUSSION

Motivated by the perturbations that arise in real world scenarios, we introduce a new attack model for
studying deep RL models. Since existing robust RL methods usually focus on a traditional threat
model that perturbs state observations or actions arbitrarily within an Lp norm ball, they become
too conservative and can fail to perform a good defense under the temporally-coupled attacks. In
contrast, we propose a game-theoretical response approach GRAD, which finds the best response
against attacks with various constraints including temporally-coupled ones. Experiments across a
range of continuous control tasks underscore the good performance of our approach over previous
robust RL methods for both non-temporally-coupled attacks and temporally-coupled attacks across
diverse attack domains.

Limitations. The current PSRO-based approach may require several iterations to converge to the
best response, which can pose limitations when computational resources are constrained. We leverage
distributed RL tools to expedite the training of RL agents within GRAD, enabling efficient learning of
the best response. Detailed computational cost analysis can be found in Appendix C.6.

Regarding scalability concerns, we have demonstrated the GRAD in addressing robust RL problems
on high-dimensional tasks. In principle, alternative game-theoretic algorithms (Perolat et al., 2022),
known for their practical efficiency, can be considered for defense in different game scenarios. As
part of our future research directions, we plan to explore methods to further enhance the scalability of
GRAD. This exploration may involve harnessing parallel training techniques and drawing insights
from other scalable PSRO approaches (McAleer et al., 2020; Lanctot et al., 2017). Additionally, we
aim to extend the applicability of our method to pixel-based RL scenarios and real-world situations
with increased practicality and complexity.
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A PROOF OF PROPOSITION 3.3

Proof. The exploitability e(π) of a strategy profile π is defined as

e(π) =
∑
i∈N

max
π′
i

vi(π
′
i, π−i).

A best response (BR) strategy BRi(π−i) for player i to a strategy π−i is a strategy that maximally
exploits π−i:

BRi(π−i) = argmax
πi

vi(πi, π−i).

An ϵ-Nash equilibrium (ϵ-NE) is a strategy profile π in which, for each player i, πi is an ϵ-BR to π−i.

We can define the approximate exploitability of the pair of meta-Nash equilibrium strategies for the
agent and the adversary (σa, σv) as the sum of the expected reward their opponent approximate best
responses achieve against them:

ê(σa, σv) = va(π
′
a, σv) + vv(π

′
v, σu),

where vi(π′
i, σ−i) denotes the expected value of a player’s approximate best response vs. the opponent

meta-NE.

Now assume that each approximate best response is within ϵ
4 of the optimal best response. Then

vi(π
′
i, σ−i) ≥ vi(BRi(σ−i), σ−i)−

ϵ

4
.

As a result, upon convergence, when the approximate exploitability ê(σa, σv) is less than ϵ
2 , then the

exploitability of the pair of meta-Nash equilibrium strategies for the agent and the adversary (σa, σv)
is less than ϵ, and the pair of strategies are in an ϵ-approximate Nash equilibrium.

Every epoch where GRAD does not converge to an approximate equilibrium, it must add a unique
deterministic policy to the population for either the agent or the adversary because if both players
added policies already included in their populations, those policies would not be approximate best
responses. Given that the MDP has a finite horizon and operates in a discrete action space, there
exists only a finite set of deterministic policies that can be added to the populations Πa and Πv.
Since the meta-Nash equilibrium over all possible deterministic policies is equivalent to the Nash
equilibrium of the original game, in the worst case where all possible deterministic policies are added,
the algorithm will terminate at an approximate Nash equilibrium.

B ADDITIONAL RELATED WORK

Robust RL against adversarial perturbations. Regularization-based methods (Zhang et al., 2020;
Shen et al., 2020; Oikarinen et al., 2021) enforce the policy to have similar outputs under similar
inputs, which can achieve certifiable performance for visual-input RL (Xu et al., 2023a) on Atari
games. However, in continuous control tasks, these methods may not reliably improve the worst-case
performance. Recent work by Korkmaz (2021) points out that these adversarially trained models
may still be sensible to new perturbations. Attack-driven methods train DRL agents with adversarial
examples. Some early works (Kos & Song, 2017; Behzadan & Munir, 2017; Mandlekar et al.,
2017; Pattanaik et al., 2018; Franzmeyer et al., 2022; Vinitsky et al., 2020) apply weak or strong
gradient-based attacks on state observations to train RL agents against adversarial perturbations.
Zhang et al. (2021) and Sun et al. (2022) propose to alternately train an RL agent and a strong RL
adversary, namely ATLA, which significantly improves the policy robustness against rectangle state
perturbations. A recent work by Liang et al. (2022) introduces a more principled adversarial training
framework that does not explicitly learn the adversary, and both the efficiency and robustness of RL
agents are boosted.

Additionally, a significant body of research has delved into providing theoretical guarantees for
adversarial defenses in RL (Lütjens et al., 2020; Oikarinen et al., 2021; Fischer et al., 2019; Kumar
et al., 2022; Wu et al., 2022; Sun et al., 2023), exploring various settings and scenarios. Robust RL
faces challenges under model uncertainty in prior works (Iyengar, 2005; Nilim & Ghaoui, 2005; Xu
et al., 2023b). The main goal of GRAD is to address the adversarial RL problem with an adversary
that is adaptive to the agent’s policy. Works like Tessler et al. (2019) on action perturbations and
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Zhou et al. (2023) on model mismatch uncertainty, are hard to defend against the strongest adversarial
perturbations and only empirically evaluated on uncertainty sets. This vulnerability arises due
to the inherent difficulty in estimating the long-term worst-case value under adaptive adversaries.
Distributional robust optimization (DRO)(Rahimian & Mehrotra, 2019) is also challenging to apply to
this challenging problem, especially against state adversaries in the high-dimensional state space. At
the same time, adversarial training methods also struggle to effectively deal with model uncertainty
or model mismatch problems. However, GRAD, leveraging game-theoretic methods, demonstrates
robustness against adversarial perturbations and model uncertainty, as a more effective and general
solution for high-dimensional tasks.

Robust RL formulated as a zero-shot game. Considering robust RL formulated as zero-sum
games, several notable contributions have emerged. Pinto et al. (2017) proposed robust adversarial
reinforcement learning (RARL), introducing the concept of training an agent in the presence of
a destabilizing adversary through a zero-sum minimax objective function. Huang et al. (2022)
extended this paradigm with RRL-Stack, a hierarchical formulation of robust RL using a general-sum
Stackelberg game model. Tessler et al. (2019) addressed action uncertainty by framing the action
perturbation problem as a zero-sum game. GRAD distinguishes itself from conventional robust RL
approaches by achieving approximate equilibriums on an adversary policy set. While existing works
often focus on specific adversaries or worst-case scenarios, limiting their adaptability, GRAD does
not specifically target certain adversaries, which makes it adaptable to various adversaries, including
both temporally-coupled and non-temporally-coupled adversarial settings. Moreover, GRAD’s broad
applicability extends to diverse attack domains, presenting a more practical and scalable solution for
robust RL compared to prior works.

Game-Theoretic Reinforcement Learning. Superhuman performance in two-player games usually
involves two components: the first focuses on finding a model-free blueprint strategy, which is the
setting we focus on in this paper. The second component improves this blueprint online via model-
based subgame solving and search (Burch et al., 2014; Moravcik et al., 2016; Brown et al., 2018;
2020; Brown & Sandholm, 2017b; Schmid et al., 2021). This combination of blueprint strategies with
subgame solving has led to state-of-the-art performance in Go (Silver et al., 2017), Poker (Brown &
Sandholm, 2017a; 2018; Moravčı́k et al., 2017), Diplomacy (Gray et al., 2020), and The Resistance:
Avalon (Serrino et al., 2019). Methods that only use a blueprint have achieved state-of-the-art
performance on Starcraft (Vinyals et al., 2019), Gran Turismo (Wurman et al., 2022), DouDizhu (Zha
et al., 2021), Mahjohng (Li et al., 2020), and Stratego (McAleer et al., 2020; Perolat et al., 2022). In
the rest of this section we focus on other model-free methods for finding blueprints.

Deep CFR (Brown et al., 2019; Steinberger, 2019) is a general method that trains a neural network
on a buffer of counterfactual values. However, Deep CFR uses external sampling, which may
be impractical for games with a large branching factor, such as Stratego and Barrage Stratego.
DREAM (Steinberger et al., 2020) and ARMAC (Gruslys et al., 2020) are model-free regret-based
deep learning approaches. ReCFR (Liu et al., 2022) proposes a bootstrap method for estimating
cumulative regrets with neural networks. ESCHER (McAleer et al., 2023) removes the importance
sampling term of Deep CFR and shows that doing so allows scaling to large games.

Neural Fictitious Self-Play (NFSP) (Heinrich & Silver, 2016) approximates fictitious play by progres-
sively training the best response against an average of all past opponent policies using reinforcement
learning. The average policy converges to an approximate Nash equilibrium in two-player zero-sum
games.

There is an emerging literature connecting reinforcement learning to game theory. QPG (Srinivasan
et al., 2018) shows that state-conditioned Q-values are related to counterfactual values by a reach
weighted term summed over all histories in an infostate and proposes an actor-critic algorithm that
empirically converges to an NE when the learning rate is annealed. NeuRD (Hennes et al., 2020), and
F-FoReL (Perolat et al., 2021) approximate replicator dynamics and follow the regularized leader,
respectively, with policy gradients. Actor Critic Hedge (ACH) (Fu et al., 2022) is similar to NeuRD
but uses an information set based value function. All of these policy-gradient methods do not have
a theory proving that they converge with high probability in extensive form games when sampling
trajectories from the policy. In practice, they often perform worse than NFSP and DREAM on small
games but remain promising approaches for scaling to large games (Perolat et al., 2022).
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Algorithm 3 Action Adversary (AC-AD)

Input: Initialization of action adversary policy v; victim policy π, initial state s0
for t = 0, 1, 2, . . . do

adversary v samples an action perturbations ât ∼ ν(·|st),
victim policy π outputs action at ∼ π(·|st)
the environment receives ãt = at + ât, returns st+1 and rt
adversary saves (st, ât,−rt, st+1) to the adversary buffer
adversary updates its policy v

end for

C EXPERIMENT DETAILS AND ADDITIONAL RESULTS

C.1 IMPLEMENTATION DETAILS

We provide detailed implementation information for our proposed method (GRAD) and baselines.

Training Steps For GRAD, we specify the number of training steps required for different environ-
ments. In the Hopper, Walker2d, and Halfcheetah environments, we train for 10 million steps. In the
Ant and Humanoid environments, we extend the training duration to 20 million steps. For the ATLA
baselines, we train for 2 million steps and 10 million steps in environments of varying difficulty.

Network Structure Our algorithm (GRAD) adopts the same PPO network structure as the ATLA
baselines to maintain consistency. The network comprises a single-layer LSTM with 64 hidden
neurons. Additionally, an input embedding layer is employed to project the state dimension to 64,
and an output layer is used to project 64 to the output dimension. Both the agents and the adversaries
use the same policy and value networks to facilitate training and evaluation. Furthermore, the
network architecture for the best response and meta Nash remains consistent with the aforementioned
configuration.

Schedule of ϵ and ϵ̄ During the training process, we gradually increase the values of ϵ and ϵ̄ from
0 to their respective target maximum values. This incremental adjustment occurs over the first half
of the training steps. We reference the attack budget ϵ used in other baselines for the corresponding
environments. This ensures consistency and allows for a fair comparison with existing methods. The
target value of ϵ̄ is determined based on the adversary’s training results, which is set as ϵ/5. In some
smaller dimensional environments, ϵ̄ can be set to ϵ/10. We have observed that the final performance
of the trained robust models does not differ by more than 5% when using these values for ϵ̄.

Observation and Reward Normalization To ensure consistency with PPO implementation and
maintain comparability across different codebases, we apply observation and reward normalization.
Normalization helps to standardize the input observations and rewards, enhancing the stability and
convergence of the training process. We have verified the performance of vanilla PPO on different
implementations, and the results align closely with our implementation of GRAD based on Ray rllib.

Hyperparameter Selection Hyperparameters such as learning rate, entropy bonus coefficient,
and other PPO-specific parameters are crucial for achieving optimal performance. Referring to the
results obtained from vanilla PPO and the ATLA baselines as references, a small-scale grid search
is conducted to fine-tune the hyperparameters specific to GRAD. Because of the significant training
time and cost associated with GRAD, we initially perform a simplified parameter selection using the
Inverted Pendulum as a test environment.

C.2 ADVERSARIES IN EXPERIMENTS

State Adversaries Aimed to introduce the attack methods utilized during training and testing in our
experiments. When it comes to state adversaries, PA-AD as Alogrithm 4 stands out as the strongest
attack compared to other state attacks. Therefore, we report the best state attack rewards under
PA-AD attacks.

Action Adversaries In terms of action adversaries, an RL-based action adversary as Alogrithm 3
can inflict more severe damage on agents’ rewards compared to OU noise and parameter noise
in (Tessler et al., 2019).
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Mixed Adversaries When dealing with mixed adversaries capable of perturbing both state and
action spaces, it becomes crucial to design the action space for the adversary. In Algorithm 5, we
extend the idea of PA-AD (Sun et al., 2022), which learns a policy perturbation direction to generate
perturbations. In our case, the mixed adversary director only needs to learn the policy perturbation
direction d̂t. For various attack domains, the actor functions then translate the direction d̂t into state
or action perturbations. This design approach ensures that our mixed adversary doesn’t increase the
complexity of adversary training, as it deploys mixed perturbations using different actor functions as
required by distinct attack domains.

Algorithm 4 Policy Adversarial Actor Director (PA-AD)

Input: Initialization of adversary director’s policy v; victim policy π, the actor function g for the
state space S, initial state s0
for t = 0, 1, 2, . . . do

Director v samples a policy perturbing direction and perturbed choice, ât ∼ ν(·|st)
Actor perturbs st to s̃t = g(ât, st)
Victim takes action at ∼ π(·|s̃t), proceeds to st+1, receives rt
Director saves (st, ât,−rt, st+1) to the adversary buffer
Director updates its policy v using any RL algorithms

end for

Algorithm 5 Mixed Adversary

Input: Initialization of adversary director’s policy v; victim policy π, the actor function gs for the
state space S and ga for the action space A, initial state s0
for t = 0, 1, 2, . . . do

Director v samples a policy perturbing direction d̂t ∼ ν(·|st).
Actor perturbs st to s̃t = gs(d̂t, st)
Victim takes action at ∼ π(·|s̃t), proceeds to st+1, receives rt
victim policy outputs action at ∼ π(·|st)
Actor perturbs at to ãt = ga(d̂t, at)
The environment receives ãt, returns st+1 and rt
Director saves (st, ât,−rt, st+1) to the adversary buffer
Director updates its policy v using any RL algorithms

end for

Transition Adversaries. In addition to addressing adversarial perturbations, we extend the eval-
uation of GRAD to consider transition uncertainty, mitigating the mismatch problem between the
training simulator and the testing environment. Robustness under transition uncertainty is crucial
for real-world applicability. To assess this aspect, experiments are conducted on perturbed Mu-
JoCo environments (Hopper, Walker2d, and HalfCheetah) by modifying their physical parameters
(’leg joint stiffness’ value: 30, ’foot joint stiffness’ value: 30, and bound on ’back actuator range’:
0.5) following the protocol established by Zhou et al. (2023). Comparative evaluations are performed
against robust natural actor-critic (RNAC)(Zhou et al., 2023) trained with Double-Sampling (DS) and
Inaccurate Parameter Models (IPM) uncertainty. The results presented in Table 1 consistently demon-
strate that GRAD achieves competitive or superior performance compared to baseline methods in
each perturbed environment, showcasing its effectiveness in robustly handling transition uncertainty.

Short-term Memorized Temporall-coupled Attacks. While our temporally-coupled setting consid-
ering perturbation from the last time step aligns with the common practice of state adversaries, which
typically perturb the current state without explicitly attacking short-term memory, we recognized the
importance of exploring a more general scenario akin to a general partially observable MDP (Efroni
et al., 2022). We introduced a short-term memorized temporally-coupled attacker by calculating
the mean of perturbations from the past 10 steps and applying the temporally-coupled constraint to
this mean. The results in Table 2 from these additional experiments against short-term memorized
temporally-coupled attacks underscore the efficacy of GRAD under this extended setting. GRAD
consistently demonstrates heightened robustness compared to other robust baselines when confronted
with a memorized temporally-coupled adversary. These findings provide valuable insights into the
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Perturbed
Environments

RNAC-PPO (DS) RNAC-PPO
(IPM)

GRAD

Hopper
Natural reward 3502± 256 3254± 138 3482± 209

’leg joint stiffness’ 2359± 182 2289± 124 2692± 236

Walker
Natural reward 4322± 289 4248± 89 4359± 141

’foot joint stiffness’ 4078± 297 4129± 78 4204± 132

Halfcheetah
Natural reward 5524± 178 5569± 232 6047± 241

’back actuator range’ 768± 102 1143± 45 1369± 117

Table 1: Comparison of cumulative reward in Perturbed Environments with changed physical parameters.

Short-term Memorized
Temporally-Coupled Attacks

Hopper Walker2d Halfcheetah Ant Humanoid

PA-ATLA-PPO 2334 ± 249 2137 ± 258 3669 ± 312 2689 ± 189 1573 ± 232

WocaR-PPO 2256 ± 332 2619 ± 198 4228 ± 283 3229 ± 178 2017 ± 213

GRAD 2869 ± 228 3134 ± 251 4439 ± 287 3617 ± 188 2736 ± 269

Table 2: Performance Comparison under Memorized Temporally-Coupled Attacks
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Figure 9: Comparisons under state or action or mixed temporally-coupled attacks w.r.t. diverse attack budgets
ϵ’s on Hopper and Humanoid.

temporal scope of perturbations, contributing to a more comprehensive understanding of GRAD’s
capabilities in handling diverse adversarial scenarios.

C.3 ATTACK BUDGETS

In Figure 9, we report the performance of baselines and GRAD under different attack budget ϵ. As the
value of ϵ increases, the rewards of robust agents under different types of attacks decrease accordingly.
However, our approach consistently demonstrates superior robustness as the attack budget changes.

C.4 TEMPORALLY-COUPLED CONSTRAINTS

We also investigate the impact of temporally-coupled constraints ϵ̄ on attack performance, as we
explained in our experiment section.
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Figure 10: Comparisons under state or action or mixed temporally-coupled attacks with diverse temporally-
coupled constraints ϵ’s on Ant and Humanoid.
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Figure 11: Natural performance vs. Robustness against temporally-coupled action perturbations

C.5 NATURAL REWARD VS. ROBUSTNESS

We presents the natural performance comparison of GRAD and action robust baselines in Figure 11.

C.6 COMPUTATIONAL COST

The training time for GRAD can vary depending on the specific environment and its associated
difficulty. Typically, on a single V100 GPU, training GRAD takes around 20 hours for environments
like Hopper, Walker2d, and Halfcheetah. However, for more complex environments like Ant and
Humanoid, the training duration extends to approximately 40 hours. It’s worth noting that the training
time required for defense against state adversaries or action adversaries is relatively similar.
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