
Figure 2: Covariance Heatmap for US Census Experiment

(a) Covariance Matrix Heatmap (b) Prediction Error on 20-feature
Datatcenter

(c) Prediction Error on 30-feature
Datatcenter

Figure 3: Experimental results for Synthetic Experiment

A Experimental Details

A.1 Census Experimental Details

We use the 15 of the 17 features in the ACSTravelTime dataset—which include Age, Educational
Attainment, Marital Status, Sex, Disability record, Mobility status, Relationship, etc. More specifi-
cally, using the notation from [7], we choose to keep the ’AGEP’, ’SCHL’, ’MAR’, ’SEX’, ’DIS’,
’MIG’, ’RELP’, ’RAC1P’, ’PUMA’, ’CIT’, ’OCCP’, ’JWTR’, ’POWPUMA’, and ’POVPIP’ features.
We choose to exclude the State code (ST) and Employment Status of Parents (ESP) as a quick way
to bypass low-rank covariance matrix issues. We turn the columns ’MAR’, ’SEX’, ’DIS’, ’MIG’,
’RAC1P’, ’CIT’, ’JWTR’ into one-hot vectors. We make use commute time ’JWMNP’ as the target
variable. We clean our data by making sure AGEP (Age) must be greater than 16, PWGTP (Person
weight) must be greater than or equal to 1, ESR (Employment status recode) must be equal to 1
(employed), and JWMNP (Travel time to work) is greater than 0. We normalize our features and
targets by centering and dividing by the standard deviation computed from the training data. The
California datacenter has access to all of the features. The New York datacenter has access to all
categories except ’AGEP’. The Texas datacenter has access to all but ’AGEP’, ’SCHL’. The Florida
datacenter has access to all but ’AGEP’, ’SCHL’, ’MAR’, ’SEX’, and the Illinois datacenter has
access to all but ’AGEP’, ’SCHL’, ’MAR’, ’SEX’, ’DIS’, ’MIG’.

A.2 Synthetic Experiments

We start with a synthetic experiment where we generate m = 30 agents observing some subset of
d = 30 features. The code can be found at https://github.com/garyxcheng/collab. Ten of
the agents will have access to random subsets of 20 of the features. The other twenty agents will have
access to random subsets of 15 of the features. Each agent will have n samples which we vary in this
experiment. We sample the features from a N(0,⌃) distribution. We generate ⌃ by first generating d
eigenvalues by sampling d times from a uniform [0, 1] distribution. We randomly select 3 eigenvalues
to multiply by 10 and use these eigenvalues to populate the diagonal of a diagonal matrix ⇤. Then we
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use a randomly generated orthogonal matrix W to form ⌃ := W⇤WT . We plot a heatmap of ⌃ in
Figure 3(a). For each method that we test, we run 20 trials to form 95% confidence intervals.

We compare our method COLLAB, against the Imputation and RW-Imputation methods we outlined
in Section 6. After we train each of these methods using the data on our 30 agents, we measure
how well these methods perform in using the features of a test-agent with access to 20 of the total
30 features to predict outputs. We will also compare our methods against Naive-Local, where we
only use the n training datapoints of the 20 features our test-agent has access to, also described in
Section 6. We plot this result in Figure 3(b).

We also compare our methods in an alternative setting where the test-center of interest has access
to all 30 features. This setup models the setting where we are interested making the best possible
predictions from all of the features available. In this experiment, we compare against Naive-Collab,
Optimized-Naive-Collab, described in Section 6. We note that Optimized-Naive-Collab uses fresh
labeled samples without any missing features during gradient descent, so in this sense, Optimized-
Naive-Collab is more powerful than our method. We plot this result in Figure 3(c).

We see that reweighting is important; this is why COLLAB and RW-Imputation outperform the
unweighted Imputation method. Our COLLAB method improves over the Naive-Local approach,
meaning that the agents are benefiting from sharing information. COLLAB also matches the perfor-
mance of the RW-Imputation method, despite only needing to communicate the learned parameters
of each agent’s model, as opposed to all of the data on each agent. The Naive-Collab approaches
level out very quickly, likely reflecting the fact that these methods are biased, as the covariance of our
underlying data is far from isotropic.

B Proofs for Section 3

Lemma B.1. For any positive definite matrices Wi 2 Rdi⇥di , i = 1, 2, . . . ,m, the aggregated

estimator ✓̂ in Eq. (3) is consistent ✓̂
p! ✓. In addition, if Xi ⇠ N(0,⌃), we have unbiasedness

E[✓̂] = ✓ where E is over the random data Xi and noise ⇠i.

B.1 Proof of Lemma B.1

For the general case, identify for ✓̂i, we can write

✓̂i = (X>
i+Xi+)

�1Xi+yi = (X>
i+Xi+)

�1X>
i+(Xi+✓i+ +Xi�✓i� + ⇠i)

= ✓i+ + (X>
i+Xi+)

�1(X>
i+Xi�✓i� +X>

i+⇠i)

= ✓i+ +

✓
1

n
X>

i+Xi+

◆�1✓ 1

n
X>

i+Xi�✓i� +
1

n
X>

i+⇠i

◆
.

The weak law of large numbers implies that X>
i+Xi+/n

p! ⌃i+, X>
i+Xi�/n

p! ⌃i± and 1
nX

>
i+⇠i

p!
0. Then Slutsky’s theorem gives the consistency guarantee

✓̂i
d! ✓i+ + ⌃�1

i+ (⌃i±✓i� + 0) = ✓i+ + ⌃�1
i+⌃i±✓i� = Ti✓,

which is equivalent to ✓̂i
p! Ti✓. Substituting back into ✓̂, we can obtain again from continuous

mapping theorem that

✓̂ =

 
mX

i=1

T>
i WiTi

!�1 mX

i=1

T>
i Wi✓̂i

!
p!
 

mX

i=1

T>
i WiTi

!�1 mX

i=1

T>
i WiTi✓

!
= ✓.

Next, we specialize to Gaussian features and show ✓̂ is indeed unbiased in this case. By the tower
property, we can write for each local OLS estimator,

E[✓̂i] = E[(X>
i+Xi+)

�1Xi+yi] = E
⇥
E[(X>

i+Xi+)
�1X>

i+(Xi+✓i+ +Xi�✓i� + ⇠i) | Xi+]
⇤

= ✓i+ + E
⇥
(X>

i+Xi+)
�1X>

i+E[Xi� | Xi+]
⇤
✓i�.

We want to compute E[Xi� | Xi+] and the key observation is that with Gaussianity in Xi, we have

Cov(xi� � ⌃i⌥⌃
�1
i+ xi+, xi+) = Cov(xi�, xi+)� ⌃i⌥⌃

�1
i+Cov(xi+, xi+)
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= ⌃i⌥ � ⌃i⌥⌃
�1
i+ · ⌃i+ = 0,

and therefore xi+ is independent of xi� � ⌃i⌥⌃
�1
i+ xi+, which further implies that

E [Xi� | Xi+] = E
⇥
Xi+⌃

�1
i+⌃i± | Xi+

⇤
+ E

⇥
Xi� �Xi+⌃

�1
i+⌃i± | Xi+

⇤
= Xi+⌃

�1
i+⌃i±.

Substituting the above property into computing the expectation of local estimates ✓̂i, it then holds

E[✓̂i] = ✓i+ + E[(X>
i+Xi+)

�1X>
i+Xi+⌃

�1
i+⌃i±]✓i� = ✓i+ + ⌃�1

i+⌃i±✓i� = Ti✓.

We can then conclude the proof as

E[✓̂] =
 

mX

i=1

T>
i WiTi

!�1 mX

i=1

T>
i WiTi✓

!
= ✓.

B.2 Proof of Theorem 3.1

We first study the central limit theorem for local OLS estimators ✓̂i. Let the data matrices Xi+ =
[x1

i+, . . . , x
n
i+]

> and Xi� = [x1
i�, . . . , x

n
i�] and the noise vector ⇠i = [⇠1i , . . . , ⇠

n
i ]

>, we can write
out for ✓̂i that

p
n
⇣
✓̂i � Ti✓

⌘
=
�
X>

i+Xi+/n
��1

| {z }
(I)

· 1p
n
X>

i±
�
(Xi� �Xi+⌃

�1
i+⌃i±)✓i� + ⇠i

 

| {z }
(II)

. (7)

For (II), note that

1p
n
X>

i±
�
(Xi� �Xi+⌃

�1
i+⌃i±)✓i� + ⇠i

 
=

1p
n

nX

k=1

xj
i+

n
(xj

i� � ⌃i⌥⌃
�1
i+ xj

i+)
>✓i� + ⇠ji

o
.

The summands are independent mean zero random vectors, since

E
h
xj
i+

n
(xj

i� � ⌃i⌥⌃
�1
i+ xj

i+)
>✓i�

oi
=
⇣
E
h
xj
i+x

j
i�

>i
� E

h
xj
i+x

j
i+

>i
⌃�1

i+⌃i±

⌘
✓i�

=
�
⌃i± � ⌃i+⌃

�1
i+⌃i±

�
✓i� = 0,

and E[xj
i+⇠

j
i ] = E[xj

i+] · E[⇠
j
i ] = 0. Denote by zji+ := xj

i� � ⌃i⌥⌃
�1
i+ xj

i+ and we can infer from
the above display that xi+ and zi+ are uncorrelated. (II) is then asymptotically normal by CLT with
limiting covariance (suppressing the superscript j below)

Cov
�
xi+

�
(xi� � ⌃i⌥⌃

�1
i+ xi+)

>✓i� + ⇠i
 �

= E
⇥
xi+✓

>
i�zi+z

>
i+✓i�x

>
i+

⇤
+ E

⇥
⇠2i xi+x

>
i+

⇤

= E
⇥
xi+✓

>
i�zi+z

>
i+✓i�x

>
i+

⇤
+ �2⌃i+ := Qi. (8)

If Xi are Gaussian random vectors, we can additionally have independence between zi+ and xi+ by
zero correlation. Therefore

E
⇥
xi+✓

>
i�zi+z

>
i+✓i�x

>
i+

⇤
= E

⇥
xi+✓

>
i�E

⇥
zi+z

>
i+

⇤
✓i�x

>
i+

⇤

= ✓>i�Cov
�
xi� � ⌃i⌥⌃

�1
i+ xi+

�
✓i� · E

⇥
xi+x

>
i+

⇤
= ✓>i�

�
⌃i� � ⌃i⌥⌃

�1
i+⌃i±

�
✓i� · ⌃i+ = k✓i�k2�i�

⌃i+,

and Qi = (k✓i�k2�i�
+ �2)⌃i+.

We proceed to show C(W1, · · · ,Wn) ⌫ C? under general feature distribution P and W ?
i :=

⌃i+Q
�1
i ⌃i+. By Slutsky theorem, (I) converges to ⌃�1

i+ in probability and we can conclude from
Eq. (7) that

p
n
⇣
✓̂i � Ti✓

⌘
d! N

�
0,⌃�1

i+Qi⌃
�1
i+

�
. (9)

Further from ✓̂ =
�Pm

i=1 T
>
i WiTi

��1�Pm
i=1 T

>
i Wi✓̂i

�
, it follows that

p
n
⇣
✓̂i � ✓

⌘
= N(0, C(W1, · · · ,Wn))
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where

C(W1, · · · ,Wn) =

 
mX

i=1

T>
i WiTi

!�1

·
 

mX

i=1

T>
i WiW

?
i
�1WiTi

!
·
 

mX

i=1

T>
i WiTi

!�1

. (10)

With the choice of Wi = W ?
i , we achieve the claimed lower bound for asymptotic covariance as in

this case C(W1, · · · ,Wm) =
�Pm

i=1 T
>
i W ?

i Ti

��1. It thus remains to show

C(W1, · · · ,Wn) ⌫
 

mX

i=1

T>
i W ?

i Ti

!�1

= C?.

To prove the above claim, we construct auxiliary matrices Mi as

Mi =


T>
i W ?

i Ti T>
i WiTi

T>
i WiTi T>

i WiW ?
i
�1WiTi

�
=

"
T>
i W ?

i

1
2

T>
i WiW ?

i
� 1

2

#"
T>
i W ?

i

1
2

T>
i WiW ?

i
� 1

2

#>

⌫ 0.

Therefore
mX

i=1

Mi =


C?�1 Pm

i=1 T
>
i WiTiPm

i=1 T
>
i WiTi

Pm
i=1 T

>
i WiW ?

i
�1WiTi

�
⌫ 0.

As the Schur complement is also p.s.d. we can conclude with

0 � C?�1 �
 

mX

i=1

T>
i WiTi

!
·
 

mX

i=1

T>
i WiW

?
i
�1WiTi

!�1

·
 

mX

i=1

T>
i WiTi

!
= C?�1 � C(W1, · · · ,Wn)

�1.

B.3 Proof of Corollary 3.2

We prove the Corollary in the case of Ŵ g
i = ⌃̂i+/R̂i. When Ŵ g

i = ⌃i+/R̂i the proof is the same
and slightly simpler. We first prove (i) and asymptotic normality of

p
n(✓̂clb � ✓)

d! N (0, Cg). We
point out that Theorem 3.1 is not directly applicable as we use estimated weights that reuse the
training data. We claim consistency for Ŵ g

i
p! W g, and under this premise, the proof is rather

straightforward since we can write

p
n
⇣
✓̂clb � ✓

⌘
=

 
mX

i=1

T>
i Ŵ g

i Ti

!�1 mX

i=1

T>
i Ŵ g

i (✓̂i � Ti✓)

!
.

With the asymptotic normality established for
p
n(✓̂i � Ti✓) in Eq. (9), Slutsky’s theorem and

continuous mapping theorem, we can conclude that
p
n(✓̂clb � ✓)

d! N (0, Cg). Now it remains to
showing Ŵ g

i
p! W g, this is from Slutksy’s theorem applied to Ŵ g

i = ⌃̂i+/R̂i and the weak law of
large numbers as follows

⌃̂i+ =
X>

i+Xi+

n
p! ⌃i+, R̂i =

1

n
kXi+✓̂i � yk22

p! E[
��x>

i+Ti✓ � yi
��2
2
],

where

E[
��x>

i+Ti✓ � yi
��2
2
] = E[

��x>
i+⌃

�1
i+⌃i±✓i� � x>

i�✓i�
��2
2
] + �2

= k✓i�k2Cov(xi��⌃i⌥⌃�1
i+ xi+) + �2 = k✓i�k2�i�

+ �2.

We proceed to prove (ii). Applying delta method to the mapping ✓ 7! Ti✓,Rd ! Rdi on
✓̂(W ?

1 , · · · ,W ?
m) immediately yields the asymptotic normality for ✓̂clb

i . It only remains to show
TiC?T>

i � W ?
i
�1.
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Identify W ?
i
�1 � TiC?T>

i as the Schur complement for the block matrix

M =


W ?

i
�1 Ti

T>
i C?�1

�
,

and it suffices to show M ⌫ 0. This follows from C? = (
Pm

i=1 T
>
i W ?

i Ti)�1 and thus

M =


W ?

i
�1 Ti

T>
i

Pm
j=1 T

>
j W ?

j Tj

�
⌫

W ?

i
�1 Ti

T>
i T>

i W ?
i Ti

�
=

"
W ?

i
� 1

2

T>
i W ?

i

1
2

#"
W ?

i
� 1

2

T>
i W ?

i

1
2

#>

⌫ 0.

C Proofs for Section 4

C.1 Proof of Theorem 4.1

The key part of the proof is showing ✓̂imp
i = T>

i (TiT>
i )�1✓̂i. If we can have this claim established,

we can make use of the following transformation of the loss function
mX

i=1

���T>
i (TiT

>
i )�1Ti✓ � ✓̂imp

i

���
2

Wi

=
mX

i=1

���T>
i (TiT

>
i )�1Ti✓ � T>

i (TiT
>
i )�1✓̂i

���
2

Wi

=
mX

i=1

���Ti✓ � ✓̂i
���
2

(TiT>
i )�1TiWiT>

i (TiT>
i )�1

.

This reduces the optimization problem into the same one in Eq. (3) up to weight transformation, and
the same lower bound for asymptotic covariance in Theorem 3.1 applies. Hence

C imp-glb(↵1, · · · ,↵m) ⌫ C?.

By taking Wi = T>
i W ?

i Ti, we have the transformed weights satisfy

(TiT
>
i )�1TiWiT

>
i (TiT

>
i )�1 = (TiT

>
i )�1T>

i W ?
i Ti(TiT

>
i )�1 = W ?

i .

From the optimality condition in Theorem 3.1, the equality holds under this choice of Wi’s.

It then boils down to proving the claim ✓̂imp
i = T>

i (TiT>
i )�1✓̂i. We make use of the following two

properties of Moore-Penrose pseudo inverse—for A 2 Rdi⇥d of rank di,

(A>A)† = A†(A†)>, A† = A>(AA>)�1.

Substituting A = (X>
i+Xi+)

1
2Ti into the above displays, we then have

✓̂imp
i = (T>

i X>
i+Xi+Ti)

†T>
i X>

i+yi

= T>
i (X>

i+Xi+)
1
2

⇣
(X>

i+Xi+)
1
2TiT

>
i (X>

i+Xi+)
1
2

⌘�2
· (X>

i+Xi+)
1
2TiT

>
i X>

i+yi

= T>
i (X>

i+Xi+)
1
2

⇣
(X>

i+Xi+)
� 1

2 (TiT
>
i )�1(X>

i+Xi+)
� 1

2

⌘2
· (X>

i+Xi+)
1
2TiT

>
i X>

i+yi

= T>
i (TiT

>
i )�1 · (X>

i+Xi+)
�1 · (TiT

>
i )�1 · TiT

>
i X>

i+yi

= T>
i (TiT

>
i )�1 · (X>

i+Xi+)
�1X>

i+yi = T>
i (TiT

>
i )�1✓̂i.

C.2 Proof of Theorem 4.2

By a direct calculation, we have

✓̂imp-glb � ✓ =

 
mX

i=1

↵iT
>
i X>

i+Xi+Ti

!�1 mX

i=1

↵iT
>
i X>

i+yi

!
� ✓

=

 
mX

i=1

↵iT
>
i X>

i+Xi+Ti

!�1 mX

i=1

↵iT
>
i X>

i+(Xi+✓i+ +Xi�✓i� + ⇠i)

!
� ✓
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=

 
mX

i=1

↵iT
>
i X>

i+Xi+Ti

!�1 mX

i=1

↵iT
>
i X>

i+(Xi+✓i+ +Xi�✓i� �Xi+Ti✓ + ⇠i)

!

=

 
mX

i=1

↵iT
>
i X>

i+Xi+Ti

!�1 mX

i=1

↵iT
>
i X>

i+(Xi�✓i� �Xi+⌃
�1
i+⌃i±✓i� + ⇠i)

!
.

Consequently

p
n
⇣
✓̂imp-glb � ✓

⌘
=

 
mX

i=1

↵iT
>
i · 1

n
X>

i+Xi+ · Ti

!�1

·
 

mX

i=1

↵iT
>
i · 1p

n
X>

i+(Xi�✓i� �Xi+⌃
�1
i+⌃i±✓i� + ⇠i)

!

Following the same proof steps applied to Eq. (7) in Appendix B.2, we can conclude that
p
n
⇣
✓̂imp-glb � ✓

⌘

d! N

 
0,

 
mX

i=1

↵iT
>
i ⌃i+Ti

!�1 mX

i=1

↵2
iT

>
i QiTi

! 
mX

i=1

↵iT
>
i ⌃i+Ti

!�1

| {z }
:=C imp-glb(↵1,··· ,↵m)

!
,

with the same Qi’s as in Eq. (8), and with Gaussianity of Xi, we also have the explicit form
Qi = (k✓i�k2�i�

+ �2)⌃i+. Note that if ↵i = 1/(k✓i�k2�i�
+ �2),

C imp-glb(↵1, · · · ,↵m) =

 
mX

i=1

T>
i ⌃i+Ti

k✓i�k2�i�
+ �2

!�1

= Cg = C?.

Finally, to show C imp-glb(↵1, · · · ,↵m) ⌫ C?, we identify from Eq. (10) that

C imp-glb(↵1, · · · ,↵m) = C(↵1⌃1+, · · · ,↵m⌃m+) ⌫ C?,

where the last inequality follows from Theorem 3.1.

D Proofs for Section 5

We will use the van Trees inequality to prove our lower bound shown. In particular, we will use
a slight modification to Theorem 4 of [10], which we state as a corollary below here. Throughout
this section, we let  : Rd ! Rs be an absolutely continuous function. The distribution P✓ in the
family {P✓}✓2Rd is assumed to have density p✓ which satisfies

R
Rd krp✓(x)k22 dx < 1. Let P j

✓ for
j 2 [m] denote the distribution over either ✓̃nj or yj 2 Rn. Let In

i (✓) denote the Fisher Information
of P i

✓ , and let In(✓) =
Pm

i=1 In
i (✓) denote the Fisher Information of P✓. We note that P✓ is allowed

to depend on n.
Corollary D.1 (Gassiat [10]). Let  : Rd ! Rs

be an absolutely continuous function such that

r (✓) is continuous at ✓0. For all n, let all distributions P✓ in the family {P✓}✓2Rd have density p✓
which satisfies

R
Rd krp✓(x)k22 dx < 1. If limc!1 limn!1 supkhk2<1 In(✓0 + ch/

p
n)/n exists

almost surely and is positive definite, denote it by ⇢. Then for all sequences (✓̂n)n�1 of statistics

Sn : Xn ! Rs
and for all u 2 Rs

lim inf
c!1

lim inf
n!1

sup
khk<1

En
✓0+ chp

n

"⌧p
n

✓
✓̂n �  

✓
✓0 +

chp
n

◆◆
, u

�2
#
� u>r (✓0)>⇢�1r (✓0)u

Proof. The main difference between our version of the proof and the one presented in Theorem 4 of
Gassiat [10] is that we do not assume In = nI. We also select `(x) = hu, xi2 in particular. All the
steps and notation remain the same except with nI replaced with In up until equation (13), which
we define with a modified choice of �c,n

�c,n :=

 Z

Bp([0],1)
r (✓0 + ch/

p
n)q(h)dh

!> 
1

c2
Iq +

1

n

Z

Bp([0],1)
In(✓0 + ch/

p
n)q(h)dh

!�1
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⇥
 Z

Bp([0],1)
r (✓0 + ch/

p
n)q(h)dh

!
.

By definition of ⇢, with probability 1,

lim
c!1

lim
n!1

�c,n = r (✓0)>⇢�1r (✓0)

D.1 Proof of Theorem 5.1

We will apply Corollary D.1 and apply it to two different choices of  to get the full feature minimax
bound and missing feature minimax bound respectively. For notational simplicty, let P✓ denote
the distribution over {✓̃ni }i2[m] induced by ✓. P✓ is in the exponential family, so the conditions of
Corollary D.1 are satisfied.

We begin by computing the Fisher Information. Let P j
✓ for j 2 [m] denote the distribution over ✓̃nj 2

Rdj . Let In
i (✓) denote the Fisher Information of P i

✓ , and let In(✓) =
Pm

i=1 In
i denote the Fisher

Information of P✓. Let xi+ denote an arbitrary row of Xi+. Let xi� be drawn from N(µi�(xi+),�i�).
Some straightforward calculations tell us µi�(xi+) = ⌃i⌥⌃

�1
i+ xi+ and �i� = ⌃i� � ⌃i⌥⌃

�1
i+⌃i±.

From this we can deduce that ✓Ti�xi� is distributed as N(µT
i�✓i�, ✓

T
i��i�✓i�); we use µi� in

place of µi�(xi�) for simplicity. And yi is distributed as P i
✓ which is N(✓T �, ✓Ti��i�✓i� + �2)

where � := [xT
i+⇧i+, µT

i�⇧i�]T . From this we can deduce that P i
✓ is N

⇣
Ji⇧i✓,�

�1
i

b⌃�1
i+

⌘
, where

��1
i := ✓i��i�✓i�+�2

n ; let pi✓ denote its density. We know In(✓) =
Pm

i=1 In
i (✓) due to independence.

All that remains is to compute In
i (✓).

In
i (✓) =

Z
r✓ log p

i
✓(z)[r✓ log p

i
✓(z)]

T pi✓(z)dz.

We know that for some constant C,

log p✓i (z) = C +
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2
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1
2
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2
.

Taking derivaties we get that

r✓i+ log p✓i (z) = ��i
h
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�1
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i
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2
. Now we compute the expectation over outer

products:

E[r✓i+ log p✓i (z)r✓i+ log p✓i (z)
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+

✓
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+ E[b4]
◆
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T
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�1
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In
i (✓) =

Z
r✓ log p

i
✓(z)[r✓ log p

i
✓(z)]

T pi✓(z)dz

19



=
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The on(1) term is due to strong law of large numbers. From this we know that, with probability 1,

lim
c!1
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n!1
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khk2<1

In(✓0 + ch/
p
n)

n
=

mX

i=1

1

�2 + ✓Ti��✓i�
Qi =: ⇢

Applying Corollary D.1 with  Rd ! Rd as the identity function  (x) = x gives the full-feature
minimax lower bound. Applying Corollary D.1 with  Rd ! Rdi as  (x) = Tix gives the missing-
feature minimax lower bound.

D.2 Proof of Theorem 5.2

We will apply Corollary D.1 and apply it to two different choices of  to get the full feature minimax
bound and missing feature minimax bound respectively. For notational simplicity, we will use P✓ in
place of P y

✓ . P✓ is in the exponential family, so the conditions of Corollary D.1 are satisfied.

We begin by computing the Fisher Information. Let P j
✓ for j 2 [m] denote the distribution over

yj 2 Rn. Let In
i (✓) denote the Fisher Information of Pi

✓, and let In(✓) =
Pm

i=1 In
i (✓) denote the

Fisher Information of P✓.

Let x(k)
i , y(k)i be the kth sample from agent i. We will let I(k)

i (✓) be the fisher information of y(k)i .
We know that In

i (✓) =
Pn

k=1 I
(k)
i (✓) by independence. Some straightforward calculations tell us

that x(k)
i� is distributed as N(µ,�) where µ = ⌃i⌥⌃

�1
i+ x(k)

i+ and � = ⌃i� � ⌃i⌥⌃
�1
i+⌃i±. From

this we can deduce that ✓Ti�x
(k)
i� is distributed as N(µT ✓i�, ✓Ti��✓i�). And y(k)i is distributed as
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i+x

(k)
i+ +⇧T
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. Using pik✓ denote the density of x(k)
i� , y(k)i , we can

calculate the derivative of the log density
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(�2+✓i��✓i�)2 , where

the expectation is an integral over z, we have that
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=
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From this we can sum over
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The on(1) term is due to strong law of large numbers. From this we know that, with probability 1

lim
c!1

lim
n!1

sup
khk2<1

In(✓0 + ch/
p
n)

n

=
mX

i=1

1

�2 + ✓Ti��✓i�

✓
Qi +⇧T

i


0 0
0 2

�2+✓T
i��✓i�

�✓i�✓Ti��

�
⇧i

◆
=: ⇢

Applying Corollary D.1 with  Rd ! Rd as the identity function  (x) = x gives the full-feature
minimax lower bound. Applying Corollary D.1 with  Rd ! Rdi as  (x) = Tix gives the missing-
feature minimax lower bound.

One final transformation remains to get the form of this lower bound to match the one in the theorem
statement. We know that from Cauchy-Schwartz that for all u 2 Rd�di

uT�✓i�✓Ti��u

✓Ti��✓i�
=

(uT�
1
2�

1
2 ✓i�)2

✓Ti��✓i�
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Using this fact and the definition of � and Qi we have that
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Using this bound gives our final result.

D.3 Proof of Corollary 5.3

The existence of the limits is a consequence of strong law of large numbers. To further show the
inequality in the limit, we note that
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,

where the last step holds with probability one by strong law of large numbers. This is true as by
our random missing model, ⌃ij is not observed with probability p if i = j, and p2 if i 6= j. We can
further derive that
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In (i), we make use of the fact that
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