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Abstract

Score matching is an alternative to maximum likelihood (ML) for estimating a1

probability distribution parametrized up to a constant of proportionality. By fitting2

the “score” of the distribution, it sidesteps the need to compute this constant of3

proportionality (which is often intractable). While score matching and variants4

thereof are popular in practice, precise theoretical understanding of the benefits and5

tradeoffs with maximum likelihood—both computational and statistical—are not6

well understood. In this work, we give the first example of a natural exponential7

family of distributions such that the score matching loss is computationally efficient8

to optimize, and has a comparable statistical efficiency to ML, while the ML loss9

is intractable to optimize using a gradient-based method. The family consists10

of exponentials of polynomials of fixed degree, and our result can be viewed as11

a continuous analogue of recent developments in the discrete setting. Precisely,12

we show: (1) Designing a zeroth-order or first-order oracle for optimizing the13

maximum likelihood loss is NP-hard. (2) Maximum likelihood has a statistical14

efficiency polynomial in the ambient dimension and the radius of the parameters of15

the family. (3) Minimizing the score matching loss is both computationally and16

statistically efficient, with complexity polynomial in the ambient dimension.17

1 Introduction18

Energy-based models are a flexible class of probabilistic models with wide-ranging applications.
They are parameterized by a class of energies Eθ(x) which in turn determines the distribution

pθ(x) =
exp(−Eθ(x))

Zθ

up to a constant of proportionality Zθ that is called the partition function. One of the major challenges19

of working with energy-based models is designing efficient algorithms for fitting them to data.20

Statistical theory tells us that the maximum likelihood estimator (MLE)—i.e., the parameters θ which21

maximize the likelihood—enjoys good statistical properties including consistency and asymptotic22

efficiency.23

However, there is a major computational impediment to computing the MLE: Both evaluating24

the log-likelihood and computing its gradient with respect to θ (i.e., implementing zeroth and25

first order oracles, respectively) seem to require computing the partition function, which is often26

computationally intractable. More precisely, the gradient of the negative log-likelihood depends on27

∇θ logZθ = Epθ
[∇θEθ(x)]. A popular approach is to estimate this quantity by using a Markov28

chain to approximately sample from pθ. However in high-dimensional settings, Markov chains often29

require many, sometimes even exponentially many, steps to mix.30

Score matching (Hyvärinen, 2005) is a popular alternative that sidesteps needing to compute the31

partition function of sample from pθ. The idea is to fit the score of the distribution, in the sense that32
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we want θ such that ∇x log p(x) matches ∇x log pθ(x) for a typical sample from p. This approach33

turns out to have many nice properties. It is consistent in the sense that minimizing the objective34

function yields provably good estimates for the unknown parameters. Moreover, while the definition35

depends on the unknown ∇x log p(x), by applying integration by parts, it is possible to transform the36

objective into an equivalent one that can be estimated from samples.37

The main question is to bound its statistical performance, especially relative to that of the maximum38

likelihood estimator. Recent work by Koehler et al. (2022) showed that the cost can be quite steep.39

They gave explicit examples of distributions that have bad isoperimetric properties (i.e., large Poincaré40

constant) and showed how such properties can cause poor statistical performance.41

Despite wide usage, there is little rigorous understanding of when score matching helps. This amounts42

to finding a general setting where maximizing the likelihood with standard first-order optimization is43

provably hard, and yet score matching is both computationally and statistically efficient, with only44

a polynomial loss in sample complexity relative to the MLE. In this work, we show the first such45

guarantees, and we do so for a natural class of exponential families defined by polynomials. As we46

discuss in Section 1.1, our results parallel recent developments in learning graphical models—where47

it is known that pseudolikelihood methods allow efficient learning of distributions that are hard to48

sample from—and can be viewed as a continuous analogue of such results.49

In general, an exponential family on Rn has the form pθ(x) ∝ h(x) exp(⟨θ, T (x)⟩) where h(x) is the50

base measure, θ is the parameter vector, and T (x) is the vector of sufficient statistics. Exponential51

families are one of the most classic parametric families of distributions, dating back to works by52

Darmois (1935), Koopman (1936) and Pitman (1936). They have a number of natural properties,53

including: (1) The parameters θ are uniquely determined by the expectation of the sufficient statistics54

Epθ
[T ]; (2) The distribution pθ is the maximum entropy distribution, subject to having given values55

for Epθ
[T ]; (3) They have conjugate priors (Brown, 1986), which allow characterizations of the56

family for the posterior of the parameters given data.57

For any (odd positive integer) constant d and norm bound B ≥ 1, we study a natural exponential58

family Pn,d,B on Rn where59

1. The sufficient statistics T (x) ∈ RM−1 consist of all monomials in x1, . . . , xn of degree at least 160

and at most d
(

where M =
(
n+d
d

))
.61

2. The base measure is defined as h(x) = exp(−
∑n

i=1 x
d+1
i ).162

3. The parameters θ lie in an l∞-ball: θ ∈ ΘB = {θ ∈ RM−1 : ∥θ∥∞ ≤ B}.63

Towards stating our main results, we formally define the maximum likelihood and score matching64

objectives, denoting by Ê the empirical average over the training samples drawn from some p ∈65

Pn,d,B :66

LMLE(θ) = Êx∼p[log pθ(x)]

LSM(θ) =
1

2
Êx∼p[∥∇ log p(x)−∇ log pθ(X)∥2] +Kp

= Êx∼p

[
Tr∇2 log pθ(x) +

1

2
∥∇ log pθ(x)∥2

]
(1)

where Kp is a constant depending only on p and (1) follows by integration by parts (Hyvärinen,67

2005). In the special case of exponential families, (1) is a quadratic, and in fact the optimum can be68

written in closed form:69

argmin
θ

LSM(θ) = −Êx∼p[(JT )x(JT )
T
x ]

−1Êx∼p∆T (x) (2)

where (JT )x : (M − 1) × n is the Jacobian of T at the point x, ∆f =
∑

i ∂
2
i f is the Laplacian,70

applied coordinate wise to the vector-valued function f .71

With this setting in place, we show the following intractability result.72

1We note that the choice of base measure is for convenience in ensuring tail bounds necessary in our proof.
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Theorem 1.1 (Informal, computational lower bound). Unless RP = NP, there is no poly(n,N)-73

time algorithm that evaluates LMLE(θ) and ∇LMLE(θ) given θ ∈ ΘB and arbitrary samples74

x1, . . . , xN ∈ Rn, for d = 7, B = poly(n). Thus, optimizing the MLE loss using a zeroth-order or75

first-order method is computationally intractable.76

The main idea of the proof is to construct a polynomial FC(x) which has roots exactly at the satisfying77

assignments of a given 3-SAT formula C. We then argue that exp(−γFC(x)), for sufficiently large78

γ > 0, concentrates near the satisfying assignments. Finally, we show sampling from this distribution79

or approximating logZθ or ∇θ logZθ (where θ ∈ RM−1 is the parameter vector corresponding to80

the polynomial −γFC(x)) would enable efficiently finding a satisfying assignment.81

Our next result shows that MLE, though computationally intractable to compute via implementing82

zeroth or first order oracles, has (asymptotic) sample complexity poly(n,B) (for constant d).83

Theorem 1.2 (Informal, efficiency of MLE). The MLE estimator θ̂MLE = argmaxθ LMLE(θ) has84

asymptotic sample complexity polynomial in n. That is, for all sufficiently large N it holds with85

probability at least 0.99 (over N samples drawn from pθ∗ ) that:86

∥θ̂MLE − θ∗∥2 ≤ O

(
(nB)poly(d)

N

)
.

The main proof technique for this is an anticoncentration bound of low-degree polynomials, for87

distributions in our exponential family.88

Lastly, we prove that score matching also has polynomial (asymptotic) statistical complexity.89

Theorem 1.3 (Informal, efficiency of SM). The score matching estimator θ̂SM = argmaxθ LSM(θ)90

also has asymptotic sample complexity at most polynomial in n. That is, for all sufficiently large N it91

holds with probability at least 0.99 (over N samples drawn from pθ∗ ) that:92

∥θ̂SM − θ∗∥2 ≤ O

(
(nB)poly(d)

N

)
. (3)

The main ingredient in this result is a bound on the restricted Poincaré constant—namely, the93

Poincaré constant, when restricted to functions that are linear in the sufficient statistics T . We bound94

this quantity for the exponential family we consider in terms of the condition number of the Fisher95

matrix of the distribution, which we believe is a result of independent interest. With this tool in hand,96

we can use the framework of Koehler et al. (2022), which relates the asymptotic sample complexity97

of score matching to the asymptotic sample complexity of maximum likelihood, in terms of the98

restricted Poincaré constant of the distribution.99

1.1 Discussion and related work100

Score matching: Score matching was proposed by Hyvärinen (2005), who also gave conditions101

under which it is consistent and asymptotically normal. Asymptotic normality is also proven for102

various kernelized variants of score matching in Barp et al. (2019). Koehler et al. (2022) prove that103

the statistical sample complexity of score matching is not much worse than the sample complexity104

of maximum likelihood when the distribution satisfies a (restricted) Poincaré inequality. While we105

leverage machinery from Koehler et al. (2022), their work only bounds the sample complexity of106

score matching by a quantity polynomial in the ambient dimension for a specific distribution in107

a specific bimodal exponential family. By contrast, we can handle an entire class of exponential108

families with low-degree sufficient statistics.109

Poincaré vs Restricted Poincaré: We note that while Poincaré inequalities are directly related to110

isoperimetry and mixing of Markov chains, sample efficiency of score matching only depends on111

the Poincaré inequality holding for a restricted class of functions, namely, functions linear in the112

sufficient statistics. Hence, hardness of sampling only implies sample complexity lower bounds in113

cases where the family is expressive enough—indeed, the key to exponential lower bounds for score114

matching in Koehler et al. (2022) is augmenting the sufficient statistics with a function defined by a115

bad cut. This gap means that we can hope to have good sample complexity for score matching even116

in cases where sampling is hard—which we take advantage of in this work.117
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Learning exponential families: Despite the fact that exponential families are both classical and118

ubiquitous, both in statistics and machine learning, there is relatively little understanding about the119

computational-statistical tradeoffs to learn them from data, that is, what sample complexity can be120

achieved with a computationally efficient algorithm. Ren et al. (2021) consider a version of the121

“interaction screening” estimator, a close relative of pseudolikelihood, but do not prove anything122

about the statistical complexity of this estimator. Shah et al. (2021) consider a related estimator, and123

analyze it under various low-rank and sparsity assumptions of reshapings of the sufficient statistics124

into a tensor. Unfortunately, these assumptions are somewhat involved, and it’s unclear if they are125

needed for designing computationally and statistically efficient algorithms.126

Discrete exponential families (Ising models): Ising models have the form pJ(x) ∝127

exp(
∑

i∼j Jijxixj +
∑

i Jixi) where ∼ denotes adjacency in some (unknown) graph, and Jij , Ji128

denote the corresponding pairwise and singleton potentials. Bresler (2015) gave an efficient algorithm129

for learning any Ising model over a graph with constant degree (and l∞-bounds on the coefficients);130

see also the more recent work (Dagan et al., 2021). In contrast, it is a classic result (Arora and Barak,131

2009) that approximating the partition function of members in this family is NP-hard.132

Similarly, the exponential family we consider is such that it contains members for which sampling and133

approximating their partition function is intractable (the main ingredient in the proof of Theorem 1.1).134

Nevertheless, by Theorem 3, we can learn the parameters for members in this family computationally135

efficiently, and with sample complexity comparable to the optimal one (achieved by maximum136

likelihood). This also parallels other developments in Ising models (Bresler et al., 2014; Montanari,137

2015), where it is known that restricting the type of learning algorithm (e.g., requiring it to work with138

sufficient statistics only) can make a tractable problem become intractable.139

The parallels can be drawn even on an algorithmic level: a follow up work to Bresler (2015) by140

Vuffray et al. (2016) showed that similar results can be shown in the Ising model setting by using141

the “screening estimator”, a close relative of the classical pseudolikelihood estimator (Besag, 1977)142

which tries to learn a distribution by matching the conditional probability of singletons, and thereby143

avoids having to evaluate a partition function. Since conditional probabilities of singletons capture144

changes in a single coordinate, they can be viewed as a kind of “discrete gradient”—a further analogy145

to score matching in the continuous setting.2146

2 Preliminaries147

We consider the following exponential family. Fix positive integers n, d,B ∈ N where d is odd.148

Let h(x) = exp(−
∑n

i=1 x
d+1
i ), and let T (x) ∈ RM−1 be the vector of monomials in x1, . . . , xn149

of degree at least 1 and at most d (so that M =
(
n+d
d

)
). Define Θ ⊆ RM−1 by Θ = {θ ∈ RM−1 :150

∥θ∥∞ ≤ B}. For any θ ∈ Θ define pθ : Rn → [0,∞) by151

pθ(x) :=
h(x) exp(⟨θ, T (x)⟩)

Zθ

where Zθ =
∫
Rn h(x) exp(⟨θ, T (x)⟩) dx is the normalizing constant. Then we consider the family152

Pn,d,B := (pθ)θ∈ΘB
. Throughout, we will assume that B ≥ 1.153

Polynomial notation: Let R[x1, . . . , xn]≤d denote the space of polynomials in x1, . . . , xn of154

degree at most d. We can write any such polynomial f as f(x) =
∑

|d|≤d adxd where d denotes155

a degree function d : [n] → N, and |d| =
∑n

i=1 d(i), and we write xd to denote
∏n

i=1 x
d(i)
i . Note156

that every d with 1 ≤ |d| ≤ d corresponds to an index of T , i.e. T (x)d = xd.157

Let ∥·∥mon denote the ℓ2 norm of a polynomial in the monomial basis; that is, ∥
∑

d adxd∥mon =158 (∑
d a2d

)1/2
. For any function f : Rn → R, let ∥f∥2L2([−1,1]n) = Ex∼Unif([−1,1]n)f(x)

2.159

2In fact, ratio matching, proposed in Hyvärinen (2007) as a discrete analogue of score matching, relies on
exactly this intuition.
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Statistical efficiency of MLE: For any θ ∈ RM−1, the Fisher information matrix of pθ with respect160

to the sufficient statistics T (x) is defined as161

I(θ) := Ex∼pθ
[T (x)T (x)⊤]− Ex∼pθ

[T (x)]Ex∼pθ
[T (x)]⊤.

It is well-known that for any exponential family with no affine dependencies among the sufficient162

statistics (see e.g., Theorem 4.6 in Van der Vaart (2000)), it holds that for any θ∗ ∈ RM−1, given N163

independent samples x(1), . . . , x(N) ∼ pθ∗ , the estimator θ̂MLE = θ̂MLE(x
(1), . . . , x(N)) satisfies164

√
N
(
θ̂MLE − θ∗

)
→ N (0, I(θ∗)−1).

Statistical efficiency of score matching: Our analysis of the statistical efficiency of score matching165

is based on a result due to Koehler et al. (2022). We state a requisite definition followed by the result.166

Definition 2.1 (Restricted Poincaré for exponential families). The restricted Poincaré constant of167

p ∈ Pn,d,B is the smallest CP > 0 such that for all w ∈ RM−1, it holds that168

Varp(⟨w, T (x)⟩) ≤ CPEx∼p ∥∇x⟨w, T (x)⟩∥22 .
Theorem 2.2 (Koehler et al. (2022)). Under certain regularity conditions (see Lemma B.4), for any169

pθ∗ with restricted Poincaré constant CP and with λmin(I(θ∗)) > 0, given N independent samples170

x(1), . . . , x(N) ∼ pθ∗ , the estimator θ̂SM = θ̂SM(x(1), . . . , x(N)) satisfies171
√
N(θ̂SM − θ∗) → N (0,Γ)

where Γ satisfies172

∥Γ∥op ≤
2C2

P (∥θ∥
2
2 Ex∼pθ∗ ∥(JT )(x)∥

4
op + Ex∼pθ∗ ∥∆T (x)∥22)

λmin(I(θ∗))2

where (JT )(x)i = ∇xTi(x) and ∆T (x) = Tr∇2
xT (x).173

3 Hardness of Implementing Optimization Oracles for Pn,7,poly(n)174

In this section we prove NP-hardness of implementing approximate zeroth-order and first-order opti-175

mization oracles for maximum likelihood in the exponential family Pn,7,Cn2 log(n) (for a sufficiently176

large constant C) as defined in Section 2; we also show that approximate sampling from this family177

is NP-hard. See Theorems 3.4, 3.5, and A.5 respectively. All of the hardness results proceed by178

reduction from 3-SAT and use the same construction.179

The idea is that for any formula C on n variables, we can construct a non-negative polynomial FC180

of degree at most 6 in variables x1, . . . , xn, which has roots exactly at the points of the hypercube181

H := {−1, 1}n ⊆ Rn that correspond to satisfying assignments (under the bijection that xi = 1182

corresponds to True and xi = −1 corresponds to False). Intuitively, the distribution with density183

proportional to exp(−γFC(x)) will, for sufficiently large γ > 0, concentrate on the satisfying184

assignments. It is then straightforward to see that sampling from this distribution or efficiently185

computing either logZθ or ∇θ logZθ (where θ ∈ RM−1 is the parameter vector corresponding to186

the polynomial −γFC(x)) would enable efficiently finding a satisfying assignment.187

The remainder of this section makes the above intuition precise; important details include (1)188

incorporating the base measure h(x) = exp(−
∑n

i=1 x
8
i ) into the density function, and (2) showing189

that a polynomially-large temperature γ suffices.190

Definition 3.1 (Clause/formula polynomials). Given a 3-clause formula of the form C = x̃i∨ x̃j ∨ x̃k191

where x̃i = xi or x̃i = ¬xi, we construct a polynomial HC ∈ R[x1, . . . , xn]≤6 defined by192

HC(x) = fi(xi)
2fj(xj)

2fk(xk)
2

where193

fi(t) =

{
(t+ 1) if xi is negated in C

(t− 1) otherwise
.

For example, if C = x1 ∨ x2 ∨ ¬x3, then HC = (x1 − 1)2(x2 − 1)2(x3 + 1)2. Further, given a194

3-SAT formula C = C1 ∧ · · · ∧ Cm on m clauses3, we define the polynomial195

HC(x) = HC1
(x) + · · ·+HCm

(x).
3It suffices to work with m = O(n), see Theorem A.1.
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It can be seen that any x ∈ H corresponds to a satisfying assignment for C if and only if HC(x) = 0.196

Note that there are possibly points outside H which satisfy HC(x) = 0. To avoid these solutions, we197

introduce another polynomial:198

Definition 3.2 (Hypercube polynomial). We define G : Rn → R by G(x) =
∑n

i=1(1− x2
i )

2.199

Note that G(x) ≥ 0 for all x, and the roots of G(x) are precisely the vertices of H. Therefore for any200

α, β > 0, the roots (in Rn) of the polynomial FC(x) = αHC(x) + βG(x) are precisely the vertices201

of H that correspond to satisfying assignments for C.202

Definition 3.3. Let C be a 3-CNF formula with n variables and m clauses. Let α, β > 0. Then we203

define a distribution PC,α,β with density function204

pC,α,β(x) :=
h(x) exp(−αHC(x)− βG(x))

ZC,α,β

where ZC,α,β =
∫
Rn h(x) exp(−αHC(x)− βG(x)) dx.205

This distribution lies in the exponential family Pn,d,B , for d = 7 and B = Ω(β+mα) (Lemma A.2).206

Thus, if θ(C, α, β) is the parameter vector that induces PC,α,β , then it suffices to show that (a)207

approximating logZθ(C,α,β), (b) approximating ∇θ logZθ(C,α,β), and (c) sampling from PC,α,β are208

NP-hard (under randomized reductions). We sketch the proofs below; details are in Appendix A.209

Hardness of approximating logZC,α,β: In order to prove (a), we bound the mass of PC,α,β in210

each orthant of Rn. In particular, we show that for α = Ω(n) and β = Ω(m logm), any orthant211

corresponding to a satisfying assignment has exponentially larger contribution to ZC,α,β than any212

orthant corresponding to an unsatisfying assignment. A consequence is that the partition function213

ZC,α,β is exponentially larger when the formula C is satisfiable than when it isn’t (Lemma A.6). But214

then approximating ZC,α,β allows distinguishing a satisfiable formula from an unsatisfiable formula,215

which is NP-hard. This implies the following theorem (proof in Section A.2):216

Theorem 3.4. Fix n ∈ N and let B ≥ Cn2 for a sufficiently large constant C. Unless RP = NP,217

there is no poly(n)-time algorithm which takes as input an arbitrary θ ∈ ΘB and outputs an218

approximation of logZθ with additive error less than n log 1.16.219

Hardness of approximating ∇θ logZθ(C,α,β): Note that ∇θ logZθ = Ex∼pθ
[T (x)], so in par-220

ticular approximating the gradient yields an approximation to the mean Ex∼pθ
[x]. Since PC,α,β is221

concentrated in orthants corresponding to satisfying assignments of C, we would intuitively expect222

that if C has exactly one satisfying assignment v∗, then sign(Epθ
[x]) corresponds to this assignment.223

Formally, we show that if α = Θ(n) and β = Ω(mn logm), then Ex∼pC,α,β
[v∗i xi] ≥ 1/20 for all224

i ∈ [n] (Lemma A.7). Since solving a formula with a unique satisfying assignment is still NP-hard,225

we get the following theorem (proof in Section A.3):226

Theorem 3.5. Fix n ∈ N and let B ≥ Cn2 log(n) for a sufficiently large constant C. Unless227

RP = NP, there is no poly(n)-time algorithm which takes as input an arbitrary θ ∈ ΘB and outputs228

an approximation of ∇θ logZθ with additive error (in an l∞ sense) less than 1/20.229

With the above two theorems in hand, we are ready to present the formal version of Theorem 1.1; the230

proof is immediate from the definition of LMLE(θ) (see Section A.5).231

Corollary 3.6. Fix n,N ∈ N and let B ≥ Cn2 log n for a sufficiently large constant C. Unless232

RP = NP, there is no poly(n,N)-time algorithm which takes as input an arbitrary θ ∈ ΘB , and an233

arbitrary sample x1, . . . , xN ∈ Rn, and outputs an approximation of LMLE(θ) up to additive error234

of n log 1.16, or ∇θLMLE(θ) up to an additive error of 1/20.235

Hardness of approximate sampling: We show that for α = Ω(n) and β = Ω(m logm), the236

likelihood that x ∼ PC,α,β lies in an orthant corresponding to a satisfying assignment for C is at least237

1/2 (Lemma A.4). Hardness of approximate sampling follows immediately (Theorem A.5). Hence,238

although we show that score matching can efficiently estimate θ∗ from samples produced by nature,239

knowing θ∗ isn’t enough to efficiently generate samples from the distribution.240
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4 Statistical Efficiency of Maximum Likelihood241

In this section we prove Theorem 1.2 by showing that for any θ ∈ ΘB , we can lower bound the242

smallest eigenvalue of the Fisher information matrix I(θ). Concretely, we show:243

Theorem 4.1. For any θ ∈ ΘB , it holds that244

λmin(I(θ)) ≥ (nB)−O(d3).

As a corollary, given N samples from pθ, it holds as N → ∞ that
√
N(θ̂MLE − θ) → N(0,ΓMLE)245

where ∥ΓMLE∥op ≤ (nB)O(d3). Moreover, for sufficiently large N , with probability at least 0.99 it246

holds that
∥∥∥θ̂MLE − θ

∥∥∥2
2
≤ (nB)O(d3)/N .247

Once we have the bound on λmin(I(θ)), the first corollary follows from standard bounds for MLE248

(Section 2), and the second corollary follows from Markov’s inequality (see e.g., Remark 4 in249

Koehler et al. (2022)). Lower-bounding λmin(I(θ)) itself requires lower-bounding the variance of250

any polynomial (with respect to pθ) in terms of its coefficients. The proof consists of three parts.251

First, we show that the norm of a polynomial in the monomial basis is upper-bounded in terms of its252

L2 norm on [−1, 1]n:253

Lemma 4.2. For f ∈ R[x1, . . . , xn]≤d, we have ∥f∥2mon ≤
(
n+d
d

)
(4e)d ∥f∥2L2([−1,1]n) .254

The key idea behind this proof is to work with the basis of (tensorized) Legendre polynomials, which255

is orthonormal with respect to the L2 norm. Once we write the polynomial with respect to this basis,256

the L2 norm equals the Euclidean norm of the coefficients. Given this observation, all that remains is257

to bound the coefficients after the change-of-basis. The complete proof is deferred to Appendix C.258

Next, we show that if a polynomial f : Rn → R has small variance with respect to p, then there is259

some box on which f has small variance with respect to the uniform distribution. This provides a260

way of comparing the variance of f with its L2 norm (after an appropriate rescaling).261

Lemma 4.3. Fix any θ ∈ ΘB and define p := pθ. Define R := 2d+3nBM . Then for any262

f ∈ R[x1, . . . , xn]≤d, there is some z ∈ Rn with ∥z∥∞ ≤ R and some ϵ ≥ 1/(2(d+1)MRd(n+B))263

such that264

Varp(f) ≥
1

2e
VarŨ (f),

where Ũ is the uniform distribution on {x ∈ Rn : ∥x− z∥∞ ≤ ϵ}.265

In order to prove this result, we pick a random box of radius ϵ (within a large bounding box of266

radius R). In expectation, the variance on this box (with respect to p) is not much less than Varp(f).267

Moreover, for sufficiently small ϵ, the density function of p on this box has bounded fluctuations,268

allowing comparison of Varp(f) and VarŨ (f). This argument is formalized in Appendix C.269

Together, Lemma 4.2 and 4.3 allow us to lower bound the variance Varp(f) in terms of ∥f∥mon.270

Lemma 4.4. Fix any θ ∈ ΘB and define p := pθ. Define R := 2d+3nBM . Then for any271

f ∈ R[x1, . . . , xn]≤d with f(0) = 0, it holds that272

Varp(f) ≥
1

22d(d+ 1)2d(4e)d+1M2d+3R2d2+2d(n+B)2d
∥f∥2mon .

See Appendix C for the proof. We are now ready to finish the proof of Theorem 4.1.273

Proof of Theorem 4.1. Fix θ ∈ ΘB . Pick any w ∈ RM and define f(x) = ⟨w, T (x)⟩. By definition274

of I(θ), we have Varpθ
(f) = w⊤I(θ)w. Moreover, ∥f∥2mon = ∥w∥22. Thus, Lemma 4.4 gives275

us that w⊤I(θ)w ≥ (nB)−O(d3) ∥w∥22, using that R = 2d+3nBM and M =
(
n+d
d

)
. The bound276

λmin(I(θ)) ≥ (nB)−O(d3) follows.277
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5 Statistical Efficiency of Score Matching278

In this section we prove Theorem 1.3. The main technical ingredient is a bound on the restricted279

Poincaré constants of distributions in Pn,d,B . For any fixed θ ∈ ΘB , we show that CP can be280

bounded in terms of the condition number of the Fisher information matrix I(θ). We describe the281

building blocks of the proof below.282

Fix θ, w ∈ RM−1 and define f(x) := ⟨w, T (x)⟩. First, we need to upper bound Varpθ
(f). This283

is where (the first half of) the condition number appears. Using the crucial fact that the restricted284

Poincaré constant only considers functions f that are linear in the sufficient statistics, and the285

definition of I(θ), we get the following bound on Varpθ
(f) in terms of the coefficient vector w (proof286

in Section D):287

Lemma 5.1. Fix θ, w ∈ RM−1 and define f(x) := ⟨w, T (x)⟩. Then288

∥w∥22 λmin(I(θ)) ≤ Varpθ
(f) ≤ ∥w∥22 λmax(I(θ)).

Next, we lower bound Ex∼pθ
∥∇xf(x)∥22. To do so, we could pick an orthonormal basis and bound289

E⟨u,∇xf(x)⟩2 over all directions u in the basis; however, it is unclear how to choose this basis.290

Instead, we pick u ∼ N (0, In) randomly, and use the following identity:291

Ex∼pθ
[∥∇xf(x)∥22] = Ex∼pθ

Eu∼N(0,In)⟨u,∇xf(x)⟩2

For any fixed u, the function g(x) = ⟨u,∇xf(x)⟩ is also a polynomial. If this polynomial had no292

constant coefficient, we could immediately lower bound E⟨u,∇xf(x)⟩2 in terms of the remaining293

coefficients, as above. Of course, it may have a nonzero constant coefficient, but with some case-work294

over the value of the constant, we can still prove the following bound:295

Lemma 5.2. Fix θ, w̃ ∈ RM−1 and c ∈ R, and define g(x) := ⟨w̃, T (x)⟩+ c. Then296

Ex∼pθ
[g(x)2] ≥

c2 + ∥w̃∥22
4 + 4 ∥E[T (x)]∥22

min(1, λmin(I(θ))).

Proof. We have297

Ex∼pθ
[g(x)2] = Varpθ

(g) + Ex∼pθ
[g(x)]2

= Varpθ
(g − c) + (c+ w̃⊤Ex∼pθ

[T (x)])2

≥ ∥w̃∥22 λmin(I(θ)) + (c+ w̃⊤Ex∼pθ
[T (x)])2

where the inequality is by Lemma 5.1. We now distinguish two cases.298

Case I. Suppose that |c+ w̃⊤Ex∼pθ
[T (x)]| ≥ c/2. Then299

Ex∼pθ
[g(x)2] ≥ ∥w̃∥22 λmin(I(θ)) +

c2

4
≥

c2 + ∥w̃∥22
4

min(1, λmin(I(θ))).

Case II. Otherwise, we have |c+ w̃⊤Ex∼pθ
[T (x)]| < c/2. By the triangle inequality, it follows300

that |w̃⊤Ex∼pθ
[T (x)]| ≥ c/2, so ∥w̃∥2 ≥ c/(2 ∥Ex∼pθ

[T (x)]∥2). Therefore301

c2 + ∥w̃∥22 ≤ (1 + 4 ∥Ex∼pθ
[T (x)]∥22) ∥w̃∥

2
2 ,

from which we get that302

Ex∼pθ
[g(x)2] ≥ ∥w̃∥22 λmin(I(θ)) ≥

c2 + ∥w̃∥22
1 + 4 ∥Ex∼pθ

[T (x)]∥22
λmin(I(θ))

as claimed.303

With Lemma 5.1 and Lemma 5.2 in hand (taking g(x) = ⟨u,∇xf(x)⟩ in the latter), all that remains is304

to relate the squared monomial norm of ⟨u,∇xf(x)⟩ (in expectation over u) to the squared monomial305

norm of f . This crucially uses the choice u ∼ N(0, In). We put together the pieces in the following306

lemma, whose detailed proof is provided in Section D.307
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Lemma 5.3. Fix θ, w ∈ RM−1. Define f(x) := ⟨w, T (x)⟩. Then308

Varpθ
(f) ≤ (4 + 4 ∥Ex∼pθ

[T (x)]∥22)
λmax(I(θ))

min(1, λmin(I(θ)))
Ex∼pθ

[∥∇xf(x)∥22].

Finally, putting together Lemma 5.3, Theorem 4.1, that lower bounds λmin(I(θ)), and Corollary B.2,309

that upper bounds λmax(I(θ)) (a straightforward consequence of the distributions in Pn,d,B having310

bounded moments), we can prove the following formal version of Theorem 1.3:311

Theorem 5.4. Fix n, d,B,N ∈ N. Pick any θ∗ ∈ ΘB and let x(1), . . . , x(N) ∼ pθ∗ be independent312

samples. Then as N → ∞, the score matching estimator θ̂SM = θ̂SM(x(1), . . . , x(N)) satisfies313

√
N(θ̂SM − θ∗) → N(0,Γ)

where ∥Γ∥op ≤ (nB)O(d3). As a corollary, for all sufficiently large N it holds with probability at314

least 0.99 that
∥∥∥θ̂SM − θ∗

∥∥∥2
2
≤ (nB)O(d3)/N .315

Proof. We apply Theorem 2.2. By Lemma B.4 and the fact that λmin(I(θ
∗)) > 0 (Theorem 4.1), the316

necessary regularity conditions are satisfied so that the score matching estimator is consistent and317

asymptotically normal, with asymptotic covariance Γ satisfying318

∥Γ∥op ≤
2C2

P (∥θ∥
2
2 Ex∼pθ∗ ∥(JT )(x)∥

4
op + Ex∼pθ∗ ∥∆T (x)∥22)

λmin(I(θ∗))2
(4)

where CP is the restricted Poincaré constant for pθ∗ with respect to linear functions in T (x) (see319

Definition 2.1). By Lemma 5.3, we have320

CP ≤ (4 + 4 ∥Ex∼pθ
[T (x)]∥22)

λmax(I(θ∗))
min(1, λmin(I(θ∗))

≤ (4 + 4B2dM2d+222d(d+1)+1)
B2dM2d+122d(d+1)+1

(nB)−O(d3)
≤ (nB)O(d3)

using parts (a) and (b) of Corollary B.2; Theorem 4.1; and the fact that M =
(
n+d
d

)
. Substituting into321

(4) and bounding the remaining terms using Lemma B.3 and a second application of Theorem 4.1,322

we conclude that ∥Γ∥op ≤ (nB)O(d3) as claimed. The high-probability bound now follows from323

Markov’s inequality; see Remark 4 in Koehler et al. (2022) for details.324

6 Conclusion325

We have provided a concrete example of an exponential family—namely, exponentials of bounded326

degree polynomials—where score matching is significantly more computationally efficient than327

maximum likelihood estimation (through optimization with a zero- or first-order oracle), while still328

achieving the same sample efficiency up to polynomial factors. While score matching was designed to329

be more computationally efficient for exponential families, the determination of statistical complexity330

is more challenging, and we give the first separation between these two methods for a general class331

of functions.332

As we have restricted our attention to the asymptotic behavior of both of the methods, an interesting333

future direction is to see how the finite sample complexities differ. One could also give a more334

fine-grained comparison between the polynomial dependencies of score matching and MLE, which335

we have not attempted to optimize. Finally, it would be interesting to relate our results with similar336

results and algorithms for learning Ising and higher-order spin glass models in the discrete setting,337

and give a more unified treatment of psueudo-likelihood or score/ratio matching algorithms in these338

different settings.339
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A Omitted Proofs from Section 3385

Theorem A.1 (Valiant and Vazirani (1985); Cook (1971)). Suppose that there is a randomized386

poly(n)-time algorithm for the following problem: given a 3-CNF formula C with n variables and at387

most 5n clauses, under the promise that C has at most one satisfying assignment, determine whether388

C is satisfiable. Then, NP = RP.389

Lemma A.2. In the setting of Definition 3.3, set d := 7 and B := 64mα+2β. Then pC,α,β ∈ Pn,d,B .390

Proof. Since αHC(x) + βG(x) is a polynomial in x1, . . . , xn of degree at most 7, there is some391

θ = θ(C, α, β) ∈ RM−1 such that ⟨θ, T (x)⟩+αHC(x)+βG(x) is a constant independent of x. Then392

h(x) exp(−αHC(x) − βG(x)) is proportional to h(x) exp(⟨θ, T (x)⟩), so pC,α,β = pθ. Moreover,393

for any clause Cj , every monomial of HCj
has coefficient at most 64 in absolute value, so every394

monomial of HC has coefficient at most 64m. Similarly, every monomial of G has coefficient at most395

2 in absolute value. Thus, ∥θ∥∞ ≤ 64mα+ 2β =: B, so pC,α,β ∈ Pn,d,B .396

Given a point v ∈ H, let O(v) := {x ∈ Rn : xivi ≥ 0;∀i ∈ [n]} denote the octant containing v, and397

let Br(v) := {x ∈ Rn : ∥x− v∥∞ ≤ r} denote the ball of radius r with respect to ℓ∞ norm.398

Lemma A.3. Let p := pC,α,β and Z := ZC,α,β for some 3-CNF C with m clauses and n variables,399

and some parameters α, β > 0. Let r ∈ (0, 1). If β ≥ 40r−2 log(4n/r), then for any v ∈ H that is400

a satisfying assignment for C,401

Pr
x∼p

(x ∈ Br(v)) ≥
e−1−81mαr2

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

.

For any w ∈ H that is not a satisfying assignment for C,402

Pr
x∼p

(x ∈ O(w)) ≤ e−α

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

.

Proof. We begin by lower bounding the probability over Br(v). Pick any clause Cℓ included in C.403

We claim that HCℓ
(v′) ≤ 81r2 for all v′ ∈ Br(v). Indeed, say that Cℓ = x̃i ∨ x̃j ∨ x̃k. Since v404

satisfies Cℓ, at least one of {fi(vi), fj(vj), fk(vk)} must be zero. Without loss of generality, say that405

fi(vi) = 0; also observe that |fj(vj)|, |fk(vk)| ≤ 2. It follows that for any v′ ∈ Br(v), |fi(v′i)| ≤ r406

and |fj(v′j)|, |fj(v′k)| ≤ 2 + r ≤ 3 (since r ≤ 1). Therefore, we have407

HCℓ
(v′) ≤ r2 · (3)2 · (3)2 = 81r2.

Summing over all m possible clauses, we have HC(v
′) ≤ 81mr2 for all v′ ∈ Br(v). Hence,408

Pr
x∼p

(x ∈ Br(v)) =
1

Z

∫
Br(v)

exp

(
−

n∑
i=1

x8
i − αHC(x)− βG(x)

)
dx

≥ e−81mαr2

Z

∫
Br(v)

exp

(
−

n∑
i=1

x8
i − βG(x)

)
dx

=
e−81mαr2

Z

(∫ 1+r

1−r

exp(−x8 − β(1− x2)2) dx

)n

≥ e−81mαr2

Z

(
1 +

1

n

)−n(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

(5)

≥ e−1−81mαr2

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

where the second inequality (5) is by Lemma A.8. Next, we upper bound the probability over409

O(w). Let Cℓ be any clause in C that is not satisfied by w. Say that Cℓ = x̃i ∨ x̃j ∨ x̃k.410

Then |fi(wi)| = |fj(wj)| = |fk(wk)| = 2. Furthermore, for any w′ ∈ Od(w), we have411
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|fi(w′
i)|, |fj(w′

j)|, |fk(w′
k)| ≥ 1, and hence HCℓ

(w′) ≥ 1. Since HC′(x) ≥ 0 for all x,C ′, we412

conclude that HC(w
′) ≥ HCℓ

(w′) ≥ 1 for all w′ ∈ O(w). In particular, this gives us413

Pr
x∼p

(x ∈ O(w)) =
1

Z

∫
O(w)

exp

(
−

n∑
i=1

x8
i − αHC(x)− βG(x)

)
dx

≤ e−α

Z

∫
O(w)

exp

(
−

n∑
i=1

x8
i − βG(x)

)
dx

=
e−α

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

as claimed.414

A.1 Hardness of approximate sampling415

Lemma A.4. Let C be a satisfiable instance of 3-SAT with m clauses and n variables. Let α, β > 0416

satisfy α ≥ 2(n+ 1) and β ≥ 6480m log(13n
√
m). Set p := pC,α,β and Z := ZC,α,β . If V ⊆ H is417

the set of satisfiable assignments for C, then418 ∑
v∈V

Pr
x∼p

(x ∈ O(v)) ≥ 1

2
.

Proof. Let v ∈ H be any assignment that satisfies C, and let w ∈ H be any assignment that does not419

satisfy C. By Lemma A.3 with r = 1/
√
162m, we have420

Pr
x∼pC

(x ∈ O(v)) ≥ Pr
x∼pC

(x ∈ Br(v))

≥ e−1−α/2

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

≥ e−1+α/2 Pr(x ∈ O(w)).

Since we chose α sufficiently large that e−1+α/2 ≥ 2n, we get that421

Pr
x∼pC

(x ∈ O(v)) ≥
∑

w∈H\V

Pr
x∼pC

(x ∈ O(w)).

Hence,422 ∑
v∈V

Pr
x∼pC

(x ∈ O(v)) ≥
∑

w∈H\V

Pr
x∼pC

(x ∈ O(w)) = 1−
∑
v∈V

Pr
x∼pC

(x ∈ O(v)).

The lemma statement follows.423

Theorem A.5. Let B ≥ Cn2 for a sufficiently large constant C. Unless RP = NP, there is no424

algorithm which takes as input an arbitrary θ ∈ ΘB and outputs a sample from a distribution Q with425

TV(Pθ, Q) ≤ 1/3 in poly(n) time.426

Proof. Suppose that such an algorithm exists. For each n ∈ N define α = 2(n + 1) and β =427

32400n log(13n
√
5n). Given a 3-CNF formula C with n variables and at most 5n clauses, we can428

compute θ = θ(C, α, β). By Lemma A.2 we have θ ∈ ΘB so long as B ≥ Cn2 for a sufficiently429

large constant C. Thus, by assumption we can generate a a sample from a distribution Q with430

TV(PC,α,β , Q) ≤ 1/3. But by Lemma A.4, we have Prx∼PC,α,β
[sign(x) satisfies C] ≥ 1/2. Thus,431

Prx∼Q[sign(x) satisfies C] ≥ 1/6. It follows that we can find a satisfying assignment with O(1)432

invocations of the sampling algorithm in expectation. By Theorem A.1 we get NP = RP.433
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A.2 Hardness of approximating zeroth-order oracle434

Lemma A.6. Fix n,m ∈ N and let α ≥ 2(n+1) and β ≥ 6480m log(13n
√
m). There is a constant435

A = A(n,m,α, β) so that the following hold for every 3-CNF formula C with n variables and m436

clauses:437

• If C is unsatisfiable, then ZC,α,β ≤ A438

• If C is satisfiable, then ZC,α,β ≥ (2/e)nA.439

Proof. If C is unsatisfiable, then by the second part of Lemma A.3, we have440

Z = Z
∑
w∈H

Pr
x∼p

(x ∈ O(w)) ≤ 2ne−α

(∫ ∞

0

exp(−xd+1 − β(1− x2)2) dx

)n

=: Aunsat.

On the other hand, if C is satisfiable, then by the first part of Lemma A.3 with r = 1/
√
162m,441

Z ≥ Z Pr
x∼p

(x ∈ Br(v)) ≥ e−1−α/2

(∫ ∞

0

exp(−xd+1 − β(1− x2)2) dx

)n

=: Asat.

Since α ≥ 2(n+ 1), we get442

Aunsat ≤ (2/e)nAsat

as claimed.443

Proof of Theorem 3.4. First, observe that the following problem is NP-hard (under randomized444

reductions): given two 3-CNF formulas C, C′ each with n variables and at most 10n clauses, where445

it is promised that exactly one of the formulas is satisfiable, determine which of the formulas is446

satisfiable. Indeed, this follows from Theorem A.1: given a 3-CNF formula C with n variables, at447

most 5n clauses, and at most one satisfying assignment, consider adjoining either the clause xi or the448

clause ¬xi to C. If C has a satisfying assignment v∗, then exactly one of the resulting formulas is449

satisfiable, and determining which one is satisfiable identifies v∗i . Repeating this procedure for all450

i ∈ [n] yields an assignment v, which satisfies C if and only if C is satisfiable.451

For each n ∈ N define α = 2(n+ 1) and β = 64800n log(13n
√
10n). Let B > 0 be chosen later.452

Suppose that there is a poly(n)-time algorithm which, given θ ∈ ΘB , computes an approximation of453

logZθ with additive error less than n log 1.16. Then given two formulas C and C′ with n variables454

and at most 10n clauses each, we can compute θ = θ(C, α, β) and θ′ = θ(C′, α, β). By Lemma A.2,455

we have θ, θ′ ∈ ΘB so long as B ≥ Cn2 for a sufficiently large constant C. Hence by assumption456

we can compute approximations Z̃θ and Z̃θ′ of Zθ and Zθ′ respectively, with multiplicative error less457

than 1.16n. However, by Lemma A.6 and the assumption that exactly one of C and C′ is satisfiable,458

we know that Z̃θ > Z̃θ′ if and only if C is satisfiable. Thus, NP = RP.459

A.3 Hardness of approximating first-order oracle460

Lemma A.7. Let C be a 3-CNF formula with m clauses and n variables, and exactly one satisfying461

assignment v∗ ∈ H. Let α = 4n and β ≥ 25920mn log(102n
√
mn), and define p := pC,α,β and462

Z := ZC,α,β . Then Ex∼p[v
∗
i xi] ≥ 1/20 for all i ∈ [n].463

Proof. Without loss of generality take i = 1 and v∗i = 1. Set r = 1/(
√
648mn), α = 4n, and464

β ≥ 40r−2 log(4n/r). We want to show that Ex∼p[x1] ≥ 1/20. We can write465

E[x1] = E[x11[x ∈ Br(v
∗)]] + E[x11[x ∈ O(v∗) \Br(v

∗)]] +
∑

v∈H\{v∗}

E[x11[x ∈ O(v)]]

≥ (1− r) Pr[x ∈ Br(v
∗)]− 2n max

v∈H\{v∗}
E[|x1|1[x ∈ O(v)]] (6)

since x1 ≥ 1− r for x ∈ Br(v
∗) and x1 ≥ 0 for x ∈ O(v∗). Now observe that on the one hand,466

Pr(x ∈ Br(v
∗)) ≥ e−1−81mαr2

Z

(∫ ∞

0

exp(−x∗ − βg(x)) dx

)n

(7)
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by Lemma A.3. On the other hand, for any v ∈ H \ {v∗},467

E[|x1|1[x ∈ O(v)]] =
1

Z

∫
O(v)

|x1| exp

(
−

n∑
i=1

x8
i − αH(x)− βG(x)

)
dx

≤ e−α

Z

∫
O(v)

|x1| exp

(
−

n∑
i=1

x8
i − βG(x)

)
dx

=
e−α

Z

(∫ ∞

0

x exp(−x8 − βg(x)) dx

)(∫ ∞

0

exp(−x8 − βg(x)) dx

)n−1

≤ 2e−α

Z

(∫ ∞

0

exp(−x8 − βg(x)) dx

)n

(8)

where the second inequality is by Lemma A.9 with k = 1. Combining (7) and (8) with (6), we have468

E[x1] ≥
(1− r)e−1−81mαr2 − 2n+1e−α

Z

(∫ ∞

0

exp(−x8 − βg(x)) dx

)n

≥ 1

10Z

(∫ ∞

0

exp(−x8 − βg(x)) dx

)n

≥ 1

10Z

∫
O(v∗)

exp

(
−

n∑
i=1

x8
i − αH(x)− βG(x)

)
dx

=
1

10
Pr[x ∈ O(v∗)]

≥ 1

20

where the second inequality is by choice of α and r; the third inequality is by nonnegativity of H(x);469

and the fourth inequality is by Lemma A.4 and uniqueness of the satisfying assignment v∗.470

Proof of Theorem 3.5. Suppose that such an algorithm exists. Set α = 4n and β =471

129600n2 log(102n2
√
5). Given a 3-CNF formula C with n variables, at most 5n clauses, and472

exactly one satisfying assignment v∗ ∈ H, we can compute θ = θ(C, α, β). Let E ∈ Rn be the473

algorithm’s estimate of ∇θ logZθ = Ex∼pC,α,β
T (x). Then

∥∥E − Ex∼pC,α,β
T (x)

∥∥
∞ < 1/20. But474

by Lemma A.7, for each i ∈ [n], the i-th entry of Ex∼pC,α,β
T (x), which corresponds to the monomial475

xi, has sign v∗i and magnitude at least 1/20. Thus, sign(Ei) = v∗i . So we can compute v∗ in476

polynomial time. By Theorem A.1, it follows that NP = RP.477

A.4 Integral bounds478

Lemma A.8. Fix β > 150 and γ ∈ [0, 1]. Define f : R → R by f(x) = γx8 + β(1 − x2)2. Pick479

any r ∈ (6/β, 0.04). Then480 ∫ ∞

0

exp(−f(x)) dx ≤
(

1

1− exp(−βr2/8)
+

2 exp(−βr/40)

r

)∫ 1+r

1−r

exp(−f(x)) dx.

In particular, for any m ∈ N, if β ≥ 40r−2 log(4m/r), then481 ∫ ∞

0

exp(−f(x)) dx ≤
(
1 +

1

m

)∫ 1+r

1−r

exp(−f(x)) dx.

Proof. Set a = 1/
√
2. For any x ∈ [a,∞) we have f ′′(x) = 56γx6 − 2β + 6βx2 ≥ β > 0482

for β > 150. Thus, f has at most one critical point in [a,∞); call this point t0. Since f ′(x) =483

8γx7−4βx(1−x2), we have f ′(1) = 8γ ≥ 0 and f ′(1−3/β) ≤ 8−4β(1−3/β)(3/β)(2−3/β) < 0.484

Thus, t0 ∈ (1− 3/β, 1]. Set r′ = r − 3/β ≥ r/2. Then485 ∫ 1+r

1−r

exp(−f(x)) dx ≥
∫ t0+r′

t0−r′
exp(−f(x)) dx.
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For every t ∈ R define I(t) =
∫ t+r′

t
exp(−f(x)) dx. Since f is β-strongly convex on [a,∞), we486

have for any t ≥ t0 that487

f(t+ r′)− f(t) ≥ r′f ′(t) +
r′2

2
β ≥ r′2

2
β

where the final inequality is because f ′(t) ≥ 0 for t ∈ [t0,∞). Thus, for any t ≥ t0,488

I(t+ r′) =

∫ t+2r′

t+r′
exp(−f(x)) dx =

∫ t+r

t

exp(−f(x+ r′)) dx ≤ exp(−βr′2/2)I(t).

By induction, for any k ∈ N it holds that I(t0 + kr′) ≤ exp(−βkr′2/2)I(t0), so489 ∫ ∞

t0

exp(−f(x)) dx =

∞∑
k=0

I(t0 + kr′) ≤ I(t0)

∞∑
k=0

exp(−βkr′2/2) =
I(t0)

1− exp(−βr′2/2)
. (9)

Similarly, for any t ∈ [a+ r′, t0], we have490

f(t− r′)− f(t) ≥ −r′f ′(t) +
r′2

2
β ≥ r′2

2
β

using β-strong convexity on [a,∞) and the bound f ′(t) ≤ 0 on [a, t0]. Thus, for any t ∈ [a, t0 − r′],491

I(t− r′) =

∫ t

t−r′
exp(−f(x)) dx =

∫ t+r′

t

exp(−f(x− r′)) dx ≤ exp(−βr′2/2)I(t),

so by induction, I(t0−kr′) ≤ exp(−β(k−1)r′2/2)I(t0−r′) for any 1 ≤ k ≤ K := ⌊(t0−a)/r′⌋.492

It follows that493 ∫ t0

t0−Kr′
exp(−f(x)) dx =

K∑
k=1

I(t0−kr′) ≤ I(t0−r′)

K∑
k=1

exp(−β(k−1)r′2/2) ≤ I(t0 − r′)

1− exp(−βr′2/2)
.

(10)
Finally, note that t0 − (K − 1)r′ ≤ a + 2r′ ≤ 0.8. For any x ∈ [0, 0.8], we have f ′(x) ≤ 8x7 −494

0.72βx = x(8x6 − 1.44β) ≤ 0, since β > 150. That is, f is non-increasing on [0, t0 − (K − 1)r′].495

It follows that496 ∫ t0−Kr′

0

exp(−f(x)) dx ≤ t0 −Kr′

r′

∫ t0−(K−1)r′

t0−Kr′
exp(−f(x)) dx

≤ 1

r′
I(t0 −Kr′)

≤ exp(−β(K − 1)r′2/2)

r′
I(t0 − r′).

Since (K − 1)r′ ≥ t0 − 0.8 ≥ 1− 3
β − 0.8 ≥ 0.1, we conclude that497 ∫ t0−Kr′

0

exp(−f(x)) dx ≤ exp(−βr′/20)

r′
I(t0 − r′). (11)

Combining (9), (10), and (11), we get498 ∫ ∞

0

exp(−f(x)) dx ≤
(

1

1− exp(−βr′2/2)
+

exp(−βr′/20)

r′

)∫ t0+r′

t0−r′
exp(−f(x)) dx.

Substituting in r′ ≥ r/2 gives the claimed result.499

Lemma A.9. Fix β ≥ 160 log(8). Then for any 1 ≤ k ≤ 8,500 ∫ ∞

0

xk exp(−x8 − β(1− x2)2) dx ≤ 2k
∫ ∞

0

exp(−x8 − β(1− x2)2) dx.
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Proof. Define a distribution q(x) ∝ exp(−x8 − β(1− x2)2) for x ∈ [0,∞). We want to show that501

Eq[x
k] ≤ 2k. Indeed,502

Eq[exp(x
8)] =

∫∞
0

exp(−β(1− x2)2) dx∫∞
0

exp(−x8 − β(1− x2)2) dx

≤
2
∫ 3/2

1/2
exp(−β(1− x2)2) dx∫∞

0
exp(−x8 − β(1− x2)2) dx

= 2Eq[exp(x
8)1[1/2 ≤ x ≤ 3/2]]

≤ 2 exp((3/2)8)

where the first inequality is by an application of Lemma A.8 with r = 1/2 and m = 1. Now by503

Jensen’s inequality we get504

Eq[x
8] ≤ logEq[exp(x

8)] = log(2) + (3/2)8 ≤ 28

and consequently, an application of Hölder inequality gives us Eq[x
k] ≤ 2k, for any 1 ≤ k ≤ 8.505

A.5 Proof of Corollary 3.6506

Proof of Corollary 3.6. Recall that log pθ(x) = log h(x) + ⟨θ, T (x)⟩ − logZθ. Therefore507

LMLE(θ) = Ê log h(x) + ⟨θ, ÊT (x)⟩ − logZθ and ∇θLMLE(θ) = ÊT (x) − ∇θ logZθ. Note508

that we can compute Ê log h(x) and ÊT (x) exactly. It follows that if we can approximate LMLE(θ)509

up to an additive error of n log 1.16 , then we can compute logZθ up to an additive error of n log 1.16.510

Similarly, if we can compute ∇θLMLE(θ) up to an additive error of 1/20, then we can compute511

∇θ logZθ up to an additive error of 1/20. This contradicts Theorems 3.4 and 3.5 respectively,512

completing the proof.513

B Moment bounds514

Lemma B.1 (Moment bound). For any θ ∈ ΘB , i ∈ [n], and ℓ ∈ N it holds that515

Ex∼pθ
xℓ
i ≤ max(2ℓℓ, BℓM ℓ2ℓ(d+1)+1).

Proof. Without loss of generality assume i = 1. Let L0 := max(ℓ, BM2d+1). Then516

Ex∼pθ
xℓ
1 ≤ Lℓ

0 + Ex∼pθ
xℓ
11[∥x∥∞ > L0]

= Lℓ
0 +

∞∑
k=0

Ex∼pθ

[
xℓ
11[2

kL0 < ∥x∥∞ ≤ 2k+1L0]
]

Now for any L ≥ L0,517

E
[
xℓ
11[L < ∥x∥∞ ≤ 2L]

]
=

1

Zθ

∫
B2L(0)\BL(0)

xℓ
1 exp

(
−

n∑
i=1

xd+1
i + ⟨θ, T (x)⟩

)
dx

≤ (2L)n

Zθ
(2L)ℓ exp

(
−Ld+1 +BM(2L)d

)
≤ (2L)n+ℓ exp(−Ld+1/2)

Zθ
.

We can lower bound Zθ as518

Zθ ≥
∫
B1/(BM)(0)

exp

(
−

n∑
i=1

xd+1
i + ⟨θ, T (x)⟩

)
dx

≥ (BM)−n exp(−n(BM)−d−1 −BM(BM)−d)

≥ e−2(BM)−n.
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Thus,519

E
[
xℓ
11[L < ∥x∥∞ ≤ 2L]

]
≤ exp

(
(n+ ℓ) log(2L)− 1

2
Ld+1 + 2 + n log(BM)

)
≤ exp

(
−1

4
Ld+1

)
since L was assumed to be sufficiently large (recall that we assume B ≥ 1). We conclude that520

Ex∼pθ
xℓ
1 ≤ Lℓ

0 +

∞∑
k=0

exp

(
−1

4
2k(d+1)Ld+1

0

)
≤ Lℓ

0 + 1 ≤ 2Lℓ
0

which completes the proof.521

Corollary B.2 (Largest eigenvalue bound). For any θ ∈ ΘB , it holds that522

Ex∼pθ
T (x)T (x)⊤ ⪯ B2dM2d+122d(d+1)+1.

We also have the following consequences:523

(a) ∥Ex∼pθ
T (x)∥22 ≤ B2dM2d+222d(d+1)+1,524

(b) λmax(I(θ)) ≤ B2dM2d+122d(d+1)+1,525

(c) Prx∼pθ
[∥x∥∞ > 2d+3nBM ] ≤ 1/2.526

Proof. Fix any u, v ∈ [M ]. Then T (x)uT (x)v =
∏n

i=1 x
γi

i for some nonnegative integers γ1, . . . , γn527

where d′ :=
∑n

i=1 γi ≤ 2d. Therefore528

Ex∼pθ
T (x)uT (x)v = Ex∼pθ

n∏
i=1

xγi

i ≤
n∏

i=1

(
Ex∼pθ

xd′

i

)γi/d
′

≤ B2dM2d22d(d+1)+1

by Holder’s inequality and Lemma B.1 (with ℓ = 2d). The claimed spectral bound follows. To prove529

(a), observe that530

∥Ex∼pθ
T (x)∥22 ≤ Ex∼pθ

∥T (x)∥22 = TrEx∼pθ
T (x)T (x)⊤ ≤ Mλmax(Ex∼pθ

T (x)T (x)⊤)

To prove (b), observe that I(θ) ⪯ Ex∼pθ
T (x)T (x)⊤. To prove (c), observe that for any i ∈ [n],531

Pr
x∼pθ

[|xi| > 2d+3nBM ] ≤ Ex∼pθ
x2d
i

(2d+3nBM)2d
≤ 1

2n
.

A union bound over i ∈ [n] completes the proof.532

Lemma B.3 (Smoothness bounds). For every θ ∈ ΘB , it holds that533

Ex∼pθ
∥∆T (x)∥22 :=

M∑
j=1

Ex∼pθ
(∆Tj(x))

2 ≤ d4B2dM2d+122d(d+1)+1

and534

Ex∼pθ
∥(JT )(x)∥2op ≤ nd2B2dM2d+122d(d+1)+1.

Proof. Fix any j ∈ [M ]; then there is a degree function d with 1 ≤ |d| ≤ d so that Tj(x) = xd =535 ∏n
i=1 x

d(i)
i . Therefore536

∆Tj(x) =
∑

k∈[n]:d(k)≥2

d(k)(d(k)− 1)xd−2{k} =: ⟨w, T (x)⟩

for some w ∈ RM with ∥w∥22 =
∑

k∈[n]:d(k)≥2 d(k)
2(d(k) − 1)2 ≤ d4. By Corollary B.2, we537

conclude that538

Ex∼pθ
(∆Tj(x))

2 = Ex∼pθ
⟨w, T (x)⟩2 ≤ n2d4B4dM4d+224d(d+2)+1.
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Summing over j ∈ [M ] gives the first claimed bound. For the second bound, observe that539

Ex∼pθ
∥(JT )(x)∥4op ≤ Ex∼pθ

∥(JT )(x)∥4F = Ex∼pθ

 M∑
j=1

n∑
i=1

(
∂

∂xi
Tj(x)

)2
2

.

For any j ∈ [M ] and i ∈ [n], there is some degree function d with |d| ≤ d and ∂
∂xi

Tj(x) =540

|d| · xd−{i}. Thus, by Holder’s inequality and Lemma B.1 (with ℓ = 4d), we get541

Ex∼pθ

 M∑
j=1

n∑
i=1

(
∂

∂xi
Tj(x)

)2
2

=
∑

j,j′∈[M ]

∑
i,i′∈[n]

Ex∼pθ

(
∂

∂xi
Tj(x)

)2(
∂

∂xi′
Tj′(x)

)2

≤ M2n2d4B4dM4d24d(d+2)+1

which proves the second bound.542

The following regularity conditions are sufficient for consistency and asymptotic normality of543

score matching, assuming that the Restricted Poincaré constant is finite and λmin(I(θ∗)) > 0 (see544

Proposition 2 in Forbes and Lauritzen (2015) together with Lemma 1 in Koehler et al. (2022)). We545

show that these conditions hold for our chosen exponential family.546

Lemma B.4 (Regularity conditions). For any θ ∈ RM , the quantities Ex∼pθ
∥∇h(x)∥42,547

Ex∼pθ
∥∆T (x)∥22, and Ex∼pθ

∥(JT )(x)∥4op are all finite. Moreover, pθ(x) → 0 and ∥∇xpθ(x)∥2 →548

0 as ∥x∥2 → ∞.549

Proof. Both of the quantities ∥∇h(x)∥42 and ∥∆T (x)∥22 can be written as a polynomial in x. Finite-550

ness of the expectation under pθ follows from Holder’s inequality and Lemma B.1 (with parameter B551

set to ∥θ∥∞). Finiteness of Ex∼pθ
∥(JT )(x)∥4op is shown in Lemma B.3 (again, with B := ∥θ∥∞).552

The decay condition pθ(x) → 0 holds because log pθ(x) + logZθ = −
∑n

i=1 x
d+1
i + ⟨θ, T (x)⟩. For553

x ∈ Rn with L ≤ ∥x∥∞ ≤ 2L, the RHS is at most −Ld+1 +M ∥θ∥∞ (2L)d, which goes to −∞ as554

L → ∞. A similar bound shows that ∥∇xpθ(x)∥2 → 0.555

C Omitted Proofs from Section 4556

Proof of Lemma 4.2. We use the fact that the Legendre polynomials Lk(x) =
1
2k

∑k
j=0

(
k
j

)2
(x−557

1)k−j(x+ 1)j , for integers 0 ≤ k ≤ d, form an orthogonal basis for the vector space R[x]≤d with558

respect to L2[−1, 1] (see e.g. Koepf (1998)). We consider the normalized versions L̂k =
√

2k+1
2 Lk,559

so that
∥∥∥L̂k

∥∥∥
L2[−1,1]

= 1. By tensorization, the set of products of Legendre polynomials560

L̂d(x) =

n∏
i=1

L̂d(i)(xi),

as d ranges over degree functions with |d| ≤ d, form an orthonormal basis for R[x1, . . . , xn]≤d with561

respect to L2([−1, 1]n).562

Using the formula for Lk, we obtain that the sum of absolute values of coefficients of Lk (in the563

monomial basis) is at most 1
2k

∑k
j=0

(
k
j

)2
2k = 2k. By the bound ∥·∥2 ≤ ∥·∥1 and the definition of564

L̂k,565 ∥∥∥L̂k

∥∥∥2
mon

≤ 2k + 1

2
∥Lk∥2mon ≤ 2k + 1

2
22k

and hence for any degree function d with |d| ≤ d,566 ∥∥∥L̂d

∥∥∥2
mon

=

n∏
i=1

∥∥∥L̂d(i)

∥∥∥2
mon

≤
n∏

i=1

2d(i) + 1

2
22d(i)

≤
n∏

i=1

ed(i)22d(i) ≤ (4e)d.

18



Consider any polynomial f ∈ R[x1, . . . , xn]≤d, and write f =
∑

|d|≤d adL̂d. By orthonormality, it567

holds that
∑

|d|≤d a
2
d = ∥f∥2L2([−1,1]n). Thus, by the triangle inequality and Cauchy-Schwarz,568

∥p∥2mon =

∥∥∥∥∥∥
∑
|d|≤d

adL̂d

∥∥∥∥∥∥
2

mon

≤
∑
|d|≤d

a2d ·
∑
|d|≤d

∥∥∥L̂d

∥∥∥2
mon

≤ ∥p∥2L2([−1,1]n)

(
n+ d

d

)
(4e)d

as claimed.569

Proof of Lemma 4.3. Let f ∈ R[x1, . . . , xn]≤d be a polynomial of degree at most d in x1, . . . , xn.570

Define g(x) = f(x)− Ex∼pf(x). Set ϵ = 1/(2(d+ 1)MRd(n+B)) and let (Wi)i∈I be ℓ∞-balls571

of radius ϵ partitioning {x ∈ Rn : ∥x∥∞ ≤ R}. Define random variable X ∼ p|{∥X∥∞ ≤ R} and572

let ι ∈ I be the random index so that X ∈ Bι. Then573

Varp(f) = Ex∼p[g(x)
2]

≥ 1

2
E[g(X)2]

=
1

2
EιEX [g(X)2|X ∈ Wι]

where the inequality uses guarantee (c) of Corollary B.2 that Prx∼p[∥x∥∞ > R] ≤ 1/2.574

Thus, there exists some ι∗ ∈ I such that EX [g(X)2|X ∈ Wι∗ ] ≤ 2Varp(f). Let q : Rn → R+ be575

the density function of X|X ∈ Wι∗ . Since q(x) ∝ p(x)1[x ∈ Wι∗ ], for any u, v ∈ Wι∗ we have that576

q(u)

q(v)
=

p(u)

p(v)
=

h(u) exp(⟨θ, T (u)⟩)
h(v) exp(⟨θ, T (v)⟩)

= exp

(
n∑

i=1

vd+1
i − ud+1

i + ⟨θ, T (u)− T (v)⟩

)
.

Applying Lemma C.1, we get that577

q(u)

q(v)
≤ exp

(
n(d+ 1)Rd ∥u− v∥∞ +MB ∥T (u)− T (v)∥∞

)
≤ exp

(
(n+B) ·M(d+ 1)Rd ∥u− v∥∞

)
≤ exp(2ϵ(n+B) ·M(d+ 1)Rd)

≤ exp(1)

by choice of ϵ. It follows that if Ũ is the uniform distribution on Wι∗ , then q(x) ≥ e−1Ũ(x) for all578

x ∈ Rn. Thus,579

Varp(f) ≥
1

2
EX [g(X)2|X ∈ Wι∗ ] ≥

1

2e
Ex∼Ũ [g(x)

2] ≥ 1

2e
VarŨ (g) =

1

2e
VarŨ (f)

as desired.580

Lemma C.1. Fix R > 0. For any degree function d : [n] → N with |d| ≤ d, and for any u, v ∈ Rn581

with ∥u∥∞ , ∥v∥∞ ≤ R, it holds that582

|ud − vd| ≤ dRd−1 ∥u− v∥∞ .

Proof. Define m(x) = xd =
∏n

i=1 x
d(i)
i . Then583

|m(u)−m(v)| ≤ ∥u− v∥∞ sup
x∈BR(0)

∥∇xm(x)∥1

= ∥u− v∥∞ sup
x∈BR(0)

∑
i∈[n]:d(i)>0

αi

n∏
j=1

x
d(i)−1[i=j]
i

≤ ∥u− v∥∞ · dRd−1

as claimed.584
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Proof of Lemma 4.4. By Lemma 4.3, there is some z ∈ Rn with ∥z∥∞ ≤ R and some ϵ ≥585

1/(2(d + 1)MRd(n + B)) so that if Ũ is the uniform distribution on {x ∈ Rn : ∥x− z∥∞ ≤ ϵ},586

then587

Varp(f) ≥
1

2e
VarŨ (f).

Define g : Rn → R by g(x) = f(ϵx+ z)− EŨf . Then by Lemma 4.2,588

∥g∥2mon ≤ (4e)dMEx∼Unif([−1,1]n)g(x)
2.

= (4e)dM VarŨ (f)

≤ (4e)d+1M Varp(f).

Write f(x) =
∑

1≤|d|≤d αdxd and g(x) =
∑

1≤|d|≤d βdxd. We know that f(x) = g(ϵ−1(x−z))+589

EŨf . Thus, for any nonzero degree function d, we have590

αd =
∑
d′≥d
|d′|≤d

ϵ−|d′|(−z)d
′−dβd′ .

Thus |αd| ≤ ϵ−dRd ∥β∥1 ≤ ϵ−dRd
√
M ∥g∥mon, and so summing over monomials gives591

∥f∥2mon ≤ M2ϵ−2dR2d ∥g∥2mon ≤ (4e)d+1M3ϵ−2dR2d Varp(f).

Substituting in the choice of ϵ from Lemma 4.3 completes the proof.592

D Omitted Proofs from Section 5593

Proof of Lemma 5.1. We have594

Varpθ
(f) = Ex∼pθ

[f(x)2]− Ex∼pθ
[f(x)]2

= w⊤Ex∼pθ
[T (x)T (x)⊤]w − w⊤Ex∼pθ

[T (x)]Ex∼pθ
[T (x)]⊤w

= w⊤I(θ)w,
and since

∥w∥22 λmin(I(θ)) ≤ w⊤I(θ)w ≤ ∥w∥22 λmax(I(θ),
the lemma statement follows.595

Proof of Lemma 5.3. Since f(x) =
∑

1≤|d|≤d wdxd, we have for any u ∈ Rn that596

⟨u,∇xf(x)⟩ =
n∑

i=1

ui

∑
0≤|d|<d

(1 + d(i))wd+{i}xd = c(u) +
∑

1≤|d|<d

w̃(u)dxd

where c(u) :=
∑n

i=1 uiw{i} and w̃(u)d :=
∑n

i=1 ui(1 + d(i))wd+{i}. But now597

Ex∼pθ
[∥∇xf(x)∥22] = Ex∼pθ

Eu∼N(0,In)⟨u,∇xf(x)⟩2

= Eu∼N(0,In)Ex∼pθ
(c(u) + ⟨w̃(u), T (x)⟩)2

≥ Eu∼N(0,In)
c(u)2 + ∥w̃(u)∥22

4 + 4 ∥Ex∼pθ
[T (x)]∥22

min(1, λmin(I(θ))).

where the last inequality is by Lemma 5.2. Finally,598

Eu∼N(0,In)

[
c(u)2 + ∥w̃(u)∥22

]
=

∑
0≤|d|<d

Eu∼N(0,In)

( n∑
i=1

ui(1 + d(i))wd+{i}

)2


=
∑

0≤|d|<d

n∑
i=1

(1 + d(i))2w2
d+{i} ≥ ∥w∥22

20



where the second equality is because E[uiuj ] = 1[i = j] for all i, j ∈ [n], and the last inequality is599

because every term w2
d in ∥w∥22 appears in at least one of the terms of the previous summation (and600

has coefficient at least one). Putting everything together gives601

Ex∼pθ
[∥∇xf(x)∥22] ≥

∥w∥22
4 + 4 ∥Ex∼pθ

[T (x)]∥22
min(1, λmin(I(θ)))

≥ 1

4 + 4 ∥E[T (x)]∥22

min(1, λmin(I(θ)))
λmax(I(θ))

Varpθ
(f)

where the last inequality is by Lemma 5.1.602
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