Under review as a conference paper at ICLR 2022

DIFFERENTIABLE SCAFFOLDING TREE FOR
MOLECULAR OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The structural design of functional molecules, also called molecular optimization,
is an essential chemical science and engineering task with important applications,
such as drug discovery. Deep generative models and combinatorial optimization
methods achieve initial success but still struggle with directly modeling discrete
chemical structures and often heavily rely on brute-force enumeration. The chal-
lenge comes from the discrete and non-differentiable nature of molecule structures.
To address this, we propose differentiable scaffolding tree (DST) that utilizes a
learned knowledge network to convert discrete chemical structures to locally dif-
ferentiable ones. DST enables a gradient-based optimization on a chemical graph
structure by back-propagating the derivatives from the target properties through
a graph neural network (GNN). Our empirical studies show the gradient-based
molecular optimizations are both effective and sample efficient. Furthermore, the
learned graph parameters can also provide an explanation that helps domain experts
understand the model output.

1 INTRODUCTION

The structural design of new functional molecules, also called molecular optimization, is the key to
many scientific and engineering challenges, such as finding energy storage materials (Hachmann et al.|
20115 |Janet et al., |2020), small molecule pharmaceutics (Kuntz, [1992; Zhavoronkov et al., 2019), and
environment-friendly material (Zimmerman et al.,[2020). The objective is to identify novel molecular
structures with desirable chemical or physical properties (Gomez-Bombarelli et al., [2018}; |Dai et al.}
2018;Jin et al., [2018; |[You et al., 2018 Jin et al., | 2019;|Shi et al., [2020; [Zhou et al., 2019; Jin et al.,
2020; [Zang & Wang, [2020; [Xie et al., 2021). Recent advances in deep generative models (DGM)
allow learning the distribution of molecules and optimizing the latent embedding vectors of molecules.
Models in this category are exemplified by the variational autoencoder (VAE) (Gomez-Bombarelli
et al.L[2018} Dai et al., 2018} Jin et al.,|2018};/2020) and generative adversarial network (GAN) (De Cao
& Kipf}, 2018). On the other hand, because of the discrete and not explicitly combinatorial nature of
the enormous chemical space, applying combinatorial optimization algorithms with some structure
enumeration has been the predominant approach (You et al. 2018} [Jensen, 2019;|Zhou et al., 2019
Nigam et al.| [2020; Xie et al.l 2021). Deep learning models have also been used to guide these
combinatorial optimization algorithms. For example, [You et al.| (2018)); Zhou et al.|(2019); Jin et al.
(2020); |Gottipati et al.| (2020) tried to solve the problem with deep reinforcement learning; Nigam
et al.[(2020) enhanced a genetic algorithm with a neural network as a discriminator; Xie et al.| (2021);
Fu et al.|(2021) approached the problem with Markov Chain Monte Carlo (MCMC) to explore the
target distribution guided by graph neural networks.

Despite the initial success of these previous attempts, the following limitations remain: (1) deep
generative models optimize the molecular structures in a learned latent space, which requires the latent
space to be smooth and discriminative. Training such models needs carefully designed networks and
well-distributed datasets. (2) most combinatorial optimization algorithms, featured by evolutionary
learning methods (Nigam et al.,[2020; Jensen, [2019; Xie et al., 2021 Fu et al.| 2021}, exhibit random-
walk behavior, and leverage trial-and-error strategies to explore the discrete chemical space. The
recent deep reinforcement learning methods (You et al., 2018; |[Zhou et al., 2019; Jin et al., |2020;
Gottipati et al.l [2020) aim to remove random-walk search using a deep neural network to guide
the searching. It is challenging to design the effective reward function into the objective (Jin et al.,
2020). (3) Most existing methods require a great number of oracle calls (a property evaluator; see

Under review as a conference paper at ICLR 2022

Def. E]) to proceed with an efficient search. However, realistic oracle functions, evaluating with either
experiments or high-fidelity computational simulations, are usually expensive. Examples include
using biological assays to determine the potency of drug candidates (Wang et al.L[2017), or conducting
electronic structure calculation to determine photoelectric properties (Long et al., [2011).

We propose differentiable scaffolding tree (DST) to address these challenges, where we define a
differentiable scaffolding tree for molecular structure and utilize a trained GNN to obtain the local
derivative that enables continuous optimization. The main contributions are summarized as:

e We propose the differentiable scaffolding tree to define a local derivative of a chemical graph. This
concept enables a gradient-based optimization of a discrete graph structure.

e We present a general molecular optimization strategy utilizing the local derivative defined by the
differentiable scaffolding tree. This strategy leverages the property landscape’s geometric structure
and suppresses the random-walk behavior, exploring the chemical space more efficiently. We also
incorporate a determinantal point process (DPP) based selection strategy to enhance the diversity of
generated molecules.

e We demonstrate encouraging preliminary results on de novo molecular optimization with multiple
computational objective functions. The local derivative shows consistency with chemical intuition,
providing interpretability of the chemical structure-property relationship. Our method also requires
less oracle calls, maintaining good performance in limited oracle settings.

2 RELATED WORK

Existing molecular optimization methods can mainly be categorized as deep generative models and
combinatorial optimization methods.

Deep generative models model a distribution of general molecular structure with a deep network
model so that one can generate molecules by sampling from the learned distribution. Typical
algorithms include variational autoencoder (VAE), generative adversarial network (GAN), energy-
based models, flow-based model (Gémez-Bombarelli et al., 2018 Jin et al., 2018} |De Cao & Kipf,,
2018; Segler et al.L 2018} Jin et al.;2019; Honda et al., 2019; Madhawa et al., 2019; |Shi et al., 2020;
Jin et al., [2020; Zang & Wang] 2020; [Kotsias et al., 2020; |Chen et al., 2021} |Liu et al., 2021} |Bagal
et al.} [2021). [Shen et al.| (2021) also leverages inverse learning based on SELFIES representation.
However, its performance is not satisfactory, primarily due to the failure of training an adequate
surrogate oracle. In addition, DGMs can leverage Bayesian optimization in latent spaces to optimize
latent vectors and reconstruct to obtain the optimized molecules (Jin et al.| 2018)). However, such
approaches usually require a smooth and discriminative latent space and thus an elaborate network
architecture design and well-distributed data set. Also, as they learn the reference data distribution,
their ability to explore diverse chemical space is relatively limited, evidenced by the recent molecular
optimization benchmarks (Brown et al.|[2019; |Huang et al., 2021).

Combinatorial optimization methods mainly include deep reinforcement learning (DRL) (You
et al.} 2018; Zhou et al.,[2019; Jin et al., [2020; |Gottipati et al.,|2020) and evolutionary learning meth-
ods (Nigam et al.}[2020; Jensenl |2019; Xie et al., 2021} [Fu et al., |2021)). They both formulate molecule
optimization as a discrete optimization task. Specifically, they modify molecule substructures (or
tokens in a string representation (Weininger, 1988))) locally, with an oracle score or a policy/value
network to tell if they keep it or not. Due to the discrete nature of the formulation, most of them
conduct an undirected search (random-walk behavior), while some recent ones like reinforcement
learning try to guide the searching with a deep neural network, aiming to rid the random-walk nature.
However, it is challenging to incorporate the learning objective target into the guided search. Those
algorithms still require massive numbers of oracle calls, which is computationally inefficient during
the inference time (Korovina et al., |2020). Our method, DST, falls into this category, explicitly
leverages the objective function landscape and conducts an efficient goal-oriented search. Instead
of operating on molecular substructure or tokens, we define the search space as a set of binary and
multinomial variables to indicate the existence and identity of nodes respectively, and make it locally
differentiable with a learned GNN as a surrogate of the oracle. This problem formulation can find its
root in conventional computer-aided molecular design algorithms with branch-and-bound algorithms
as solutions (Sinha et al., |{1999; |Sahinidis & Tawarmalani, 2000).

Under review as a conference paper at ICLR 2022

Abstract GNN Gradient o Assemble and
Predict Ascent _ 3)(Diversify
(58 5—
© O - oo - P05 5 () O
E’“’A”D M UNCHANGE
Molecular Graph Scaffolding Tree Differentiable Scaffolding Tree Molecular Graph

Figure 1: Illustration of the overall approach: During inference, we construct the corresponding
scaffolding tree and differentiable scaffolding tree (DST) for each molecule. We optimize each DST
along its gradient back-propagated from the GNN and sample scaffolding trees from the optimized
DST. After that, we assemble trees into molecules and diversify them for the next iteration.

3 METHOD

We first introduce the formulation of molecular optimization and differentiable scaffolding tree (DST)
in Section[3.1] illustrate the pipeline in Figure[I] then describe the key steps following the order:

* Oracle GNN construction: We leverage GNNs to imitate property oracles, which are targets of
molecular optimization (Section [3.2). Oracle GNN is trained once and for all. The training is
separately from optimizing DST below.

» Optimizing differentiable scaffolding tree: We formulate the discrete molecule optimization into
a locally differentiable problem with a differentiable scaffolding tree (DST). Then a DST can be
optimized by the gradient back-propagated from oracle GNN (Section [3.3).

* Molecule Diversification After that, we describe how we design a determinantal point process
(DPP) based method to output diverse molecules for iterative learning (Section [3.4).

3.1 PROBLEM FORMULATION AND NOTATIONS

3.1.1 Molecular optimization problem Oracles are the objective functions for molecular optimiza-
tion problems, e.g., QED quantifying a molecule’s drug-likeness (Bickerton et al., [2012).

Definition 1 (Oracle O). Oracle O is a black-box function that evaluates certain chemical or
biological properties of a molecule X and returns the ground truth property O(X).

In realistic discovery settings, the oracle acquisition cost is usually not negligible. Suppose we want to

optimize P molecular properties specified by oracle Oy, - - - , Op, we can formulate a multi-objective
molecule optimization problem through scalarization as represented in Eq. (T)),
argmaxyco F(X;01,02,---,0p) = f(O1(X),---,0p(X)), (D

where X is a molecule, Q denotes the set of valid molecules; f is the composite objective combining
all the oracle scores, e.g., the mean value of P oracle scores.

3.1.2 Scaffolding Tree The basic mathematical description of a molecule is molecular graph, which
contains atoms as nodes and chemical bonds as edges. However, molecular graphs are not easy
to generate explicitly as graphs due to the presence of rings, relatively large size, and chemical
validity constraints. For ease of computation, we convert a molecular graph to a scaffolding tree as a
higher-level representation, a tree of substructures, following Jin et al.| (2018} [2019).

Definition 2 (Substructure). Substructures can be either an atom or a single ring. The substructure
set is denoted S (vocabulary set), which covers frequent atoms and single rings in drug-like molecules.

Definition 3 (Scaffolding Tree 7). A scaffolding tree, Tx, is a spanning tree whose nodes are
substructures. It is higher-level representation of molecular graph X.

Tx is represented by (i) node indicator matrix, (ii) adjacency matrix, and (iii) node weight vector. We
distinguish leaf and non-leaf nodes in 7x. Among the K |'|nodes in Tx, there are K., leaf nodes
(nodes connecting to only one edge) and K — K, non-leaf nodes (otherwise). The sets of leaf nodes
and non-leaf nodes are denoted Viear and Vyoniear correspondingly.

'K depends on molecular graph. During optimization (Section and [3.4), after molecular structure
changes, K is updated.

Under review as a conference paper at ICLR 2022

Scaffolding Tree

110
- 0 0 1
1 2 N N= 0 0 0 non-leaf leaf expansion
3 A - 100
Q)ﬁ 7_ L o@ 0 0 0 @ 0
= - 0 0 @y 0 0 0 g
{5 ~ 0 0 0 @ 0O 0 0
Molecular N= w0 0 0 dga O 0
0 @53 0 0 0 0 0
Graph It § 0 0 g O 0 0 0
. . v 00 0 0 0 0 0
Differentiable Scaffolding Tree @g, 0 0 0 0 0 0

Figure 2: Example of differentiable scaffolding tree. We show non-leaf nodes (grey), leaf
nodes (yellow), expansion nodes (blue). The dashed nodes and edges are learnable, correspond-
ing to nodes’ identity and existence, respectively. w and A share the learnable parameters
{W3,W47W5|37W6|4>W7\1»W8\2}

Definition 4. Node indicator matrix N is decomposed as N = (E’m"le“f > € {0,1}5%IS1 where

leaf
Noontear € {0, 1Y KE=Kea)XIS| corresponds to non-leaf nodes while Nieor € {0, 1} KearxIS1 corre-
sponds to leaf nodes. Each row of N is a one-hot vector, indicating which substructure the node
belongs to.

Definition 5. Adjacency matrix is denoted A € {0,1}*5_ A;; = 1 indicates the i-th node and
j-th node are connected while 0 indicates unconnected.

Definition 6. Node weight vector, w = [1,--- ,1]T € R¥, indicates the K nodes in scaffolding
tree are equally weighted.

3.1.3 Differentiable scaffolding tree Similar to a scaffolding tree, a differentiable scaffolding tree
(DST) also contains (i) node indicator matrix, (ii) adjacency matrix, and (iii) node weight vector, but
with additional expansion nodes. Specifically, while inheriting leaf node set Vj¢,r and non-leaf node
set Vyonteat from the original scaffolding tree, we add expansion nodes and form expansion node set,
Vexpand = {Uv|V € Viear U Vaonteat }» | Vexpand| = Kexpand = K, Where u,, is connected to v in the
original scaffolding tree. We also define differentiable edge set, A = {(v,v") | v € Vieas OR V' €
Vexpand; Vs v’ are connected} to incorporate all the edges involving leaf-nonleaf node and leaf/nonleaf-
expansion node connections. To make it locally differentiable, we modify the tree parameters from
two aspects: (A) node identity and (B) node existence. Figure@] shows an example to illustrate DST.

(A) We enable optimization on node identity by allowing the corresponding node indicator matrix
learnable:

Definition 7. Differentiable node indicator matrix N takes the form:

- Nmmleaf (K+K)% |S| _
N = Nleaf € R+ e) Z Nij = 1; K= Kexpand- (2)
Nexpand j=1

Noontear = Noonteas € {0, 1}(K ~EKiea) <1S| gre fixed, equal to the part in the original Ycaﬂolding tree,
each row is a one-hot vector; indicating that we fix all the non-leaf nodes. In contrast, both Nexpand

and Nlmf are learnable, we use softmax activation to implicitly encode the constraint Z N =1

N;
ie., Nij = %, N are the parameters to learn. This constraint guarantee that each row
=1 exp i,

of N is a valid substructures’ distribution.
(B) We enable optimization on node existence by assigning learnable weights for the leaf and

expansion nodes, construct adjacency matrix and node weight vector based on those values:

Definition 8. Differentiable adjacency matrix A € RE+Kepaa)x (K+Kegad) tgkes the form:

~ _ 1/0, (i,7) ¢ A O:disconnected, 1:connected
Aij = Aji = { O’(V/‘\/i) (lm]) € sz S Vleafa .] E Vnonleaf 3)
U(Wz\j) (Za.]) € A7 (S Vexpanda J S Vleafu Vnonleaf

4

Under review as a conference paper at ICLR 2022

where A is the differentiable edge set defined above, Sigmoid function o (-) imposes the constraint
0<A; <1 W € REwstKegaad qre the parameters, each leaf node and expansion node has one

learnable parameter. For connected i and j, when i € Viear, j € Vyonteaps Aij = 0(W;) measures the

existence probability of leaf node i; when i € Vexpand; J € Vieaf D Vionieap Aij = U(VAV,»| j) measures the
conditional probability of the existence of expand node i given the original node j. When j is a leaf
node, it naturally embeds the inheritance relationship between the leaf node and the corresponding
expansion node.

Definition 9. Differentiable node weight vector w ¢ RE+Kevad takes the form:

1, N Z € Vnonleaf
wo=d oW CE Viear . (&)
! U(Yi\j)q(wj)a (S Vexpandv.] S Vleaﬁ (Za]) € A7

O—(Wi\j)wj = 0(wi|j)7 1 S Vexpandyj S Vnonleafa (7’7.7) S Aa

where all the weights range from 0 to 1. The weight of expansion node connecting to leaf node relies

on the weight of corresponding leaf node. w and A (Def. E?l) shares the learnable parameter w.
Figure2|shows an example to illustrate DST.

3.2 TRAINING ORACLE GRAPH NEURAL NETWORK

This section constructs a differentiable surrogate model to capture the knowledge from any oracle
function. We choose graph neural network architecture for its state-of-the-art performance in modeling
structure-property relationships. In particular, we imitate the objective function F' with GNN:

y=GNN(X;0)~ F(X;01,05,---,0p) =y,)

where O represents the GNN’s parameters. Concretely, we use a graph convolutional net-
work (GCN) (Kipf & Welling, [2016). Other GNN variants, such as Graph Attention Network
(GAT) (Velickovic et al.,|2017), Graph Isomorphism Network (GIN) (Xu et al.| 2018)), can also be
used in our setting. The initial node embeddings H(®) = NE € R¥* stacks basic embeddings of
all the nodes in the scaffolding tree, d is the GCN hidden dimension, N is the node indicator matrix
(Def. @) E ¢ RISI*4 is the embedding matrix of all the substructures in vocabulary set S, and is
randomly initialized. The updating rule of GCN for the [-th layer is

H® =RELUBY + AHIZDUW)), 1=1,--- L, (6)

where L is GCN’s depth, A is the adjacency matrix (Def.[3), H®) € R¥*? is the nodes’ embedding
of layer I, BY = [b® b® ... b®]T € RE*d and UV € R?*? are bias and weight parameters
of layer [, respectively.

We generalize the GNN from a discrete scaffolding tree to a differentiable one. Based on learnable
weights for each node, we leverage the weighted average as the readout function of the last layer’s
(L-th) node embeddings, followed by multilayer perceptron (MLP) to yield the prediction 7, i.e.,

Y= MLP(> illl o Zszl wiH ,iL)), in discrete scaffolding tree, weights for all the nodes are equal

tol, H ,gL) is the k-th row of HX). In sum, the prediction can be written as

7 = GNN(X;0) = GNN(Tx = {N,A,w};0), X €Q (7

where © = {E} U {B® UM} | are the GNN’s parameters. We train the GNN by minimizing the
discrepancy between GNN prediction § and the ground truth y.

@*:argmin@Z L(y=F(X;01,0,,---,0p), §=GNN(X;0)), (8)

(X,y)eD

where L is loss function, e.g., mean squared error; D is the training set. After training, we have GNN
parameterized by ©, to approximate the black-box objective function F' (Eq.[I). Worth to mention
that Oracle GNN is trained once and for all. The training is separately from optimizing DST below.

Under review as a conference paper at ICLR 2022

3.3 OPTIMIZING DIFFERENTIABLE SCAFFOLDING TREE

Overview With a little abuse of notations, via introducing DST, we approximate molecule optimiza-
tion as a locally differentiable problem

X =argmaxyco F(X) = X = arg maxy ¢ nr(x) £(X)

(I) structured combinatorial optimization (1) iterative local discrete search (9)
~ Txe+n =argmaxyeax®) GNN(Tx = {Nxw, Axw, Wxn }; 0.),

(III) local differentiable optimization

where X () is the molecule at ¢-th iteration, (X)) C Q is the neighborhood set of X *) (Def. .
Next, we explain the intuition behind these approximation steps. Molecular optimization is generally
a discrete optimization task, which is prohibitively expensive due to exhaustive search. The first
approximation is to formulate the problem as an iterative local discrete search via introducing a
neighborhood molecule set (X (*)). Second, to enable differentiable learning, we use GNN to
imitate black-box objective F' (Section [3.2)) and further reformulated it into a local differentiable
optimization problem. Then we can optimize DST (Tx = {Ny), Ax®, Wx }) in a continuous
domain for V(X (t)) using gradient-based optimization method.

3.3.1 Local Editing Operations For a leaf node v in the scaffolding tree, we can perform three
editing operations, (1) SHRINK: delete node v; (2) REPLACE: replace a new substructure over
v; (3) EXPAND: add a new node u,, that connects to node v. For a nonleaf node v, we support (1)
EXPAND: add a new node u,, connecting to v; (2) do nothing. If we EXPAND and REPLACE, the
new substructures are sampled from the vocabulary S. We define molecule neighborhood set:
Definition 10 (Neighborhood set). Neighborhood set of molecule X, denoted N'(X), is the set of all
the possible molecules obtained by imposing one local editing operation to scaffolding tree Tx and
assembling the edited trees into molecules.

3.3.2 Optimizing DST Then within the domain of neighborhood molecule set N'(X), the objective

function can be represented as a differentiable function of X’s DST (N x, A x, Wy). We address the
following optimization problem to get the best scaffolding tree within A/(X),

N*, A.*7 \7/‘* = argmax{ﬁX’AXﬁX} GNN({N)(, Ax, \Xfx}; @*), (10)
where the GNN parameters O.. (Eq. (8)) are fixed. Comparing with Eq. (7)), it is differentiable with
regard to {N, A, w} for all molecules in the neighborhood set A/ (X). Therefore, we can optimize the
DST using gradient-based optimization method, e.g., an Adam optimizer (Kingma & Bal 2014). The
whole DST pipeline leverages iterative local discrete search (Equation [0} Algorithm|I)), specifically,
in t-th iteration, we optimize the DST of X *), i.e., X in Equation (10 is X,

3.3.3 Sampling from DST Then we sample the new scaffolding tree from the optimized DST.

Concretely, (i) for each leaf node v € Vieyr and the corresponding expansion node w, € Vexpand, We
select one of the following step with probabilities (w.p.) as follows,

T ~ DST—Sampler(N*7 A, W)

1. SHRINK: delete leaf node v, w.p. 1 — (W),
=< 2. EXPAND: add u,, select substructure at u, based on (N)y,, W.p. (Wi)o(Wi)u, v,
3. REPLACE: select substructure at v based on (N..),, W.p. (W) (1 — (W) uy o)

(1)

(ii) For each nonleaf node v, we expand a new node with probability (W), |,. If expanding, we

select substructure at u,, based on (IN,.),,,. Otherwise, we “do nothing”.

3.3.4 Assemble Each scaffolding tree corresponds to multiple molecules due to the multiple ways
substructures can be combined. We enumerate all the possible molecules following Jin et al.| (2018)
(See Section[C.5]in Appendix for details) for the further selection as described below.

3.4 MOLECULE DIVERSIFICATION

In the current iteration, we have generated M molecules (X1, ---, X)) and need to select C
molecules for the next iteration. We expect these molecules to have desirable chemical properties

Under review as a conference paper at ICLR 2022

(high F' score) and simultaneously maintain higher structural diversity. To do so, we resort to the
determinantal point process (DPP) (Kulesza & Taskar, [2012), which models the repulsive correlation
between data points. Specifically, for M data points, whose indexes are {1,2,--- , M}, S € Rf xM
denotes the similarity matrix between these data points. To create a diverse subset (denoted R) with
fixed size C, the sampling probability should be proportional to the determinant of the submatrix
Sr € RY*C ie., P(R) o det(Sg), where R C {1,2,--- ,M}, |R| = C. Combining the
objective (F') value and diversity, the composite objective is

arg max Lppp(R) = A Z F(X,)+log P(R) = logdet(Vg) + logdet(Sr), (12)
RC{1,2,-- ,M},|R|=C <

where the hyperparamter A > 0 balances the two terms, the diagonal scoring matrix V' =
diag([exp(AF(X,)), -+ ,exp(AF(X,,))]), Vr € RE*C is a sub-matrix of V indexed by R. When
A goes to infinity, it is equivalent to select top-C' candidates with the highest F' score, same as
conventional evolutionary learning in (Jensen, 2019; Nigam et al.| |2020). Inspired by generalized
DPP methods (Chen et al.,|2018), we further transform Lppp(R),

Lopp(R) = log det (Vi) + log det(Sg) = logdet (V2 S V;2) = logdet (VESV3)g).
where V2SV2 is symmetric positive semi-definite. Then it can be solved by generalized DPP

methods in O(C?M) (Chen et al., 2018)) (Section |E in Appendix). The computational complexity of
DST is O(TMC?) (Section in Appendix). Algorithm summarizes the entire algorithm.

Algorithm 1 Differentiable Scaffolding Tree (DST)

1: Input: Iteration 7', beam width C, input molecule X1, & = {X (1},

2: Qutput: Generated Molecule Set 2.

3: Learn GNN (Eq. : O, =argming » -y ep Ly, Y). # Section
4: fort=1,2,--- ;T do

5: Initiali(z)e setI' = {}.
. t
o aitalise DT (N, A, W} for X (Eq. 2} Bl).
8: Optimize DST: N,, A,, w, = arg max § x & GNN({N, 11, w}; 0.) (Eq .
9: Sample from DST: 7}(t+1) ~ DST—Sampler(N*7 A, w*),j =1,2,--- (Eq .
10 Assemble scaffolding tree 7;-(t+1) into molecules Xj(t+1). r=ru {X](H_l)}.
11: end for

12: Select ® CT,|®| = C basedon Eq.[I2} Q=QU®. # Section[34]
13: end for

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Molecular Properties contains QED; LogP; SA; JNK3; GSK323, following (Jin et al.| 2020 Nigam
et al.} [2020; [Moss et al.| [2020; | Xie et al., [2021)), where QED quantifies drug-likeness; LogP indicates
the water-octanol partition coefficient; SA stands for synthetic accessibility and is used to prevents
the formation of chemically unfeasible molecules; JNK3/GSK33 measure inhibition against c-Jun
N-terminal kinase-3/Glycogen synthase kinase 3 beta. For all the 5 scores (including normalized
SA), higher is better. We conducted (1) single-objective generation that optimizes JNK3, GSK3/3 and
LogP separately and (2) multi-objective generation that optimizes the mean value of “JNK3+GSK33”
and “QED+SA+JNK3+GSK3/3” in the main text. Details are in Section[C.3}

Dataset: ZINC 250K contains around 250K druglike molecules (Sterling & Irwin| [2015). We select
the substructures that appear more than 1000 times in ZINC 250K as the vocabulary set S, which
contains 82 most frequent substructures. Details are in Section[C.1]

Baselines. (1) LigGPT (string-based distribution learning model with Transformer as a decoder) (Ba;
gal et al.,[2021); (2) GCPN (Graph Convolutional Policy Network) (You et al., 2018)); (3) MolDQN

Under review as a conference paper at ICLR 2022

(Molecule Deep Q-Network) (Zhou et al., 2019); (4) GA+D (Genetic Algorithm with Discriminator
network) (Nigam et al., [2020); (5) MARS (Markov Molecular Sampling) (Xie et all, [2021)); (6)
RationaleRL (Jin et al., 2020); (7) ChemBO (Chemical Bayesian Optimization) (Korovina et al
[2020); (8) BOSS (Bayesian Optimization over String Space) (Moss et al.| [2020). Among them,
LigGPT belongs to deep generative model, where all the oracle calls can be precomputed; GCPN,
MoIDQN are deep reinforcement learning methods; GA+D, MARS are evolutionary learning meth-
ods; RationaleRL is deep generative model fine-tuned with RL techniques. ChemBO and BOSS are
Bayesian optimization methods. We also consider a DST variant: DST-rand. Instead of optimizing
and sample from DST, DST-rand leverages random local search, i.e., randomly selecting basic opera-
tions (EXPAND, REPLACE, SHRINK) and substructure from vocabulary. To improve efficiency, we
also select a subset of all the random samples with high surrogate GNN prediction scores. All the
baselines except LigGPT require online oracle calls. Details are in Section B}

Metrics. For each method, we select top-100 molecules with highest property scores for evaluation,

and consider the following metrics following Jin et al.|(2018); |You et al.| (2018)); Jin et al.| (2020);
(1) Novelty (Nov) (% of the generated molecules that are not in training set); (2)
Diversity (Div) (average pairwise Tanimoto distance between the Morgan fingerprints); (3) Average
Property Score (APS) (average score of top-100 molecules); (4) # of oracle calls: DST needs to
call oracle in labeling data for GNN (precomputed) and DST based de novo generation (online), we
show the costs for both steps. For each method in Table[T]and 2] we set the number of oracle calls so
that the property score nearly converge w.r.t. oracle call’s number. Details are in Section[C.4]

Table 1: Multl-objectlve Method INK3+GSK33 QED+SA+INK3+GSK33
de novo deSi n #Oracle_ Nov 1 Divt APST #oracle| Nov?t Div?t APS?T #oracle|
gn. = LigGPT 100% 0.845 0271 T00k+0 100% 0902 0378 T00k+0
(1)“precomputed oracle GCPN 100% 0578 0.293 0+200K 100% 0596 0.450 0+200K
5 MolDQN 100% 0.605 0348 0+200K | 100% 0597 0365 0+200K
call” (to label molecules GA+D 100% 0.657 0.608 0+50K 97% 0681 0.632 0+50K
in existing database) + RationaleRL ~ 100% 0700 0795 25K+67K | 99% 0720 0.675 25K+67K
o, . MARS 100% 0711 0.789 0+50K 100% 0714 0.662 0+50K
(2)“online oracle call ChemBO 98% 0702 0747 0+50K 99% 0701 0.648 0+50K
: : BOSS 99% 0564 0504 0+50K 98% 0561 0504 0+50K
(during learning). DST-rand 100% 0456 0.622 10+5K 100% 0765 0575 20K+5K
DST 100% 0750 0827 10K+5K | 100% 0755 0752 20K+5K

4.2 OPTIMIZATION PERFORMANCE

The results of multi-objective and single-objective generation are shown in Table[T|and 2] We find
that DGM (LigGPT) and RL based methods (GCPN and MoIDQN) fails in some tasks, which is
consistent with the results reported in RationaleRL and MARS 2021).
Overall, DST obtains the best results in most tasks. In terms of success rate and diversity, DST
outperformed all baselines in most tasks. It also reached the highest scores within 7" = 50 iterations
in most optimization tasks (see Table [5] and [] in Appendix). Especially in optimizing LogP, the
model successfully learned to add a six-member ring (see Figure[9]in Appendix) each step, which is
theoretically the optimal strategy under our setting. Combined with the ablation study comparing with
random selection (see Figure[I2]in Appendix), our results show the local gradient defined by DST is
a useful direction indicator, consistent with the concept of gradient. Further, achieving high diversity
validates the effect of the DPP-based selection strategy. Although the novelty is not the highest, it is
still comparable to baseline methods. These results show our gradient-based optimization strategy
has a strong optimization ability to provide a diverse set of molecules with high objective functions.

Table 2: Single-objective de novo molecular generation.

Method INK3 GSK33 LogP
Nov T Divt APST #oracle] Nov?t Divf APST #oracle] Nov T Divt APST #oracle]
LigGPT 100% 0.837 0.302 100K+0 100% 0.867 0.283 100K+0 100% 0.868 4.56 100K+0
GCPN 100% 0.584 0.365 0+200K 100% 0.519 0.400 0+200K 100% 0.532 543 0+200K
MolDQN 100% 0.605 0.459 0+200K 100% 0.545 0.398 0+200K 100% 0.485 6.00 0+200K
GA+D 99% 0.702 0.615 0+50K 98% 0.687 0.678 0+50K 100% 0.721 30.2 0+50K
RationaleRL 99% 0.681 0.803 25K+32K 99% 0.731 0.806 30K+45K - - - -
MARS 100% 0.711 0.784 0+50K 100% 0.735 0.810 0+50K 100% 0.692 44.1 0+30K
ChemBO 98% 0.645 0.648 0+50K 98% 0.679 0.492 0+50K 98% 0.732 10.2 0+50K
BOSS 98% 0.601 0.471 0+50K 99% 0.658 0.432 0+50K 100% 0.735 9.64 0+50K
DST-rand 100% 0.754 0.413 10K+10K 97% 0.793 0.455 10K+10K 100% 0.713 36.1 10K+15K
DST 100% 0.732 0.928 10K+5K 100% 0.748 0.869 10K+5K 100% 0.704 471 10K+5K

Under review as a conference paper at ICLR 2022

4.3 ORACLE EFFICIENCY

As mentioned above, oracle calls for realistic optimization tasks can be time-consuming and expensive.
From Table[I]and 2] we can see that majority of de novo optimization methods require oracle calls
online (instead of precomputation), including all of RL/evolutionary algorithm based baselines. DST
takes fewer oracle calls compared with baselines. DST can leverage the precomputed oracle calls to
label the molecules in an existing database (i.e., ZINC) for training the oracle GNN and dramatically
saving the oracle calls during reference. In the three tasks in Table 2] two-thirds of the oracle calls
(10K) can be precomputed or collected from other sources. To further verify the oracle efficiency,
we explore a special setting of molecule optimization where the budget of oracle calls is limited to
a fixed number (2K, 5K, 10K, 20K, 50K) and compare the optimization performance. For GCPN,
MolDQN, GA+D and MARS, the learning iteration number depends on the budget of oracle calls.
RationaleRL (Jin et al.| [2020) is not included because it requires intensive oracle calls to collect
enough reference data, exceeding the oracle budget in this scenario. In DST, we use around 80%
budget to label the dataset (i.e., training GNN) while the remaining budget to conduct de novo design.
Specifically, for 2K, 5K, 10K, 20K, 50K, we use 1.5K, 4K, 8K, 16K and 40K oracle calls to label the
data for learning GNN, respectively. We show the average objective values of top-100 molecules
under different oracle budgets in Figure[3] Our method shows a significant advantage compared to all
the baseline methods in all limited budget settings. We conclude the reason as supervised learning is
a well-studied and much easier task than generative modeling.

JNK3 GSK3B JNK3+GSK3B —@— DST RationaleRL

-—@--MARS —@— BOSS
—+— GA+D --e-- ChemBO

—%— MolDON —=&— DST-rand

~=#*-- GCPN

Figure 3: Oracle efficiency test. Top-100 average score v.s. number of oracle calls.

4.4 INTERPRETABILITY ANALYSIS

weight: 0.92

leaf node gragient: 0.0014 @ E: 0,79 QED:0.55 Positive weight gradient on expand

SA:2.19
weight: 0.87 i INK3:0.91 GSK3B:0.72 ' node means a positive contribution to
expand node .- et 0.014 EXPAND jecti i
e 3 QED:0.54 SA:2.49 the objective value increment (at least
038 % F: 879 jnk:0.93 Gskas:0.74 | |ocally), while negative gradient

0.5 N
0.12 0os 00 leafnode Weight:0.42 represents negative one. Due to space
X . SHRINK gradient: -0.0018

ﬁ‘—’ O ! O limit, we only show the gradient of two
& p ¢ Br o . ED:0.60 SA:2.25
2 F:0.83 QED:0.60 SAi225 | expand nodes.

Figure 4: Two steps in optimizing “QED+SA+JNK3+GSK33”.

To obtain more insights from the local gradient, We visualize two modification steps in Figure[d The
node weights and their gradient values interpret the property at the substructure level. This is similar
to most attribution-based interpretable ML methods, e.g., saliency map (Simonyan et al., 2013).

5 CONCLUSION

This paper proposed differentiable scaffolding tree (DST) to make a molecular graph locally dif-
ferentiable, allowing a continuous gradient-based optimization. To the best of our knowledge, it is
the first attempt to make the molecular optimization problem differentiable at the substructure level,
rather than resorting to latent spaces or using RL/evolutionary algorithms. We constructed a general
molecular optimization strategy based on DST, corroborated by thorough empirical studies.

Under review as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

The code repository is given in the supplementary material, including README file, all the codes
for data preprocessing and model. All the data we use are publicly available. Section [B]describes
experimental setup for all the baseline methods. We elaborate the implementation details in Section[C]
Concretely, Section @] describes the dataset we use; Section @] describes software and hardware
configuration; Section [C.3] introduces the target molecular properties to optimize; Section [C.4]
describes all the metrics for evaluating the performance; Section[C.6|describes the setup for model
implementation, especially hyperparameter setup.

REFERENCES

Viraj Bagal, Rishal Aggarwal, PK Vinod, and U Deva Priyakumar. LigGPT: Molecular generation
using a transformer-decoder model. 2021.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90, 2012.

Rasmus Bro and Age K Smilde. Principal component analysis. Analytical methods, 6(9):2812-2831,
2014.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
models for de novo molecular design. Journal of chemical information and modeling, 59(3):
1096-1108, 2019.

Krzysztof Chalupka, Christopher KI Williams, and Iain Murray. A framework for evaluating
approximation methods for gaussian process regression. Journal of Machine Learning Research,
14:333-350, 2013.

Binghong Chen, Tianzhe Wang, Chengtao Li, Hanjun Dai, and Le Song. Molecule optimization by
explainable evolution. In International Conference on Learning Representations, 2021.

Laming Chen, Guoxin Zhang, and Hanning Zhou. Fast greedy map inference for determinantal point
process to improve recommendation diversity. In Neural Information Processing Systems, pp.
5627-5638, 2018.

Sangwoo Cho, Logan Lebanoff, Hassan Foroosh, and Fei Liu. Improving the similarity measure of
determinantal point processes for extractive multi-document summarization. In Association for
Computational Linguistics, ACL, 2019.

Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational
autoencoder for structured data. In /CLR, 2018.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of cheminfor-
matics, 1(1):8, 2009.

Tianfan Fu, Cao Xiao, Xinhao Li, Lucas M Glass, and Jimeng Sun. MIMOSA: Multi-constraint
molecule sampling for molecule optimization. AAAI, 2021.

Wenhao Gao and Connor W Coley. The synthesizability of molecules proposed by generative models.
Journal of chemical information and modeling, 60(12):5714-5723, 2020.

Rafael Gémez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Herndndez-Lobato,
Benjamin Sanchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Aldn Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 2018.

10

Under review as a conference paper at ICLR 2022

Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu,
Simon Blackburn, Karam Thomas, Connor Coley, Jian Tang, et al. Learning to navigate the
synthetically accessible chemical space using reinforcement learning. In International Conference
on Machine Learning, pp. 3668-3679. PMLR, 2020.

Johannes Hachmann, Roberto Olivares-Amaya, Sule Atahan-Evrenk, Carlos Amador-Bedolla, Roel S
Séanchez-Carrera, Aryeh Gold-Parker, Leslie Vogt, Anna M Brockway, and Alan Aspuru-Guzik.
The harvard clean energy project: large-scale computational screening and design of organic
photovoltaics on the world community grid. The Journal of Physical Chemistry Letters, 2(17):
2241-2251, 2011.

Shion Honda, Hirotaka Akita, Katsuhiko Ishiguro, Toshiki Nakanishi, and Kenta Oono. Graph
residual flow for molecular graph generation. arXiv preprint arXiv:1909.13521, 2019.

Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W Coley,
Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: machine learning
datasets and tasks for therapeutics. arXiv preprint arXiv:2102.09548, 2021.

Jon Paul Janet, Sahasrajit Ramesh, Chenru Duan, and Heather J Kulik. Accurate multiobjective
design in a space of millions of transition metal complexes with neural-network-driven efficient
global optimization. ACS central science, 6(4):513-524, 2020.

Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for the
exploration of chemical space. Chemical science, 10(12):3567-3572, 2019.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. ICML, 2018.

Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal graph-to-
graph translation for molecular optimization. /CLR, 2019.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using
interpretable substructures. In International Conference on Machine Learning, pp. 4849-4859.
PMLR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff
Schneider, and Eric Xing. Chembo: Bayesian optimization of small organic molecules with syn-
thesizable recommendations. In International Conference on Artificial Intelligence and Statistics,
pp- 3393-3403. PMLR, 2020.

Panagiotis-Christos Kotsias, Josep Artis-Pous, Hongming Chen, Ola Engkvist, Christian Tyrchan, and
Esben Jannik Bjerrum. Direct steering of de novo molecular generation with descriptor conditional
recurrent neural networks. Nature Machine Intelligence, 2(5):254-265, 2020.

Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning. arXiv preprint
arXiv:1207.6083, 2012.

Irwin D Kuntz. Structure-based strategies for drug design and discovery. Science, 257(5073):
1078-1082, 1992.

Greg Landrum et al. RDKit: Open-source cheminformatics, 2006.

Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with conditional
graph generative model. Journal of cheminformatics, 2018.

Meng Liu, Keqgiang Yan, Bora Oztekin, and Shuiwang Ji. Graphebm: Molecular graph generation
with energy-based models. arXiv preprint arXiv:2102.00546, 2021.

11

Under review as a conference paper at ICLR 2022

Mengqiu Long, Ling Tang, Dong Wang, Yuliang Li, and Zhigang Shuai. Electronic structure and
carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. ACS nano, 5(4):
2593-2600, 2011.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invertible
flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

Henry B Moss, Daniel Beck, Javier Gonzalez, David S Leslie, and Paul Rayson. Boss: Bayesian
optimization over string spaces. NeurlPS, 2020.

AkshatKumar Nigam, Pascal Friederich, Mario Krenn, and Aldn Aspuru-Guzik. Augmenting genetic
algorithms with deep neural networks for exploring the chemical space. In ICLR, 2020.

Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating
realistic molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372, 2019.

Nikolaos V Sahinidis and Mohit Tawarmalani. Applications of global optimization to process and
molecular design. Computers & Chemical Engineering, 24(9-10):2157-2169, 2000.

Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS central science, 4(1):
120-131, 2018.

Cynthia Shen, Mario Krenn, Sagi Eppel, and Alan Aspuru-Guzik. Deep molecular dreaming: Inverse
machine learning for de-novo molecular design and interpretability with surjective representations.
Machine Learning: Science and Technology, 2021.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. GraphAF: a
flow-based autoregressive model for molecular graph generation. In /CLR, 2020.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Manish Sinha, Luke EK Achenie, and Gennadi M Ostrovsky. Environmentally benign solvent design
by global optimization. Computers & Chemical Engineering, 23(10):1381-1394, 1999.

Teague Sterling and John J Irwin. Zinc 15-ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324-2337, 2015.

Paraskevi Supsana, Theodoros Liaskopoulos, Stavroula Skoulika, Antonios Kolocouris, Petros G
Tsoungas, and George Varvounis. Thermal rearrangement of spiro [naphthalene (naphthopyranofu-
razan)] oxides to spiro [naphthalene (phenalenofurazan) oxides. a probable furazan oxide triggered
tandem isomerisation process. Tetrahedron, 61(25):6131-6137, 2005.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Yanli Wang, Stephen H Bryant, Tiejun Cheng, Jiyao Wang, Asta Gindulyte, Benjamin A Shoemaker,
Paul A Thiessen, Sigian He, and Jian Zhang. Pubchem bioassay: 2017 update. Nucleic acids
research, 45(D1):D955-D963, 2017.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical information and computer sciences, 28(1):31-36,
1988.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. MARS:
Markov molecular sampling for multi-objective drug discovery. In ICLR, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. In NIPS, 2018.

12

Under review as a conference paper at ICLR 2022

Chengxi Zang and Fei Wang. MoFlow: an invertible flow model for generating molecular graphs. In
ACM SIGKDD, pp. 617-626, 2020.

Cheng Zhang, Hedvig Kjellstrom, and Stephan Mandt. Determinantal point processes for mini-batch
diversification. Uncertainty in Artificial Intelligence (UAI), 2017.

Alex Zhavoronkov, Yan A Ivanenkov, Alex Aliper, Mark S Veselov, Vladimir A Aladinskiy, Anas-
tasiya V Aladinskaya, Victor A Terentiev, Daniil A Polykovskiy, Maksim D Kuznetsov, Arip
Asadulaev, et al. Deep learning enables rapid identification of potent ddrl kinase inhibitors. Nature
biotechnology, 37(9):1038-1040, 2019.

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of molecules
via deep reinforcement learning. Scientific reports, 2019.

Julie B Zimmerman, Paul T Anastas, Hanno C Erythropel, and Walter Leitner. Designing for a green
chemistry future. Science, 367(6476):397—400, 2020.

13

Under review as a conference paper at ICLR 2022

CONTENTS

I Tntreduction|

2Related Workl

3 Method!

4 _Experiment]
4.1 Experimental Setup|

4.2 Optimization Performance|

K3 OracleEfficiency|

4.4 Interpretability Analysis| L

5 Conclusion

A~ Complete Mathematical Notations.|

[B~ Baseline Setup|

|C Implementation Details|

C.1 Datasetl

IC.8 Complexity Analysis|

[D Additional Experimental Results|

ID.1 Additional results of de novo molecular generation|

ID.2 " De novo molecular optimization on QED (potential limitation of DST)[.
ID.3 Results Analysis for Distribution Learning Methods (LigGPT)[.
ID.4 Ablationstudy|. L

ID.5 Chemical space visualization|

ID.6 Additional Interpretability Analysis|

AN O W W W

O O 0 3 3

16

16

18
18
18
18
19
20
20
21
22

Under review as a conference paper at ICLR 2022

|[E Theoretical Analysis| 26
[E.1 Convergence Analysis| 27
FE : FMolecule di ficati 27
[G_Proof of Theoretical Results| 29
IG.1 Proofoflemmal?2l. e 29
(G2 Proofof Lemmal3l. 30
(G.3 Proofoflemmalll. 31
(G4 Proofof Theoremlll 31

Section*Appendix to Differentiable Scaffolding Tree for Molecular Optimization

The appendix is organized as follows. First, we list the complete mathematical notations for ease of
exposition. Then, we show additional experimental setup and empirical results, including baseline
setup in Section[B] implementation details of our method in Section [C] additional experimental results
in Section D] Then, we provide theoretical analysis in Section [E] extend molecule diversification in
Section, and prove the theoretical results in the main paper in Section[G]

Table 3: Complete Mathematical Notations.

Notations Descriptions
O Oracle function, e.g., evaluator of molecular property (Defm.
F objective function of molecule generation (Eq. .
PeNy Number of target oracles.
Q Set of all the valid chemical molecules.
S Vocabulary set, i.e., substructure set. A substructure is an atom or a ring.
T Scaffolding tree (Def]3).
K =|T| number of nodes in scaffolding tree 7.
N;A;w Node indicator matrix; adjacency matrix; node weight.
Vieat Leaf node set in scaffolding tree 7.
Vhonleaf Nonleaf node set in scaffolding tree 7.
Vexpand Expansion node set in scaffolding tree 7.
Kieat = [Veat| Size of leaf node set.
Kexpand = |Vexpand| = K Size of expansion node set. Kieat = Kexpand-
de Nt GNN hidden dimension.
LeNy GNN depth.
0 ={E}U{B® UY}E, | Learnable parameter of GNN.
E ¢ RISIxd embedding stackings of all the substructures in vocabulary set S.
B ¢ REx bias parameters at [-th layer.
U ¢ rixd weight parameters at [-th layer.

HY 1=0,---,L
H® = NE € RF*d

Node embedding at [-th layer of GNN

initial node embeddings, stacks basic embeddings of all the nodes in the scaffolding tree.

MLP multilayer perceptron
ReLU ReLU activate function
m GNN prediction.
y groundtruth
L Loss function of GNN.
D the training set
N(X) Neighborhood molecule set of X (Def| .
A differentiable edge set.
N;A;w Differentiable node indicator matrix; adjacency matrix; node weight.
det() Determinant of a square matrix
M e Ni Number of all possible molecules to select.
CeNy Number of selected molecules.
S € RYXM Similarity kernel matrix.
V eRY *M Diagonal scoring matrix.
R subset of {1,2,--- , M}, index of select molecules.
A>0 hyperparameter in Eq.|12]and balances desirable property and diversity.

15

Under review as a conference paper at ICLR 2022

A COMPLETE MATHEMATICAL NOTATIONS.

In this Section, we show all the mathematical notations in Table 3] for completeness.

We also illustrate the difference between DST and existing methods in Figure [5]

Existing methods (GCPN, .)]
MolecularRNN, GraphAF) DST (differentiable scaffolding tree)
__________ 1 (2) predict property

(1) generate molecule i

1
1 1 | —_— =
1 Lo 1
GNN generator ! (2) evaluate | :(1) DST | Pretrained GNN > B3) maximize .
‘—_(3) —— ! _'_ _objective ! | (differentiable : as property predictor: predicted PFOPG'TV:
radient BE, iscaffoldingtree) @ ! —m— === === —— =
UpdateGNN —EEESo———- ! (4) Gradient BP,
update DST

Figure 5: Left: Most of the existing methods (including GCPN (You et al., 2018), Molecular-
RNN (Popova et al] [2019), GraphAF (Shi et al; 2020)) use GNN as a graph generator. Specifically,

(1) generate molecule; (2) evaluate learning objective (loss in deep generative model or reward in
reinforcement learning); (3) back-propagate (BP) gradient to update GNN. In sum, the learning
objective is differentiable w.r.t. the GNN’s parameters.

Right: Regarding DST, given the pretrained GNN as surrogate oracle model (i.e., property predictor),
we have several steps: (1) construct differentiable scaffolding tree (DST); (2) predict the property via
GNN; (3) maximize the predicted property y (learning objective); (4) back-propagate (BP) gradient
to update DST. In sum, the learning objective is differentiable w.r.t. DST (also input of GNN).
Summary: DST makes the learning objective differentiable w.r.t molecule graph structure, while
prior works make the learning objective differentiable w.r.t. neural networks’ parameters. Our
approach directly optimizes molecular graph structures, while prior works indirectly search for the
molecule graphs with the help of a neural network.

B BASELINE SETUP

In this section, we describe the experimental setting for baseline methods. Most of the settings follow
the original papers.

* LigGPT (string-based distribution learning model with Transformer as a decoder)
is trained for 10 epochs using the Adam optimizer with a learning rate of
6e — 4. LigGPT comprises stacked decoder blocks, each of which, is composed of a masked
self-attention layer and fully connected neural network. Each self-attention layer returns a
vector of size 256, that is taken as input by the fully connected network. The hidden layer of
the neural network outputs a vector of size 1024 and uses a GELU activation and the final
layer again returns a vector of size 256 to be 7 used as input for the next decoder block.
LigGPT consists of 8 such decoder blocks. LigGPT has around 6M parameters.

* GCPN (Graph Convolutional Policy Network) (You et al|, [2018) leveraged graph con-
volutional network and policy gradient to optimize the reward function that incorporates

target molecular properties and adversarial loss. In each step, the allowable action to the
current molecule could be either connecting a new substructure or an atom with an existing
molecular graph or adding a bond to connect existing atoms. GCPN predicts the actions
and is trained via proximal policy optimization (PPO) to optimize an accumulative reward,
including molecular property objectives and adversarial loss. Both policy network and
adversarial network (discriminative training) use the same neural architecture, which is a
three-layer graph convolutional network (GCN) (Kipf & Welling} [2016) with 64 hidden
nodes. Batch normalization is adopted after each layer, and sum-pooling is used as the
aggregation function. Adam optimizer is used with le-3 initial learning rate, and batch size
is 32.

e MoIDQN (Molecule Deep Q-Networks) (Zhou et all, 2019), same as GCPN, formulate
the molecule generation procedure as a Markov Decision Process (MDP) and use Deep Q-
Network to solve it. The reward includes target property and similarity constraint. Following

16

Under review as a conference paper at ICLR 2022

the original paper, the episode number is 5,000, maximal step in each episode is 40. Each step
calls oracle once; thus, 200K oracle calls are needed in one generation process. The discount
factor is 0.9. Deep Q-network is a multilayer perceptron (MLP) whose hidden dimensions
are 1024, 512, 128, 32, respectively. The input of the Q-network is the concatenation of the
molecule feature (2048-bit Morgan fingerprint, with a radius of 3) and the number of left
steps. Adam is used as an optimizer with le-4 as the initial learning rate. Only rings with a
size of 5 and 6 are allowed. It leverages e-greedy together with randomized value functions
(bootstrapped-DQN) as an exploration policy, € is annealed from 1 to 0.01 in a piecewise
linear way.

GA+D (Genetic Algorithm with Discriminator network) (Nigam et al.}[2020) uses a deep
neural network as a discriminator to enhance exploration in a genetic algorithm. [is an
important hyperparameter that weights the importance of the discriminator’s loss in the
overall fitness function, and we set it to 10. The generator runs 100 generations with
a population size of 100 for de novo molecular optimization and 50 generations with a
population size of 50 for molecular modification. Following the original paper (Nigam et al.|
2020), the architecture of the discriminator is a two-layer fully connected neural network
with ReLU activation and a sigmoid output layer. The hidden size is 100, while the size of
the output layer is 1. The input feature is a vector of chemical and geometrical properties
characterizing the molecules. We used Adam optimizer with le-3 as the initial learning rate.

RationaleRL is a deep generative model that grows a molecule atom-by-
atom from an initial rationale (subgraph). The architecture of the generator is a message-
passing network (MPN) followed by MLPs applied in breadth-first order. The generator is
pre-trained on general molecules combined with an encoder and then fine-tuned to maximize
the reward function using policy gradient. The encoder and decoder MPNs both have hidden
dimensions of 400. The dimension of the latent variable is 20. Adam optimizer is used on
both pre-training and fine-tuning with initial learning rates of le-3, Se-4, respectively. The
annealing rate is 0.9. We pre-trained the model with 20 epochs.

MARS leverage Markov chain Monte Carlo sampling (MCMC) on
molecules with an annealing scheme and an adaptive proposal. The proposal is parameterized
by a graph neural network, which is trained on MCMC samples. We follow most of the
settings in the original paper. The message passing network has six layers, where the node
embedding size is set to 64. Adam is used as an optimizer with 3e-4 initial learning rate. To
generate a basic unit, top-1000 frequent fragments are drawn from ZINC database (Sterling|
by enumerating single bonds to break. During the annealing process, the

temperature 7' = 0.95%/5) would gradually decrease to 0.

ChemBO (chemical Bayesian optimization) (Korovina et al.} 2020) leverage Bayesian
optimization. It also explores the synthesis graph in a sample-efficient way and produces
synthesizable candidates. Following the default setting in the original paper, the number
of steps of aquisition optimization is set to 20. The initial pool size is set to 20, while the
maximal pool size is set to 1000. Regarding the kernel, we leveraged the kernel proposed
in ChemBO, which is the optimal-transport-based distance and kernel that accounts for
graphical information explicitly. We did extra experiments to validate that it empirically
outperforms the Tanimoto similarity kernel based on molecular fingerprint. As for the
acquisition, we followed the original paper and adopt the ensemble method using the EI
(Expected Improvement), UCB (Upper Confidence Bound), and TTEI (Top-Two Expected
Improvement) acquisitions, we conducted extra experiment and found it empirically outper-
forms a single acquisition in our scenario, which is consistent to the ChemBO paper. GPs
do not scale well with big data. To address this issue, we use Subset of DatdChalupka et a |
(2013), which uses a subset of all the data points to reduce the size of the kernel matrix and
learn the surrogate model efficiently. Following [Chalupka et al.[(2013)), we selected a subset
of data points using k-means clustering based on molecular fingerprint, and sampled data
points from each cluster. The size of the subset is set to m = 1000. The computationally
complexity is O(m?).

BOSS (Bayesian Optimization over String Space) builds a Gaussian
process surrogate model based on Sub-sequence String Kernel (SSK)}| which naturally sup-
ports SMILES strings with variable length, and maximizing acquisition function efficiently

’based on SMILES string

17

Under review as a conference paper at ICLR 2022

for spaces with syntactical constraints. Following their default setting, we only keep the
SMILES string whose length is less than 50 (except LogP task). At each BO step, BOSS
samples 100 candidates, querying those that maximize the acquisition function predicted
by SSK. It utilized genetic algorithm (GA) to optimize acquisition function efficiently
under syntactical constraints. We empirically compared GA based acquisition optimizer
with random search based acquisition optimizer (provided in the BOSS code repository) to
validate its superiority. GA requires intensive oracle calls and is leveraged in inner-loop
maximization in BOSS, so we do not spend too many computational resources in a single
GA step. The population size is set to 100, the generation (evolution) number is set to
100. These setups are nearly optimal and tuning these hyperparameters didn’t improve the
performance.

e DST-rand a DST variant, which randomly selects basic operations (EXPAND, REPLACE,
SHRINK) and substructure from vocabulary). During each iteration, it randomly selects
basic operations (EXPAND, SHRINK, REPLACE) and substructure from vocabulary to
generate at most 1 molecules, select at most top- K molecules with highest GNN surrogate
predictions. Then we evaluate the Ko candidates with the real oracle and select C' molecules
as starting points for the next iteration. For fair comparison, C'is set to 10, same as DST. In
order to get the near-optimal setup, we try different combinations of (K7, K3), and finally
find that K; = 1000, Ky = 100 achieves the best performance in terms of average of
top-100 molecules’ score. Other setups of DST-rand follow DST.

C IMPLEMENTATION DETAILS

C.1 DATASET

We use ZINC 250K dataset, which contains around 250K druglike molecules extracted from the ZINC
database (Sterling & Irwinl, [2015)). We first clean the data by removing the molecules containing
out-of-vocabulary substructure and having 195K molecules left.

Vocabulary S: set of substructure. The substructure is the basic building block in our method,
including frequent atoms and rings. On the other hand, atom-wise molecule generation is difficult
due to the existence of rings. To select the substructure set S, we break all the ZINC molecules
into substructures (including single rings and single atoms), count their frequencies, and include the
substructures whose frequencies are higher than 1000 into vocabulary set S.

The final vocabulary contains 82 substructures, including the frequent atoms like carbon atom,
oxygen atom, nitrogen atom, and frequent rings like benzene ring. The vocabulary set covers over
80% molecules in ZINC databases. After removing the molecules that contain out-of-vocabulary
substructure, we use a random subset of the remaining molecules to train the GNNs, depending on
the oracle budget.

The vocabulary size is big enough for this proof-of-concept study. Other works also need to constrain
their design space, such as MolDQN only allowing three types of atoms in a generation: “C”, “N”,
“O” (Zhou et all, 2019); JTVAE 2018)), as well as RationaleRL only
using frequent substructures similar to our setting. On the other hand, we may not want infrequent
atoms or substructures because rare substructures in ZINC may have some undesired properties such
as toxicity, may not be stable, may not be easily synthesizable (Gao & Coleyl, [2020). Also, rare
substructures may impede the learning of oracle GNN. Note that users can enlarge the substructure
space when they apply our method. We show all the 82 substructures in S in Figure[6]

C.2 SOFTWARE/HARDWARE CONFIGURATION

We implemented DST using Pytorch 1.7.0, Python 3.7, RDKit v2020.09.1.0 on an Intel Xeon E5-2690
machine with 256G RAM and 8 NVIDIA Pascal Titan X GPUs.

C.3 TARGET MOLECULAR PROPERTIES

Target molecular properties include

18

Under review as a conference paper at ICLR 2022

* QED represents a quantitative estimate of drug-likeness. QED score ranges from 0 to 1. It
can be evaluated by the RDKit package (https://www.rdkit.org/).

* LogP represents octanol-water partition coefficient, measuring molecules’ solubility. LogP
score ranges from —oo to 4-co. Thus, when optimizing LogP individually, we use the GNN
model to do regression.

* SA (Synthetic Accessibility) score measures how hard it is to synthesize a given molecule,
based on a combination of the molecule’s fragments contributions (Ertl & Schuffenhauer,
2009). It is evaluated via RDKit (Landrum et al., 2006). The raw SA score ranges from 1 to
10. A higher SA score means the molecule is hard to be synthesized and is not desirable.
In the multiple-objective optimization, we normalize the SA score to [0, 1] so that a higher
normalized SA value mean easy to synthesize. Following (Gao & Coleyl 2020), we use the
normalize function for raw SA score,

1, SA(X) < p
2
exp (— CAZZTY - SA(X) > g,

202

normalized-SA(X) = {

where p = 2.230044, 0 = 0.6526308.

* JNK3 (c-Jun N-terminal Kinases-3) belongs to the mitogen-activated protein kinase family
and are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock,
and osmotic shock. Similar to GSK33, JNK3 is also evaluated by Well—trainecﬂ random
forest classifiers using ECFP6 fingerprints using ExCAPE-DB dataset (Li et al., [2018; Jin
et al.,|2020), and the range is also [0, 1].

* GSK33 (Glycogen synthase kinase 3 beta) is an enzyme that in humans is encoded by
the GSK33 gene. Abnormal regulation and expression of GSK33 is associated with an
increased susceptibility towards bipolar disorder. It is evaluated by well—trainedﬂ random
forest classifiers using ECFP6 fingerprints using EXCAPE-DB dataset (L1 et al., [2018}; Jin
et al.,[2020). GSK3/3 score of a molecule ranges from O to 1.

For QED, LogP, normalized SA, JNK3, and GSK303, higher scores are more desirable under our
experimental setting.

C.4 EVALUATION METRICS
We leverage the following evaluation metrics to measure the optimization performance:

* Novelty is the fraction of the generated molecules that do not appear in the training set.

* Diversity of generated molecules is defined as the average pairwise Tanimoto distance
between the Morgan fingerprints (You et al.,2018; Jin et al., [2020; |Xie et al., [2021]).

1

diversity = 1 — —————
121121 = 1)

sim(Z1, Za), (13)
Zl,ZQGZ,Zl#ZQ

where Z is the set of generated molecules. sim(Z7, Z5) is the Tanimoto similarity between
molecule Z; and Z5.

* (Tanimoto) Similarity measures the similarity between the input molecule and generated
molecules. It is defined as

biby
sim(X,Y) = — X~
[bx||2[by |2
b x is the binary Morgan fingerprint vector for the molecule X . In this paper, it is a 2048-bit
binary vector.

* SR (Success Rate) is the percentage of the generated molecules that satisfy the property
constraint measured by objective f defined in Equation (I)). For single-objective de novo
molecular generation, the objective f is the property score, the constraints for JNK3,

3The test AUROC score is 0.86 (Jin et al., 2020).
“The test AUROC score is also 0.86 (Jin et al.,|2020).

19

https://www.rdkit.org/

Under review as a conference paper at ICLR 2022

GSK30 and LogP are INK3> 0.5, GSK33> 0.5 and LogP> 5.0 respectively. For multi-
objective de novo molecular generation, the objective f is the average of all the normalized
target property scores. Concretely, when optimizing “JNK3+GSK33”, both JNK3 and
GSK30 ranges from O to 1, f is average of INK3 and GSK3/3 scores; when optimizing
“QED+SA+INK3+GSK33”, we first normalized SA to 0 to 1. f is average of QED,
normalized SA, JNK3 and GSK33 scores. The constraint is the f score is greater than 0.4.

* # of oracle calls during the generation process. DST needs to call oracle in labeling data for
GNN and DST based de novo generation, thus we show the costs for both steps.

* chemical validities. As we only enumerate valid chemical structures during the recovery
from scaffolding trees (Section[C.3)), the chemical validities of the molecules produced by
DST are always 100%.

o omFE @ hOQQ DQBr }
SO DQEHOLOTDD OO

o Q@””/}”DQUQ I
OODOOODNT \>L\>OQ©OQ<}M
OIS O0OGDODOO
0O

Figure 6: All the substructures in the vocabulary set S, drawn from ZINC 250K database (Sterling &
Irwinl 20135)). It includes atoms and single rings appearing more than 1000 times in the ZINC250K
database.

C.5 ASSEMBLING MOLECULE FROM SCAFFOLDING TREE

Each scaffolding tree corresponds to multiple molecules due to rings’ multiple combination ways. For
each scaffolding tree, we enumerate all the possible molecules following Jin et al.|(2018) for further
selection. We provide two examples in Figure[7to illustrate it. Two examples are related to ring-atom
combination and ring-ring combination, respectively. For ring-ring combination, our current setting
does not support the spiro compounds (contains rings sharing one atom but no bonds) or phenalene-
like compounds (contains three rings sharing one atom, and each two of them sharing a bond). These
two cases are relatively rare chemical structures in the context of drug discovery (Supsana et al.|
2005). As we only enumerate valid chemical structures during the recovery from scaffolding trees,
the chemical validities are always 100%.

C.6 DETAILS ON GNN LEARNING AND DST OPTIMIZATION

Both the size of substructure embedding and hidden size of GCN (GNN) in Eq. (6) are d = 100. The
depth of GNN L is 3. When training GNN, the training epoch number is 5, and we evaluate the loss
function on the validation set every 20K data passes. When the validation loss would not decrease,
we terminate the training process. When optimizing “JNK3”, “GSK33”, “QED”, “JNK3+GSK33”
and “QED+SA+JNK3+GSK33”, we use binary cross entropy as loss criterion. When optimizing
“LogP”, since LogP ranges from —oo to +o00, we leverage GNN to conduct regression tasks and use
mean square error (MSE) as loss criteria L. In the de novo generation, in each generation, we keep
C = 10 molecules for the next iteration. In most cases in experiment, the size of the neighborhood
set (Definition. [T0) is less than 100. We use Adam optimizer with le-3 learning rate in training and
inference procedure, optimizing the GNN and differentiable scaffolding tree, respectively. When
optimizing DST (Equation[I0), our method processes one DST at a time, we conduct 1000 Adam steps

20

Under review as a conference paper at ICLR 2022

(a) Ring-atom connection. When connecting atom and ring in a molecule, an atom can be
connected to any possible atoms in the ring. In the example, there are 4 possible ways to add
a Chlorine atom (“Cl”) as an expansion node to the target ring, which is a leaf node in the
scaffolding tree.

O e | Qé?oﬁ@ @g8glevery %@

(b) Ring-ring connection. When connecting ring and ring, there are two general ways, (1) one is to use a
bond (single, double, or triple) to connect the atoms in the two rings. (2) another is two rings share two
atoms and one bond. In the example, there are 14 possible ways to add a Cyclohexane ring (SMILES is
“C1CCCCC1”) and connect it to the target ring, which is a leaf node in the scaffolding tree.

Figure 7: Assemble examples.

in every iteration, which is sufficient to converge in almost all the cases. As a complete generation
algorithm, we optimize a batch parallelly and select candidates based on DPP. When we use up oracle
budgets, we stop it. All DST results in the tables takes at most 7" = 50 iterations.

C.7 RESULTS OF DIFFERENT RANDOM SEEDS

In this section, we present the empirical results that use different random seeds for multiple runs. In
our pipeline, the random error comes from in two steps: (1) Training oracle GNN: data selection/split,
training process including data shuffle and GNN’s parameter initialization. (2) Inference (Optimizing
DST): before optimizing DST, we initialize the learnable parameter randomly, including N, w, A,
which also brings randomness. To measure the robustness of the proposed method, we use 5 different
random seeds for the whole pipeline and compare the difference of 5 independent trials. The results
are reported in Table[d] We find that almost all the metrics would not changes significantly among
various trials, validating the robustness of the proposed method.

Table 4: Results of 5 independent trials using different random seeds. For novelty, diversity and SR
(success rate), we report the average value of 5 runs and their standard deviation.

Tasks Novelty T Diversity T SRT # Oracles)

JNK3 98.1%40.3% 0.72240.032 92.8%+0.5% 10K+5K
GSK38 98.6%40.5% 0.73840.047 91.8%+0.3% 10K+5K

LogP 100.0%+0.0% 0.71640.032 100.0%40.0% 10K+5K

JNK3+GSK38 98.6%+1.1% 0.72140.021 91.3%+0.6% 10K+5K
QED+SA+INK3+GSK33 99.2%40.3% 0.73140.029 79.4%+1.2% 20K+5K

21

Under review as a conference paper at ICLR 2022

C.8 COMPLEXITY ANALYSIS

We did computational analysis in terms of oracle calls and computational complexity. (1) oracle
calls. DST requires O(T'M) oracle calls, where T is the number of iterations (Alg . M is the
number of generated molecules (Equation. @) we have M < K J, K is the number of nodes in the
scaffolding tree, for small molecule, K is very small. J is the number of enumerated candidates in
each node. As shown in Figure[7] J is also upper-bounded (J < 4 + 14 for the example in Figure[7).
(2) computational complexity. The computational complexity is O(7'M C?) (the main bottleneck is
DPP method, Algorithm |Z|), where the size of selected molecules C' = 10 for all the tasks (Section@
&[C.6). For all the tasks in Table[2]and[I} DST can be finished in 12 hours on an Intel Xeon E5-2690
562 machine with 256G RAM and 8 NVIDIA Pascal Titan X GPUs. The complexity and runtime are
acceptable for molecule optimization.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present the additional empirical results, including additional results on de novo
generation, ablation study, chemical space visualization, interpretability analysis (case study).

D.1 ADDITIONAL RESULTS OF de novo MOLECULAR GENERATION

In this section, we present some additional results of de novo molecular generation for completeness.

First, we present the optimization curve for all the optimization tasks in Figure[8] We observe that our
method is able to reach a high objective value efficiently within 10 iterations in all the optimization
tasks. Worth mentioning that when optimizing LogP, the model successfully learned to add a six-
member ring each step, as shown in Figure[J] and the objective (F') value grows linearly as a function
of iteration number, which is theoretically the optimal strategy under our setting. Then, in Figure [T0}
we show the molecules with the highest objective (F') scores generated by the proposed method
on optimizing QED and “QED+SA+JNK3+GSK33”. Then we compare our method with baseline
methods on 3 molecules with the highest objective (F) scores in Table [5|and [6] for single-objective
and multi-objective generation, respectively.

g

) [} [}
3 w0 Sos Sos
g g g
] 9} [}
>, > o6 > o6
g 5 i
- Toe Toe
@ o [
g g g
< o < 00 < o
3 10 20 30 © EY 3 0 20 EY) E) o s 10 s 20 P 30
iteration iteration iteration
(a) LogP (b) INK3 (c) GSK383
o o % w -
3> 09 3> s 3> 075
[4 o S o
O os 06 >
> > > oss
k9] i k9]
o, D . 0 0%
8 8 - 8 oss
v o * [T,
g 2. g
Los < Z oa
00
o 1 2 3 4 5 6 71 8 o 5 D 15 20 25 2] 0 20 E) B E)
iteration iteration iteration
(d) QED (e) INK3+GSK33 (f) QED+SA+JNK3+GSK33

Figure 8: The optimization curves in de novo optimization experiments. The objective value (F') is a
function of iterations.

22

Under review as a conference paper at ICLR 2022

- — O — OO —
LogP=-0.46186422101225055 LogP=2.487272679433737 LogP=2.601383472314158

OO0 - -O-0-0-0 - -O-O00<0 —
LogP=3374412916593925 LogP=4.405166947468169 LogP=5.393479466337398

“O-O0000 — YOOO0000 — -OO0O000000

LogP=6.425859102390943 LogP=7.495015157118239 LogP=8536117711107794

Figure 9: The first eight steps in the de novo optimization procedure of LogP. The model successfully
learned to add a six-member ring each step.

00 dao guyo o7

0.60 2.25 0.77 1.67 0.72 2.56 0.75 2.50 0.68 2.01
0.93 0.83 0.72 0.85 0.81 0.83 0.78 0.79 0.69 0.83

(a) Molecules with highest average QED, normalized-SA, JNK3 and GSK323 scores, four scores represent

QED, raw SA, JNK3, and GSK323 scores, respectively.
Wiy . QEI/ g A
[! d HN, = - j = =
g q NS
& Ing) i

0.947 0.946 " 0.946 0.946 0.946
(b) Molecules with highest QED.

Figure 10: Sampled molecules with the highest scores.

Table 5: Highest scores of generated molecules on single-objective de novo molecular generation.
We present the result of DST in the first 50 iterations, but please note the setting of generation varies
among the models, and a completely fair comparison is impossible.

INK3 GSK33 LogP

Method st 2nd 3rd | Ist 2nd 3rd | st md 3
GCPN 057 056 054 | 057 056 0356 | 80 79 78
MolDQN 0.64 063 063 | 054 053 053 | 118 118 118
GA+D 081 080 080 | 079 079 078 | 205 204 202
RationaleRL 090 090 090 | 093 092 092 | - - -
MARS 092 091 090 | 095 093 092 | 450 443 438
DST 097 097 097 | 095 095 095 | 4901 491 49.1

D.2 De novo MOLECULAR OPTIMIZATION ON QED (POTENTIAL LIMITATION OF DST)

As we have touched in Section[4.2] the optimization on QED is not as satisfactory as other oracles.
We compare the performance of various methods on single-objective de novo molecular generation
for optimizing QED score and show the result in Table [/| Additional baseline methods include
JTVAE (junction tree variational autoencoder) (Jin et al.| 2018) and GraphAF (Graph Flow-based
Autoregressive Model) (Shi et al.,2020). The main reason behind this result is that our GNN predicts
the target property based on a scaffolding tree instead of a molecular graph, as shown in Equation (7).
A scaffolding tree omits rings’ assembling information, as shown in Figure J] Compared with
other properties like LogP, INK3, GSK3(3, drug-likeness is more sensitive to zow substructures
connect (Bickerton et al.|[2012). This behavior impedes the training of GNN and leads to the failure

23

Under review as a conference paper at ICLR 2022

Table 6: Highest scores of generated molecules on multi-objective de novo molecular generation.
The score is the average value of all objectives.

JNK3+GSK33 QED+SA+JNK3+GSK33
Method
top-1 top-2 top-3 top-1 top-2 top-3
GCPN 0.31 0.31 0.30 0.57 0.56 0.56
MolDQN 0.46 0.45 0.45 0.45 0.45 0.44
GA+D 0.68 0.68 0.67 0.71 0.70 0.70
RationaleRL 0.81 0.81 0.81 0.76 0.76 0.75
MARS 0.78 0.78 0.77 0.72 0.72 0.72
DST 0.89 0.89 0.89 0.83 0.83 0.83

of optimization. We report the learning curve in Figure where we plot the normalized loss on
the validation set as a function of epoch numbers when learning GNN. For fairness of comparison,
validation loss is normalized by dividing the validation loss at scratch (i.e., 0-th epoch) so that all the
validation losses are between 0 and 1. For most of the target properties, the normalized loss value on
the validation set would decrease significantly, and GNN can learn these properties well, except QED.
It verifies the failure of training the GNN on optimizing QED. A differentiable molecular graph at
atom-wise resolution may potentially solve this problem.

Table 7: Comparison of different methods on optimizing QED for single-objective de novo molecular
generation. The results for baseline methods are copied from You et al.|(2018);|Zhou et al.| (2019);
Shi et al.| (2020); Xie et al.[(2021). The results of JTVAE are copies from |You et al.[(2018)).

Method top-1 top-2 top-3
JTVAE (Jin et al.|2018) 0.925 0911 0910
GCPN (You et al.||2018) 0948 0.947 0.946

MoIDQN (Zhou et al.[[2019) 0.948 0.948 0.948
GraphAF (Shi et al.|[2020) 0.948 0.948 0.947

MARS (Xie et al.]202T} 0.948 0.948 0.948

DST 0.947 0946 0.946
n 1.01
%)
o
S 0.8]
2
B —— QED
S 0.6 LogP
> —— JNK3
©

—— GSK3B
©
% 0.2
2 [
0 2 a 6 8
epoch

Figure 11: Normalized validation loss-epoch learning curves. For fairness of comparison, validation
loss is normalized by dividing the validation loss at scratch (i.e., 0-th epoch) so that all the validation
losses are between 0 and 1. For most of the target properties, the normalized loss value on the
validation set would decrease significantly, and GNN can learn these properties well, except QED.
The key reason for the failure of GNN on optimizing QED is the limitation of the expressive
power of scaffolding tree itself. QED is a property that is highly dependent on sow substructures
connect (Bickerton et al., [2012)), while our scaffolding tree currently ignores that information. See
Section [D.2]for more details and analysis.

D.3 RESULTS ANALYSIS FOR DISTRIBUTION LEARNING METHODS (LIGGPT)

As showed in Tableg]andm distribution learning methods (LigGPT) (Bagal et al.,[2021)) have much
weaker optimization ability. DST and all the other baselines fall into the category of goal-directed

24

Under review as a conference paper at ICLR 2022

molecule generation, a.k.a., molecule optimization, which generates molecules with high scores for a
given oracle. In contrast, LigGPT belongs to distribution learning (a different category of method),
which learns the distribution of the training set. We refer toBrown et al.[(2019) for more description
of two categories of methods. Consequently, conditioned generation learns from the training set, is
unable to generate molecules with property largely beyond the training set distribution and can not
optimize a property directly, even though they claim to be able to solve the same problem. Problem
formulation of distribution learning methods leads to an inability to generate molecules with property
largely beyond the training set distribution, which means they are much weaker in optimization.

D.4 ABLATION STUDY

As described in Section [3.3] during molecule sampling, we sample the new molecule from the
differentiable scaffolding tree (Equation[TT)). To verify the effectiveness of our strategy, we compare
with a random-walk sampler, where the topological edition (i.e., expand, shrink or unchange) and
substructure are both selected randomly. We consider the following variants:

* “DST + DPP”. Both topology and substructure to fill are sampled from the optimized
differentiable scaffolding tree, as shown in Equation (TT)). This is what we use in this paper.

* “random + DPP”. Changing topology randomly, that is, at each leaf node, “expand”, “shrink”
and “unchange” probabilities are fixed to 0.5,0.1,0.4. Substructure selection is sampled
from the substructures’ distribution in the optimized differentiable scaffolding tree. Then it
uses DPP (Section to select diverse and desirable molecules for the next iteration.

* “DST + top-K”. Same as “DST + DPP”, it uses DST to sample new molecules. The
difference is when selecting molecules for the next iteration, it selects the top-/ molecules
with highest f score. It is equivalent to A — 400 in Equation (12)).

We show the results in Figure[I2] We find that both DST sampling and DPP-based diversification
play a critical role in performance. We check the results for “DST + top-K”, during some period, the
objective does not grow, we find it is trapped into local minimum, impeding its performance, especially
convergence efficiency. “random+DPP” exhibits the random-walk behaviour and it would not reach
satisfactory performance. When optimizing LogP, “DST +DPP” and “DST +top-K" achieved similar
performance, because logP score will prefer larger molecules with more carbon atoms, which is less
sensitive to the diversity and relatively easier to optimize. Overall, “DST +DPP” is the best strategy
compared with other variants.

—— DST+DPP miaee 25| —— DST+DPP

0 08 o 8] — DsT+top-k / o | — DST+topK
2 2 —— random+DPP 2201 — random+DPP
Sos6 go6 g
w w w15
v [4
2oa 2 0.4 2.
o o 3
302 —— DST+DPP =02 2 5
° —— DST+top-K ° o

0.0 —— random+DPP 0.0 0

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
iterations # iterations # iterations
(a) INK3 (b) GSK3B (¢) LogP

Figure 12: Ablation study. Objective value (') as a function of iterations. See Sectionfor more
details.

D.5 CHEMICAL SPACE VISUALIZATION

We use principle component analysis (PCA) to visualize the distribution of explored chemical struc-
tures in optimizing “JNK3 & GSK33”. Specifically, we fit a two-dimensional principal component
analysis (PCA) (Bro & Smilde, 2014} for 2048-bit Morgan fingerprint vectors of 20K ZINC molecules,
which are randomly selected from ZINC database (Sterling & Irwinl 2015). Then we use the PCA to
project the fingerprint of the generated molecule from various generations into a two-dimensional
vector to observe their trajectories. The results are reported in Figure where the grey points

25

Under review as a conference paper at ICLR 2022

represent the two-dimensional vector of ZINC molecules. We find that our method explores different
parts of the 2D projection of the chemical space and covers a similar chemical space as the ZINC
database after 20 to 30 iterations.

(c) After 10 iterations

(d) After 20 iterations (e) After 30 iterations

Figure 13: Visualization of chemical space covered during optimization. We used PCA to reduce the
dimension of Morgan fingerprint. The gray points are the ZINC 250k data set. while colored points
are generated molecules after corresponding iterations.

D.6 ADDITIONAL INTERPRETABILITY ANALYSIS

leaf weight 0.99

O 000

expand weight l
0.99

0.42 1 0.41 0.10 0.02

OIRI0 O
Figure 14: Interpretability analysis when optimizing LogP.

We provide an interpretability example in Figure[T4] At the leaf node (yellow), from the optimized
differentiable scaffolding tree, we find that the leaf weight and expand weight are both 0.99. Thus we
decide to EXPAND, the six-member ring is selected and filled in the expansion node (blue). This is
consistent with our intuition that logP score will prefer larger molecules with more carbon atoms.

E THEORETICAL ANALYSIS

In this section, we present some theoretical results of the proposed method. First, in Section [E-T] we
conduct a convergence analysis of DST under certain mild assumptions.

26

Under review as a conference paper at ICLR 2022

E.1 CONVERGENCE ANALYSIS

In this section, we discuss the theoretical properties of DST in the context of de novo molecule design
(learning from scratch). We restrict our attention to a special variant of DST, named DST-greedy: at
the ¢-th iteration, given one scaffolding tree Z(*), DST-greedy pick up only one molecule with highest
objective value from Z(*)’s neighborhood set N'(Z(®)), i.e., Z(t+1) = arg MAX 7 nr(z0) F(Z®)is
exactly solved. We theoretically guarantee the quality of the solution produced by DST-greedy. First,
we make some assumptions and explain why these assumptions hold.

Assumption 1 (Molecule Size Bound). The sizes (i.e., number of substructures) of all the scaffolding
trees generated by DST are bound by N, and Nyay.

We focus on small molecule optimization; the target molecular properties would decrease significantly
when the molecule size is too large, e.g., QED (drug-likeness) (Bickerton et al.,[2012). Thus it is
reasonable to bound the size of the scaffolding tree. In addition, we use submodularity and smoothness
to characterize the geometry of the objective landscape.

Assumption 2 (Submodularity and Smoothness). Suppose X1, Xo, X3 are generated successively
by DST-greedy via growing (i.e., EXPAND) a substructure on the corresponding scaffolding tree. We
assume that the objective gain (i.e., AF) brought by adding a single substructure would not increase
as the molecule grows (EXPAND,).

F(X3)— F(Xy) < F(X3) — F(X1), (submodularity) (14)

where Xo = EXPAND(X1, s1), X3 = EXPAND(X>, s2), $1, S are substructures to add. Submodu-
larity plays the role of concavity/convexity in the discrete regime. On the other hand, we specify the
smoothness of the objective function F' by assuming

F(X3) = F(X3) > v(F(X2) — F(X1)), 0<~v <1 (smoothness)

holds for the X1, Xo, X3 described above, whose sizes are smaller than N,;,.

Then we theoretically guarantee the quality of the solution under these assumptions.

Theorem 1. Suppose Assumption[l|and 2 hold; we have the following relative improvement bound
with the optimum

1— zmein

(1 - ’Y)Nmax

where Z. is the local optimum found by DST-greedy, X, is the ideal optimal molecule, X is
an empty molecule, starting point of de novo molecule design. In molecule generation setting, a
molecule is a local optimum when its objective value is maximal within its neighbor molecule set, i.e.,

F(Z.) > F(Z) forN Z € N(Z,).

F(Z.) — F(Xo) > (F(X.) — F(Xo)), (15)

The proof is given in Section

Proof Sketch. We first show that DST-greedy can converge to local optimum within a finite step in
Lemmal[l} Then we decompose the successive generation path and leverage the geometric information
of the objective landscape to analyze the quality of the local optimum.

Lemma 1 (Local optimum). DST-greedy would converge to local optimum within finite steps.

The proof is given in Section [G.3]

F EXTENSION OF MOLECULE DIVERSIFICATION

In the current iteration, we have generated M molecules (X1, -, X)) and need to select C'
molecules for the next iteration. We expect these molecules to have desirable chemical properties
(high F' score) and simultaneously maintain higher structural diversity.

To quantify diversity, we resort to the determinantal point process (DPP) (Kulesza & Taskar, 2012).
DPP models the repulsive correlation between data points (Kulesza & Taskar, 2012)) and has been
successfully applied to many applications such as text summarization (Cho et al.| 2019), mini-batch

27

Under review as a conference paper at ICLR 2022

sampling (Zhang et al.} 2017)), and recommendation system (Chen et al.,|2018)). Generally, we have
M data points, whose indexes are {1,2,--- ,M}, S € Rf *M denotes the similarity kernel matrix
between these data points, (7, j)-th element of S measures the Tanimoto similarity between i-th and
j-th molecules. We want to sample a subset (denoted R) of M data, R is a subset of {1,2,--- , M}
with fixed size C), it assigns the probability

P(R) o det(Sg), where R C {1,2,---, M}, |R| = C, (16)

where Sz € RE*C is the sub-matrix of S, det(Sr) is the determinant of the matrix Sg. For
instance, if we want to sample a subset of size 2, i.e., R = {4, j}, then we have P(R) det(Sg) =
818 —8:;8ji = 1—8;;5;;, more similarity between i-th and j-th data points lower the probability
of their co-occurrence. DPP thus naturally diversifies the selected subset. DPP can be calculated
efficiently using the following method.

Definition 11 (DPP-greedy (Chen et al., 2018)). For any symmetric positive semidefinite (PSD)
matrix S € RfXM and fixing the size of R to C, Problem (16) can be solved in a greedy manner by
DPP-greedy in polynomial time O(C*M). It is denoted R = DPP-greedy({X1, - , Xar}, C).

We describe the DPP-greedy algorithm in Algorithm [2]for completeness. Each iteration selects one
data sample that maximizes the current objective, as described in Step 5 in Algorithm 2]

Algorithm 2 DPP-greedy (Chen et al.,[2018)

1: Input: symmetric positive semi-definite matrix S € RM*M number of selected data C' € N,
C <M.
Output: R C {1,2,--- ,M},|R| =C.
w=1{1,2,---,M}.
fori=1,2,---,Cdo

J = argmax logdet(Sru(x})-

kew

R=RU{j}.

WwW=w - {j}.
8: end for

A

As mentioned, our whole target is to select the molecules with desirable properties while maintaining
the diversity between molecules. The objective is formulated as

arg max Lppp(R) = A Z v +log P(Swr) = logdet(Vz) + log det(Sx), (17)
RC{1,2,- ,M},|R|=C teR

where the hyperparamter A > 0 balances the two terms, the diagonal matrix V' is
V = diag([exp()\vl), cee ,exp()\vM)]), where v1 = F(X,), - ,om = F(X), (18)

where v; is the F'-score of the i-th molecule (Eq.[I)), Vi is a sub-matrix of V indexed by R. For any
square matrix M7, M of the same shape, we have

det(MlMg) = det(M1> det(Mg) = det(Mg) det(M1>,

we further transform Lppp(R) as below to construct symmetric matrix,
Lopp(R) = log det(Vi) + log det(Sg) = log det(Vr Sg) = log det (V,,; SpVi2) . (19

where V% = diag [exp(%34), -+, exp(25+
of the DPP-greedy method.

RMXM

)]) Then we present the following lemma for the usage

Lemma 2. Suppose S € is the (Tanimoto) similarity kernal matrix of the M molecules,
T

ie, Sij = %, b, is the binary fingerprint vector for the i-th molecule, V is diagonal
T J

matrix defined in Eq. (18)), then we have (1) ViSV7is positive semidefinite; (2) VR% SRVR% =
(ViSV2)g.

28

Under review as a conference paper at ICLR 2022

The proof is given in Section [G.1]
Thus, Problem can be transformed as

arg max Lppp(R) = log det ((V%SV%)R), (20)
RC{1,2, ,M},|R|=C

which means we can use DPP-greedy (Def. [IT)) to solve Problem (I9) and obtain the optimal R.

Discussion. In Eq. (I7), we have two terms to specify the constraints on the molecular property and
structural diversity, respectively. When we only consider the first term (A, v4), the selection
strategy is to select C' molecules with the highest £ score for the next iteration, same as conventional
evolutionary learning in|[Brown et al.|(2019); Jensen| (2019)); Nigam et al.| (2020).

On the other hand, if we only consider the second term in Eq. (I7), we show the
effect of selection strategies under certain approximations. Suppose we have C
molecules Xi, Xo,---, X with high diversity among them, then we leverage DST
to optimize these C molecules respectively, and obtain C' clusters of new molecules,
. 5 5 iid. Sk T ~ 5 5 i.id.
ie, Zi,-,Zu, '~ DMG-Sampler(Niy), Alx,), Wiy,)i i 201, Zale ™

DMG—Sampler(NE‘Xc),A’('FXC),VTIE*XC)). Then we present the following lemma to show that

when only considering diversity, under certain assumptions, Problem reduces to multiple chain
MCMC methods.

In Eq. (T7), A is a key hyperparamter, a larger A corresponds to more weights on objective function
F while smaller X specifies more diversity. When A goes to infinity, i.e., only considering the first
term (A), . Uy), it is equivalent to selecting C' molecule candidates with the highest F* score for
the next iteration, same as conventional evolutionary learning in|Jensen|(2019); Nigam et al.| (2020).

On the other hand, if we only consider the second term, we show the effect of selection strategies
under certain approximations. Suppose we have C molecules X7, Xo, - - - , X with high diversity
among them, then we leverage DST to optimize these C' molecules respectively, and obtain C clusters
of new molecules, i.e.,

Zit, e, lel i DST—Sampler(lﬁZ‘Xl)7 K?Xl), VTIE‘X]));
5 5 iid. NT * N * ~ %
Zo1, s Lole ~ DST—Sampler(N(Xc), A(Xc)’w(Xc))

Then we present the following lemma to show that when only considering diversity, under certain
assumptions, Problem (T7) reduces to multiple independent Markov chains.

Lemma 3. Assume (1) the inter-cluster similarity is upper-bounded, i.e., sim(Z,, qu) < € for

any i # j; (2) the intra-cluster similarity is lower-bounded, i.e., sim(Z;,, Z;q) > 1 — €3 for any
i€{1,2,---, M} and p # q; when both €1, €5 approach to 0., the optimal solution to Problem
is

{le17 ZQ:Dzv te »ZCpc};
where p, = arg maXpF(Zcp)for c=1,---,C.

The proof is given in Section [G.2]

Remark. When the inter-cluster similarity is low enough, and intra-cluster similarity is high enough,
our molecule selection strategy reduces to multiple independent Markov chains. However, these
assumptions are usually too restrictive for small molecules.

G PROOF OF THEORETICAL RESULTS
In this Section, we provide the proof of all the theoretical results in Section [E]and [F
G.1 PROOF OF LEMMA[Z

Proof. (1) ViSVzis positive semidefinite.

29

Under review as a conference paper at ICLR 2022

First, let us prove similarity kernel matrix S € RBM*M based on molecular Tanimoto similarity is
positive semidefinite (PSD), we know that the (4, j)-th element of S measures the Tanimoto similarity
between ¢-th and j-th molecules, i.e.,

b/ b,
[[bill2[[byll2”

where b; € [0, 1]7 is the P-bit fingerprint vector for the i-th molecule (in this paper, P = 2048). S
can be decomposed as

Sij =

S=BB',
where matrix B is the stack of all the normalized (divided by l5 norm, || - ||2) fingerprint vector, as
B: bl , b2 S bP ERPX]\/I.
b2 [[b2l2 bpll2

For V x € RM | we have
x'Sx =x"B'Bx = (Bx) ' (Bx) > 0.
Thus, S is PSD.
Then, similarly, for V x € RM | we have
xTViSVix=x' (Vi) BTBVix = (BVix) (BVix) > 0.

where V2 is diagonal matrix, so Vi = (V%)T. Thus, ViSVzis symmetric and positive semidefi-
nite.

(D) VASrVE = (VESVH)x.

Without loss of generalization, we assume R = {t1,--- ,tc}, where t; < to < --- ,tc. V3 s
diagonal.
exp(25)
\ :
>\1)1,C
exp(=5<)
where
Vt;, = F(th)

1 1
is the objective function of ¢;-th molecule X,. The i, j-th element of V3 SV 7 is

(V%SRV%) — exp (%)Stitj exp (M;u) @1

j

On the other hand, the 7, j-th element of VSV 2 is exp(’\;’i)S;; exp(%). Then the 4, j-th element
of (V% SV5> is
R

AUy, Av.
o)t exp (S52). (22)

((V%SV%)R)M = exp (5

Combining Equation Z1I) and 22)), we prove V%SRV%2 = (V2S8Vi)g.

G.2 PROOF OF LEMMA[3]

Proof. We consider two cases in the solution R. (A) one molecule for each input molecule
Z1, -+, Zc. (B) other cases. Our solution belongs to Case (A).

(A) First, we prove for (A), our solution is optimal. We consider the second term in Equation (17)),
Sr is diagonal dominant. Also, a determinant function is a continuous function with regard to all

30

Under review as a conference paper at ICLR 2022

the elements. Thus, det(Sg) = Hf’;l(SR)“ goes to 1. Intuitively, all the selected molecules are
dissimilar to each other, and the diversity is maximized. On the other hand, to maximizing the first
term in Equation (I7), during each k € {1,2,--- ,C'}, we select molecule with highest £’ score from

{Zk1, cee Zklk }. That is our solution.
(B) Then we prove all the possible combinations in (B) are worse than our solution. In (B), based on
pigeonhole principle, there are at least one input molecule Z;; that corresponds to at least two selected

molecules. Without loss of generalization, we denoted them Zkl and Zkz. Since Sg is diagonal
dominant, its determinant can be decomposed as

C
det(Sr) = [[det(Sk)-
k=1

If there is at least one S), whose shape is greater than 1. Based on the definition of determinant, for
matrix A € RM*M

M
det(A) = > sen(n) [Aine (23)
ne€Perm(M) i=1
where Perm (M) is the set of all permutations of the set {1,2,--- , M}, sgn(n) denotes the signature

of 1, a value that is +1 whenever the reordering given by 7 can be achieved by successively inter-
changing two entries an even number of times, and -1 whenever it can be achieved by an odd number
of such interchanges. For exactly half of all s, sgn(n) = 1 and the other half are equal to -1. For the
matrix A whose shape is greater than 1 and all the elements are equal to 1, the determinant is equal to

ZnePerm(M) sgn(n) =0.

The determinant function is a continuous function with regard to all the elements. When e, goes to

0.4, all the elements of S approach to 1, the determinant goes to 0. Thus, det(Sx) also goes to 0.
The objective in Equation goes to negative infinity. Thus, it is worse than our solution. [

G.3 PROOF OF LEMMA[I]

Proof. For the de novo design, DST-greedy start from scratch (empty molecule). First, we show in this
setting, there is no “REPLACE” or “DELETE” by mathematical induction and contradiction. Since we
start from an empty molecule, at the 1-st step the action is “EXPAND”. Then we show the first ¢ steps
are “EXPAND”, the (-+1)-th step is still “EXPAND”. Now we have X () = EXPAND(X (=1 s, ;)
(where s;_1 is a substructure). Suppose the (¢ + 1)-th step DST’s action is “REPLACE”, e.g.,
X+ — REPLACE(X (t), s¢) (where s, is a substructure), based on definition of DST-greedy, we
have F(X**t1D) > F(X®). Since DST only REPLACE the leaf node, we find that X (*+1) and X)
are both in neighbor molecule set of X1 e, N(X(t_l)), which contradict with the fact that
X = arg MAaX x e \r(x (t-1) F(X (1), Similarly, we show that there would not exist “DELETE".

Then based on Assummption [T} we find that DST-greedy converges at most Npax steps.
O

G.4 PROOF OF THEOREMII]

Proof. Based on the Proof of Lemma|I] we find that there is only “EXPAND” action, then we are
able to decompose the generation path as follows. Starting from scratch, i.e., X, suppose the path to
optimum X, is
Xo—=+ X1 =+ Xog = = X, =X,
where each step one substructure is added. The path produced by DST-greedy is
ZQ(X()) e A R _>Zk2 = Z,.
Based on the definition of in each step only one substructure is added.

Based on Assumption E], we have Npin < k1, ko < Npax. There might be some overlap within the
first several steps, without loss of generalization, we assume Zj, = X, and Zy1 # Xy41, where k
canbe 0,1, -, k1. Based on Assumption[2] we have

F(X1) = F(Xo) > F(X2) — F(X1) > F(X3) — F(X2) > -+ > F(Xy,) — F(Xg,-1).

31

Under review as a conference paper at ICLR 2022

Then, we have
k1 (F(X1) — F(X0))
>(F(X1) = F(Xo0)) + (F(X2) = F(X1)) + (F(X3) = F(X2)) + -+ + (F(Xg,) — F(Xp,-1))
=F(Xy,) — F(Xo)
Thus, we get
F(X0) = F(X0) 2 - (F(X0,) ~ F(Xo)
> (P(X) = F(X)) = 5 (F(X.) — F(X0)).

max

(24)

Since Zy = Xy, according to the definition of greedy algorithm, we have F'(Z;) > F(X;). Based
on Assumption 2} we have

F(ZNy) = F(ZNy—1) = (F(ZNm,n 1) — F(ZNmm 2)) >V (F(ZNyu—2) = F(ZN,-3))
Z > ,mem_l(F(Zl)
Based on Assumption|[I] we have F(Z,) — F(Zy) > F() — F(Zy). Then we have

F(Z.) - F(Zo)
>F(Zn,,,) — F(Zy)

min

=(F(ZNp) = F(ZNpu—1)) + (F(ZNpy-1) = F(ZNpy—2)) + -+ (F(Z1) — F(%))

(147472 4y N) (F(24) - F(Z0)) =
L (pz) - i)
L—n
Combining Equation (24) and (23)), we have
1 — ~Nnin
F(Z) — F(Xo) > m(F(X*) — F(Xo)).
We observe that objective F”’s improvement is relatively lower bounded.
O

32

	Introduction
	Related Work
	Method
	Problem Formulation and Notations
	Training Oracle Graph Neural Network
	Optimizing Differentiable Scaffolding Tree
	Molecule Diversification

	Experiment
	Experimental Setup
	Optimization Performance
	Oracle Efficiency
	Interpretability Analysis

	Conclusion
	Complete Mathematical Notations.
	Baseline Setup
	Implementation Details
	Dataset
	Software/Hardware Configuration
	Target molecular properties
	Evaluation metrics
	Assembling Molecule from Scaffolding Tree
	Details on GNN Learning and DST Optimization
	Results of Different Random Seeds
	Complexity Analysis

	Additional Experimental Results
	Additional results of de novo molecular generation
	De novo molecular optimization on QED (potential limitation of DST)
	Results Analysis for Distribution Learning Methods (LigGPT)
	Ablation study
	Chemical space visualization
	Additional Interpretability Analysis

	Theoretical Analysis
	Convergence Analysis

	Extension of Molecule diversification
	Proof of Theoretical Results
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 1
	Proof of Theorem 1

