
A On the Dynamic Model Approximation333

We provide analysis on the approximation in this section based on the deterministic MDP model in334

finite action space where the problem degenerates to Q-Learning. Similar results can be get to prove335

the Policy Evaluation Lemma, combined with Policy Improvement Lemma (given proper function336

approximation of the argmax operator) and result in Policy Iteration Theorem.337

In deterministic MDPs with st+1 = T (st, at), rt = r(st, at), the value function of a state is defined338

as339

V
⇡(s) =

1X

t=0

�
t
r(st, at), (12)

given s0 = s is the initial state and at = ⇡(st) comes from the deterministic policy ⇡.340

The learning objective is to find an optimal policy ⇡, such that an optimal state value can be achieved:341

342

V
⇤(s) = max

⇡

V
⇡(s) (13)

The state-action value function (Q-function) is then defined as343

Q(s, a) = r(s, a) + �V
⇤(T (s, a)) (14)

Formally, the objective of action space pruning in action-redundant MDPs is to find an optimal policy344

⇡
(G) = G(⇡(st)|st)� ⇡(st) with an action selector G : S ⇥A 7! {0, 1}d,345

V
⇤(s) = max

⇡(G)
V

⇡
(G)

(s) = max
⇡

V
⇡(s), (15)

with minimal number of actions selected, i.e., |G|0 is minimized. The sufficient and necessary condi-346

tion for Equation (15) to hold is r(st,⇡(st)) = r(st,⇡(G)(st)) and T (st,⇡(st)) = T (st,⇡(G)(st)).347

In general, the reward function r and transition dynamics T may depend on different subsets of actions348

and the optimal, i.e., r(st, at) = r(st, a
(G1)
t

), while T (st, at) = T (st, a
(G2)
t

), where G1, G2 select349

different subset of given actions by a
(G1)
t

= G1(at|st) � at, a
(G2)
t

= G2(at|st) � at but a(G1)
t

6=350

a
(G2)
t

. The final action selector G should be generated according to G(a|s) = G1(a|s) _G2(a|s),351

where _ is the element-wise OR operation.352

Therefore, in our approximation of Dyn-SWAR, we assume G(a|s) = G2(a|s) as an approximation353

for G(a|s) = G1(a|s) _G2(a|s). Future work may include another predictive model for the reward354

function and take the element-wise OR operation to get G.355

B Additional Experiments356

B.1 Synthetic Data Experiment357

The synthetic datasets are generated in the same way as [5, 37]. Specifically, there are 6 synthetic358

datasets that have inputs generated from an 11-dim Gaussian distribution without correlations across359

features. The label Y for each dataset is generated by a Bernoulli random variable with P (Y =360

1|X) = 1
1+logit(X) . In different tasks, logit(X) takes the value of:361

• Syn1: exp(X1X2)362

• Syn2: exp(
P6

i=3 X
2
i
� 4)363

• Syn3: �10⇥ sin 2X7 + 2|X8|+X9 + exp(�X10)364

• Syn4: if X11 < 0, logit follows Syn1, otherwise, logit follows Syn2365

• Syn5: if X11 < 0, logit follows Syn1, otherwise, logit follows Syn3366

• Syn6: if X11 < 0, logit follows Syn2, otherwise, logit follows Syn3367

In the first three synthetic datasets, the label Y depends on the same feature across each dataset, while368

in the last three datasets, the subsets of features that label Y depends on are determined by the values369

of X11.370

11

Table 2: Relevant variables discovery results for Synthetic datasets with 11-dim input

DATA SET METHOD ITERATION 1 ITERATION 2 ITERATION 3 ITERATION 4

METRIC TPR FDR TPR FDR TPR FDR TPR FDR

Syn4

INVASE (REP.) 99.8 10.3
INVASE (EXP.) 98.6 1.6 98.1 1.1 98.1 1.1 98.1 1.1
IC-INVASE (� " 0.2) 99.7 3.4 99.7 2.6 99.7 2.5 99.7 2.5
IC-INVASE (� " 0.3) 99.3 1.6 99.3 0.8 99.3 0.8 99.3 0.8

Syn5

INVASE (REP.) 84.8 1.1
INVASE (EXP.) 82.1 1.0 79.7 1.0 79.3 1.0 79.2 1.0
IC-INVASE (� " 0.2) 99.3 1.6 99.1 1.1 99.1 1.1 99.1 1.1
IC-INVASE (� " 0.3) 96.8 1.0 96.4 0.4 96.4 0.4 96.4 0.4

Syn6

INVASE (REP.) 90.1 7.4
INVASE (EXP.) 92.3 1.7 89.8 1.6 89.6 1.6 89.6 1.6
IC-INVASE (� " 0.2) 99.6 2.9 99.5 2.6 99.5 2.5 99.5 2.5
IC-INVASE (� " 0.3) 99.4 1.9 99.3 1.6 99.3 1.6 99.3 1.6

For each dataset, 20, 000 samples are generated and be separated into a training set and a testing371

set. In this work, we focus on finding outcome-relevant features (e.g., finding task-relevant actions372

in the context of RL), thus the true positive rate (TPR) and false discovery rate (FDR) are used as373

performance metrics.374

11-dim Feature Selection Table 2 shows the quantitative results of the proposed method, IC-375

INVASE on the 11-dim feature selection tasks. To accelerate training and facilitate the usage of376

dynamical computational graphs in curriculum learning and RL settings, the vanilla INVASE is377

re-implemented with PyTorch [23]. In general, the PyTorch implementation is 4 to 5 times faster than378

the previous Keras [1, 6] implementation, with on-par performance on the 11-dim feature selection379

tasks. In the comparison, both the reported results in [37] (denoted by INVASE (REP.)) and our380

experimental results on INVASE (denoted by INVASE (EXP.)) are presented. The pr curriculum381

for IC-INVASE in all experiments are set to decrease from 0.5 to 0.0 except in ablation studies.382

Results of two different choices of the � curriculum are reported and denoted by IC-INVASE (� " ·),383

e.g., � " 0.3 means � increases from 0.0 to 0.3 in the experiment. We omit the results on the first384

three datasets (Syn1,Syn2,Syn3) where both IC-INVASE and INVASE achieve 100.0 TPR and385

0.0 FDR. Iteration 1 to Iteration 4 in the table shows the results after applying the selection operator386

for different number of iterations.387

In all experiments, IC-INVASE achieves better performance (i.e., larger TPR and lower FDR) than388

the vanilla INVASE with Keras and PyTorch implementation. Iterative applying the feature selection389

operator can reduce the FDR with a slight cost of TPR decay.390

100-dim Feature Selection We then increase the total number of feature dimensions to 100 to391

demonstrate how IC-INVASE improves the vanilla INVASE in larege-scale variable selection settings.392

In this experiment. The features are generated with 100-dim Gaussian without correlations and393

the rules for label generation are still the same as the 11-dim settings. (i.e., 89 additional label-394

independent noisy dimensions of input is concatenated to the 11-dim inputs.)395

The results are shown in Table 3. IC-INVASE achieves much better performance in all datasets, i.e.,396

higher TPR and lower FDR. The ablation studies on different curriculum show both an increasing �397

and a decreasing pr can benefit discovery of label-dependent features. As the hyper-parameters for398

curriculum are not elaborated in our experiments, direct combining the two curriculum may hinder399

the performance. The design for curriculum fusion is left to the future work.400

C Environment Details401

FourRewardMaze The FourRewardMaze is a 2-D navigation task where an agent need to find all402

four solutions to achieve better performance. The state space is 2-D continuous vector indicating the403

position of the agent, while the action space is a 2-D continuous value indicating the direction and404

step length of the agent, which is limited to [�1, 1]. The initial location of the agent is randomly405

12

Table 3: Relevant feature discovery results for Synthetic datasets with 100-dim input

DATA SET METHOD ITERATION 1 ITERATION 2 ITERATION 3 ITERATION 4

METRIC TPR FDR TPR FDR TPR FDR TPR FDR

Syn4

INVASE (REP.) 66.3 40.5
INVASE (EXP.) 27.0 6.5 18.0 6.4 18.0 6.4 18.0 6.4
IC-INVASE W/O pr # 66.3 40.5 66.3 40.5 66.3 40.5 66.3 40.5
IC-INVASE W/O � " 100.0 43.0 100.0 43.0 100.0 43.0 100.0 43.0
IC-INVASE 100.0 43.0 100.0 43.0 100.0 43.0 100.0 43.0

Syn5

INVASE (REP.) 73.2 23.7
INVASE (EXP.) 56.4 37.9 56.4 37.9 56.4 37.9 56.4 37.9
IC-INVASE W/O pr # 90.9 7.8 88.8 4.4 88.8 4.3 88.8 4.3
IC-INVASE W/O � " 96.1 11.3 95.2 8.2 95.5 8.1 95.5 8.1
IC-INVASE 91.9 8.1 90.8 4.3 90.8 4.2 90.8 4.2

Syn6

INVASE (REP.) 90.5 15.4
INVASE (EXP.) 90.1 43.7 90.1 43.7 90.1 43.7 90.1 43.7
IC-INVASE W/O pr # 98.5 4.1 98.4 2.4 98.4 2.3 98.4 2.3
IC-INVASE W/O � " 99.6 8.1 99.6 7.1 99.6 7.0 99.6 7.0
IC-INVASE 98.9 7.0 98.9 5.0 98.9 4.9 98.9 4.9

+10

+10

+10

+10

(a) FourReward-
Maze

(b) Pendulum (c) Walker2d (d) LunarLander (e) BipedalWalker

Figure 5: Environments used in experiments

selected for each game, and each episode has the length of 32, which is the timesteps needed to406

collect all four rewards from any starting position.407

Pendulum-v0 The Pendulum-v0 environment is a classic problem in the control literature. In the408

Pendulum-v0 of OpenAI Gym. The task has 3-D state space and 1-D action space. In every episode409

the pendulum starts in a random position, and the learning objective is to swing the pendulum up and410

keep it staying upright.411

Walker2d-v2 The Walker2d-v2 environment is a locomotion task where the learning objective is412

to make a two-dimensional bipedal robot walk forward as fast as possible. The task has 17-D state413

space and 6-D action space.414

LunarLanderContinuous-v2 In the tasks of LunarLanderContinuous-v2, the agent is asked to415

control a lander to move from the top of the screen to a landing pad located at coordinate (0, 0). The416

fuel is infinite, so an agent can learn to fly and then land on its first attempt. The state is as 8-D417

real-valued vector and action is 2-D vector in the range of [�1, 1], where the first dimension controls418

main engine, [�1, 0] off, [0., 1] throttle from 50% to 100% power and the second value in [�1,�0.5]419

will fire left engine, while a value in [0.5, 1.0] fires right engine, otherwise the engine is off.420

BipedalWalker-v3 The BipedalWalker-v3 is a locomotion task where the state space is 24-D and421

the action space is 4-D. The agent needs to walk as far as possible in each episode where a total422

timestep of 1000 are given and total 300 points might be collected up to the far end. If the robot falls,423

it gets �100 points. Applying motor torque costs a small amount of points, more optimal agent will424

get better score.425

13

D Reproduction Checklist426

D.1 Neural Network Structure427

In all experiments, we use the same neural network structure: in TD3, we follow the vanilla428

implementation to use 3-layer fully connected neural networks where 256 hidden units are used. In429

the selector networks of the INVASE module, we follow the vanilla implementation to use 3-layer430

fully connected neural networks where 100, 200 hidden units are used.431

D.2 Hyper-Parameters432

In both TD-SWAR and the Dyn-SWAR, we apply IC-INVASE with pr reducing from 0.5 to 0.0433

and � increasing from 0.0 to 0.2. While our experiments have already shown the effectiveness and434

robustness of those hyper-parameters, performing grid search on those hyper-parameters may lead to435

further performance improvement.436

14

	Introduction
	Preliminary
	Proposed Method
	Temporal Difference Objective with Structural Causal Models
	Iterative Curriculum INVASE (IC-INVASE)
	Curriculum Learning For High Dimensional Variable Selection
	Iterative Variable Selection

	State-Wise Action Refinery with IC-INVASE
	Temporal Difference State-Wise Action Refinery
	Static Approximation: Model-Based Action Selection

	Experiment
	Related Work
	Conclusion and Future Work
	On the Dynamic Model Approximation
	Additional Experiments
	Synthetic Data Experiment

	Environment Details
	Reproduction Checklist
	Neural Network Structure
	Hyper-Parameters

