
A Standard Benchmarks

0 15M 30M 45M
0

100
200
300

Breakout

0 15M 30M 45M
0

500
1000
1500
2000

Enduro

0 15M 30M 45M
20
10
0

10
20

Pong

0 1M 2M 3M 4M

3
6
9

12
Crafter

0 4M 8M 12M

100
200
300
400

Acrobot Swingup

0 4M 8M 12M
200
400
600
800

1000
Finger Turn Hard

0 4M 8M 12M
0

200
400
600
800

Humanoid Walk

0 4M 8M 12M
200
400
600
800

Quadruped Run

0 4M 8M 12M
450
600
750
900

Reacher Easy

0 4M 8M 12M
600
700
800
900

Walker Walk

0 15M 30M 45M
0

40
80

120
160

DMLab Goals Small

0 15M 30M 45M
10
20
30
40
50
DMLab Apples Small

Director Director (worker task reward) Dreamer (Flat)

Figure A.1: Evaluation of Director on standard benchmarks, showing that Director is not limited
to sparse reward tasks but is generally applicable. Director learns successfully across Atari, Crafter,
Control Suite, and DMLab. This is an accomplishment because the worker receives no task reward
and is purely steered through sub-goals selected by the manager. When additionally providing task
reward to the worker, performance matches that of the state-of-the-art model-based agent Dreamer.

B Ablation: Goal Autoencoder

0 15M 30M 45M
0

100
200
300

Breakout

0 3M 6M 9M
1.5
3.0
4.5
6.0
7.5

Crafter

0 4M 8M 12M
0

250
500
750

1000
Reacher Easy

0 3M 6M 9M

200
400
600
800

1000
Walker Walk

0 4M 8M
0

100
200
300
400

Acrobot Swingup

0 3M 6M 9M
0

200
400
600
800

Humanoid Walk

0 15M 30M 45M
0

40
80

120

DMLab Goals Small

0 2.5M 5M 7.5M
0

600
1200
1800
2400

Ant Maze L

Director No Goal Autoencoder

Figure B.1: Ablation of the Goal Autoencoder used by Director (Section 2.2). We compare the
performance of Director to that of a hierarchical agent where the manager directly chooses 1024-
dimensional goals in the continuous representation space of the world model. We observe that this
simplified approach works surprisingly well in some environments but fails at environments with
sparser rewards, likely because the control problem becomes too challenging for the manager.

15

C Ablation: Goal Reward

0 20M 40M 60M
0

100
200
300

Breakout

0 3M 6M 9M

2
4
6
8

Crafter

0 4M 8M 12M

450
600
750
900

Reacher Easy

0 4M 8M 12M
300
450
600
750
900

Walker Walk

0 4M 8M 12M
0

100
200
300
400

Acrobot Swingup

0 3M 6M 9M
0

250
500
750

Humanoid Walk

0 15M 30M 45M
0

40
80

120

DMLab Goals Small

0 2.5M 5M 7.5M
0

800
1600
2400

Ant Maze L

CosineMax Inner InnerNormed L2Norm

Figure C.1: Ablation of the goal reward used by Director. We compare the performance of Director
with cosine-max reward (Equation 8) to alternative goal similarity functions. Inner refers to the inner
product gT st+1 without any normalization or clipping, which results in different reward scale based
on the goal magnitude and encourages the worker to overshoot its goals in magnitude. InnerNormed
refers to (g/∥g∥)T (st+1/∥g∥) where the goal and state are normalized by the goal magnitude, which
normalizes the reward scale across goals but still encourages the worker to overshoot its goals.
L2Norm is the negative euclidean distance −∥g − st+1∥. We observe that Director is robust to the
precise goal reward, with the three rewards based on inner products performing well across tasks.
The L2 reward works substantially worse. We hypothesize the reason to be that inner products allow
goals to ignore some state dimensions by setting them to zero, whereas setting dimensions to zero for
the L2 reward still requires the worker to care about them.

D Ablation: Exploration

0 8M 16M 24M
0

80
160
240
320

Breakout

0 2.5M 5M 7.5M
3.0
4.5
6.0
7.5
9.0

Crafter

0 2.5M 5M 7.5M

400
600
800

1000
Reacher Easy

0 2.5M 5M 7.5M

450
600
750
900

Walker Walk

0 2.5M 5M 7.5M
0

100
200
300
400

Acrobot Swingup

0 2M 4M 6M
0

200
400
600
800

Humanoid Walk

0 15M 30M 45M
0

40
80

120

DMLab Goals Small

0 2.5M 5M 7.5M

0
600

1200
1800
2400

Ant Maze L

ManagerExpl=0.1 BothExpl=0.1 WorkerExpl=0.1 NoExpl

Figure D.1: Ablation of where to apply the exploration bonus in Director (Equation 6). We compare
the performance of Director with exploration reward for only the manager, for only the worker, for
both, and for neither of them. We find giving the exploration bonus to the manager, which results
in temporally-abstract exploration, is required for successful learning in the Ant Maze, and that
additional low-level exploration hurts because it results in too chaotic leg movements. In standard
benchmarks that typically require short horizons, the exploration bonus is not needed.

16

E Pseudocode

Algorithm 1: Director
1 Initialize replay buffer and neural networks.
2 while not converged do

// Acting
3 Update model state st ∼ repr(st | st−1, at−1, xt).

4 if tmodK = 0 then
// Update internal goal

5 Sample abstract action z ∼ mgr(z | st).
6 Decode into model state g = dec(z).

7 Sample action at ∼ wkr(at | st, g).
8 Send action to environment and observe rt and xt+1.
9 Add transition (xt, at, rt) to replay buffer.

// Learning
10 if tmodE = 0 then

// World Model
11 Draw sequence batch {(x, a, r)} from replay buffer.
12 Update world model on batch (Equation 2) and get states {s}.

// Goal Autoencoder
13 Update goal autoencoder on {s} (Equation 4).

// Policies
14 Imagine trajectory {(ŝ, â, ĝ, ẑ)} under model and policies starting from {s}.
15 Predict extrinsic rewards {rew(s)}.
16 Compute exploration rewards {rexpl} (Equation 6).
17 Compute goal rewards {rgoal} (Equation 8).
18 Abstract trajectory to update manager (Equations 11 and 12).
19 Split trajectory to update worker (Equations 11 and 12).

F Hyperparameters

Name Symbol Value

Parallel envs — 4
Training every E 16
MLP size — 4 × 512
Activation — LayerNorm+ELU
Imagination horizon H 16
Discount factor γ 0.99
Goal duration K 8
Goal autoencoder latents L 8
Goal autoencoder classes C 8
Goal autoencoder beta β 1.0
Learning rate — 10−4

Weight decay — 10−2

Adam epsilon ϵ 10−6

Table F.1: Hyperparameters of Director. We use the same hyperparameters across all experiments.
The hyperparameters for training the world model and optimizing the policies were left unchanged
compared to DreamerV2 (Hafner et al., 2020a).

17

G Vector of Categoricals

batc
h

batc
h

classes classes

la
te

nt
s

la
te

nt
s

ba
tc

h

ba
tc

h

features sparse features

Inputs Logits Codes Outputs

 flatten sampleMLP

Figure G.1: Director uses a variational autoencoder to turn its state representations into discrete
tokens that are easy to select between for the manager policy. For this, we use the vector of categoricals
approach of DreamerV2 (Hafner et al., 2020a). For a given input vector, the encoder outputs a matrix
of logits of L latent dimensions with C classes each. We sample from the logits and one-hot encode
the result to obtain a sparse matrix of the same shape as the logits. To backpropagate gradients
through this step, we simply use the gradient with respect to the one-hot matrix as the gradient with
respect to the categorical probabilities (Bengio et al., 2013). The matrix is then flattened, resulting in
a sparse representation with L out of the L× C feature dimensions set to one.

H Policy Optimization

Both the worker and manager policies of Director are optimized using the actor critic algorithm of
Dreamer (Hafner et al., 2019; 2020a). For this, we use the world model to imagine a trajectory in its
compact latent space. The actor network is optimized via policy gradients (Williams, 1992) with a
learned state-value critic for variance reduction and to estimate rewards beyond the rollout:

Actor: π(at | st) Critic: v(st) (9)

The world model allows cheaply generating as much on-policy experience as needed, so no importance
weighting or clipping applies (Schulman et al., 2017). To train both actor and critic from an imagined
trajectory of length H , λ-returns are computed from the sequence of rewards and predicted values
(Sutton and Barto, 2018):

V λ
t

.
= rt + γ

(
(1− λ)v(st+1) + λV λ

t+1

)
, V λ

H
.
= v(sH). (10)

The λ-returns are averages over multi-step returns of different lengths, thus finding a trade-off between
incorporating further ahead rewards quickly and reducing the variance of long sampled returns. The
critic is learned by regressing the λ-returns via a squared loss, where sg(·) indicates stopping the
gradient around the targets:

L(v) .
= Epϕ,π

[∑H−1
t=1

1
2

(
v(st)− sg(V λ

t)
)2]

. (11)

The actor is updated by policy gradients on the same λ-returns, from which we subtract the state-value
v(st) as a baseline that does not depend on the current action for variance reduction. The second
term in the actor objective, weighted by the scalar hyperparameter η, encourages policy entropy to
avoid overconfidence and ensures that the actor explores different actions:

L(π) .
= −Eπ,pϕ

[∑H
t=1 lnπ(at

∣∣ st) sg(V λ
t − v(st)) + ηH

[
π(at

∣∣ st)]] (12)

When there are multiple reward signals, such as the task and exploration rewards for the manager, we
learn separate critics (Burda et al., 2018) for them and compute separate returns, which we normalize
by their exponential moving standard deviation with decay rate 0.999. The baselines are normalized
by the same statistics and the weighted average of the advantages is used for updating the policy.

18

I Further Related Work

Pretraining tasks One way to integrate domain knowledge into hierarchical agents is to learn
primitives on simpler tasks and then compose them to solve more complex tasks afterwards. Learning
primitives from manually specified tasks simplifies learning but requires human effort and limits
the generality of the skills. DSN (Tessler et al., 2017) explicitly specifies reward functions for the
low-level policies and then trains a high-level policy on top to solve Minecraft tasks. MLSH (Frans
et al., 2017) pretrains a hierarchy with separate low-level policies on easier tasks, alternating update
phases between the two levels. HeLMS (Rao et al., 2021) learns reusable robot manipulation skills
from a given diverse dataset. MODAC (Veeriah et al., 2021) uses meta gradients to learn low-level
policies that are helpful for solving tasks. However, all these approaches require manually specifying
a diverse distribution of training tasks, and it is unclear whether generalization beyond the training
tasks will be possible. Instead of relying on task rewards for learning skills, Director learns the
worker as a goal-conditioned policy with a dense similarity function in feature space.

Mutual information Mutual information approaches allow automatic discovery of skills that lead
to future states. VIC (Gregor et al., 2016) introduced a scalable recipe for discovering skills by
rewarding the worker policy for reaching states from which the latent skill can be accurately predicted,
effectively clustering the trajectory space. Several variations of this approach have been developed
with further improvements in stability and diversity of skills, including SSN4HRL (Florensa et al.,
2017), DIAYN (Eysenbach et al., 2018) and VALOR (Achiam et al., 2018). DISCERN (Warde-Farley
et al., 2018) and CIC (Laskin et al., 2022) learn a more flexible similarity function between skills and
states through contrastive learning. DADS (Sharma et al., 2019) estimates the mutual information in
state-space through a contrastive objective with a learned model. DISDAIN overcomes a collapse
problem by incentivizing exploration through ensemble disagreement (Strouse et al., 2021). LSP (Xie
et al., 2020) learns a world model to discover skills that have a high influence on future representations
rather than inputs. While these approaches are promising, open challenges include learning more
diverse skills without dropping modes and learning skills that are precise enough for solving tasks.

Goal reaching Learning the low-level controller as a goal-conditioned policy offers a stable and
general learning signal. HER (Andrychowicz et al., 2017) popularized learning goal-conditioned
policies by combining a sparse reward signal with hindsight, which HAC (Levy et al., 2017) applied
to learn an interpretable hierarchy with three levels by manually designing task-relevant goal spaces
for each task. Instead of relying on hindsight with a sparse reward, HIRO (Nachum et al., 2018a)
employs a dense reward in observation space based on the L2 norm and solves Ant Maze tasks given
privileged information. NORL (Nachum et al., 2018b) introduces a representation learning objective
to learn a goal space from a low-resolution top-down image instead but still uses a dense ground-truth
reward for learning the manager. HSD-3 (Gehring et al., 2021) also learns a hierarchy with three
levels and uses the robot joint space combined with a mask to specify partial goals. While not
learning a high-level policy, RIG (Nair et al., 2018) computes goal rewards in the latent space of an
autoencoder, allowing them to reach simple visual goals. FuN (Vezhnevets et al., 2017) provides task
and goal rewards to its low-level policy and is trained from pixels but provides limited benefits over a
flat policy trained on task reward. SecTAR (Co-Reyes et al., 2018) learns a sequence autoencoder
that serves to propose goals and compute distances for low-dimensional environments and shows
fast learning in low-dimensional environments with sparse rewards by high-level planning. DDL
(Hartikainen et al., 2019) learns to reach goals from pixels by learning a temporal distance function.
LEXA (Mendonca et al., 2021) learns a goal conditioned policy inside of a world model that achieves
complex multi-object goal images, but assumes goals to be specified by the user. By comparison,
Director solves difficult sparse reward tasks end-to-end from pixels without requiring domain-specific
knowledge by learning a world model.

19

J Full Visual Control Suite

0 1M 2M 3M 4M
0

100
200
300
400

Acrobot Swingup

0 1M 2M 3M 4M
200
400
600
800

1000
Cartpole Balance

0 1M 2M 3M 4M
0

300
600
900

1200
Cartpole Balance Sparse

0 1M 2M 3M 4M

200
400
600
800

Cartpole Swingup

0 1M 2M 3M 4M

0
250
500
750
Cartpole Swingup Sparse

0 1M 2M 3M 4M

200
400
600
800

Cheetah Run

0 1M 2M 3M 4M

400
600
800

1000
Cup Catch

0 1M 2M 3M 4M

200
400
600
800

1000
Finger Spin

0 1M 2M 3M 4M
200
400
600
800

1000
Finger Turn Easy

0 1M 2M 3M 4M
0

250
500
750

1000
Finger Turn Hard

0 1M 2M 3M 4M
0

150

300

450
Hopper Hop

0 1M 2M 3M 4M
0

250
500
750

1000
Hopper Stand

0 1M 2M 3M 4M

0
250
500
750

Pendulum Swingup

0 1M 2M 3M 4M

200
400
600
800

Quadruped Run

0 1M 2M 3M 4M

200
400
600
800

Quadruped Walk

0 1M 2M 3M 4M
200
400
600
800

1000
Reacher Easy

0 1M 2M 3M 4M
0

250
500
750

Reacher Hard

0 1M 2M 3M 4M

200
400
600
800

Walker Run

0 1M 2M 3M 4M
300
450
600
750
900

Walker Stand

0 1M 2M 3M 4M
200
400
600
800

1000
Walker Walk

0 30 60 90
20
40
60
80

Normalized Mean

0 30 60 90
20
40
60
80

Normalized Median

Director Director (worker task reward) Dreamer (flat)

Figure J.1: To test the generality of Director, we evaluate it on a diverse set of 20 visual control tasks
(Tassa et al., 2018) without action repeat. We find that Director solves a wide range of tasks despite
giving no task reward to the worker, for the first time in the literature demonstrating a hierarchy
with task-agnostic worker performing reliably across many tasks. When additionally providing task
reward to the worker, performance reaches the state-of-the-art of Dreamer and even exceeds it on
some tasks. These experiments use no action repeat and train every 16 environment steps, resulting
in faster wall clock time and lower sample efficiency than the results reported by Hafner et al. (2019).

20

K Full Atari Suite

0 25M 50M

1500
3000
4500
6000

Alien

0 25M 50M
0

150
300
450

Amidar

0 25M 50M
0

4000
8000

12000
16000

Assault

0 25M 50M
0

6000
12000
18000
24000

Asterix

0 25M 50M
750
900

1050
1200
1350

Asteroids

0 25M 50M
0.00
0.25
0.50
0.75
1.00

1e6Atlantis

0 25M 50M
0

250
500
750

1000
Bank Heist

0 25M 50M

6000
12000
18000
24000

Battle Zone

0 25M 50M
0

4000
8000

12000
16000

Beam Rider

0 25M 50M
300
450
600
750
900

Berzerk

0 25M 50M

30
45
60
75

Bowling

0 25M 50M

45
60
75
90

Boxing

0 25M 50M
0

100
200
300

Breakout

0 25M 50M
0

20000
40000
60000
80000

Centipede

0 25M 50M

1500
3000
4500
6000

Chopper Command

0 25M 50M
30000
60000
90000

120000
150000

Crazy Climber

0 25M 50M
0

4000
8000

12000
16000

Demon Attack

0 25M 50M
20
10
0

10
20

Double Dunk

0 25M 50M
0

500
1000
1500
2000

Enduro

0 25M 50M

80
40
0

40
Fishing Derby

0 25M 50M
0
8

16
24
32

Freeway

0 25M 50M
0

4000
8000

12000

Frostbite

0 25M 50M
0

25000
50000
75000

100000
Gopher

0 25M 50M

600
1200
1800
2400

Gravitar

0 25M 50M
0

8000
16000
24000
32000

Hero

0 25M 50M

6
0
6

12
18

Ice Hockey

0 25M 50M
0

5000
10000
15000
20000

James Bond

0 25M 50M
0

4000
8000

12000

Kangaroo

0 25M 50M

25000
50000
75000

100000
Krull

0 25M 50M

20000
40000
60000
80000

Kung Fu Master

0 25M 50M
0

200
400
600
800

Montezuma Revenge

0 25M 50M

1500
3000
4500
6000

Ms Pacman

0 25M 50M

6000
9000

12000
15000

Name This Game

0 25M 50M
0

25000
50000
75000

100000
Phoenix

0 25M 50M

240
180
120

60
0

Pitfall

0 25M 50M
20
10
0

10
20

Pong

0 25M 50M
0

1500
3000
4500

Private Eye

0 25M 50M
0

6000
12000
18000
24000

Qbert

0 25M 50M
0

3000
6000
9000

12000

Riverraid

0 25M 50M
0

40000
80000

120000
160000

Road Runner

0 25M 50M

15
30
45
60

Robotank

0 25M 50M
0

20000
40000
60000

Seaquest

0 25M 50M

28000
24000
20000
16000

Skiing

0 25M 50M

1000
2000
3000
4000

Solaris

0 25M 50M

600
1200
1800
2400

Space Invaders

0 25M 50M

2500
5000
7500

10000
Star Gunner

0 25M 50M

15
0

15

Tennis

0 25M 50M
0

8000
16000
24000
32000

Time Pilot

0 25M 50M
40
80

120
160
200

Tutankham

0 25M 50M
0

150000
300000
450000

Up N Down

0 25M 50M
0

250
500
750

1000
Venture

0 25M 50M

40000
80000

120000

Video Pinball

0 25M 50M
0

5000
10000
15000
20000

Wizard Of Wor

0 25M 50M
0

30000
60000
90000

120000

Yars Revenge

0 25M 50M
0

8000
16000
24000
32000

Zaxxon

0 30 60 90
0

400
800

1200

Gamer Mean

0 30 60 90
0

50
100
150
200

Gamer Median

Director Director (worker task reward) Dreamer (flat)

Figure K.1: To test the generality of Director, we evaluate it on 55 Atari games (Bellemare et al.,
2013). We find that Director solves a wide range of tasks despite giving no task reward to the worker.
Director is the first approach in the literature that demonstrates a hierarchy with task-agnostic worker
performing reliably across many tasks. When additionally providing task reward to the worker,
performance reaches that of Dreamer and even exceeds its human-normalized median score. These
experiments use no action repeat and train every 16 environment steps, resulting in faster wall clock
time and lower sample efficiency than the results reported by Hafner et al. (2019).

21

L Additional Goal Visualizations

Ep
iso

de

T=0

Go
al

T=25 T=50 T=75 T=100 T=125 T=150 T=175
(a) Quadruped Walk. The manager learns to abstract away leg movements by requesting a forward leaning pose
with shifting floor pattern, and the worker fills in the leg movements. The underlying latent goals are Markov
states and thus likely contain a description of high forward velocity.

Ep
iso

de

T=0

Go
al

T=20 T=40 T=60 T=80 T=100 T=120 T=140
(b) Humanoid Walk. The manager learns to direct the worker via an extended pose with open arms, which
causes the worker to perform energetic forward jumps that are effective at moving the robot forward. While the
visualizations cannot show this, the underlying latent goals are Markovian and can contain velocity information.

Ep
iso

de

T=0

Go
al

T=125 T=250 T=375 T=500 T=625 T=750 T=875
(c) Pong. The manager directs the worker simply by requesting a higher score via the score display at the top of
the screen. The worker follows the command by outplaying the opponent. We find that for tasks that are easy to
learn for the worker, the manager frequently chooses this hands-off approach to managing.

Ep
iso

de

T=0

Go
al

T=25 T=50 T=75 T=100 T=125 T=150 T=175
(d) DMLab Collect Good. The manager steers through the arena by targeting the good objects and avoiding the
bad ones. The worker succeeds at reaching the balloons regardless of the wall textures, showing that it learns to
focus on achievable aspects of the goals without being distracted by non-achievable aspects.

Figure L.1: Additional goal visualizations.

22

