
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

AUTOMATED CAPABILITY EVALUATION OF
FOUNDATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Current evaluation frameworks for foundation models rely heavily on static, manually
curated benchmarks, limiting their ability to capture the full breadth of model capabilities.
This paper introduces Active learning for Capability Evaluation (ACE), a novel framework
for scalable, automated, and fine-grained evaluation of foundation models. ACE leverages
the knowledge embedded in powerful frontier models to decompose a domain into semanti-
cally meaningful capabilities and generates diverse evaluation tasks, significantly reducing
human effort. In Mathematics, ACE generated 433 capabilities and 11,800 tasks, covering
94% of Wikipedia-defined skills in the domain while introducing novel, coherent ones.
To maximize efficiency, ACE fits a capability model in latent semantic space, allowing
reliable approximation of a subject model’s performance by evaluating only a subset of
capabilities via active learning. It reaches within 0.01 RMSE of exhaustive evaluation
by evaluating less than half of capabilities. Compared to static datasets, ACE provides
more balanced coverage and uncovers fine-grained differences that aggregate metrics fail
to capture. Our results demonstrate that ACE provides a more complete and informative
picture of model capabilities, which is essential for safe and well-informed deployment of
foundation models.

1 INTRODUCTION

As foundation models grow in scale, generality, and influence across various domains, the challenge of
understanding what they can and cannot do becomes increasingly urgent. Capability evaluations serve
multiple purposes: they help practitioners select the right model for a given task, guide developers in
improving model behavior, and most importantly ensure trustworthiness and safety, particularly in high-stakes
domains such as cybersecurity, healthcare, and social engineering. Yet the current evaluation practices are
dominated by static, human-curated benchmarks. While useful, these benchmarks quickly fall behind the
pace of model development, missing fine-grained skills and introducing costly blind spots (Chen et al., 2021;
Cobbe et al., 2021; Dua et al., 2019; Hendrycks et al., 2020; 2021b; Phan et al., 2025; Srivastava et al., 2022;
Zellers et al., 2019; AI Security Institute, UK, 2024).

We argue that capability evaluation must itself become adaptive. Instead of freezing tasks in advance, one
needs a process that can discover new capabilities as models evolve, generate meaningful and diverse tasks to
probe them, and adaptively focus on the most informative regions of the capability space Zhang et al. (2024a);
Prabhu et al. (2024). Recent advances in frontier and large language models (LLMs) make such adaptivity
possible. LLMs can decompose a domain into semantically meaningful capabilities and generate diverse
and contextually rich tasks for each capability. However, this power introduces a scalability problem: even a
single domain may yield thousands of candidate capabilities, each requiring extensive task sets for reliable
scoring. For commercial models (e.g., GPT-4, Claude, Gemini) with usage costs, exhaustive evaluation is
prohibitively expensive.

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

We, therefore, propose to formulate capability evaluation as the problem of approximating a latent capability
function where the goal is to estimate a model’s competence across a large set of capabilities without
exhaustively evaluating every one. The central research question becomes how to approximate this function
effectively when both the number of potential capabilities and the size of task sets required for reliable
scoring are large. Motivated by this question, we present Active Learning for Capability Evaluation
(ACE), a framework for automated, scalable, and fine-grained evaluation of foundation models. ACE
operates in two stages: (1) it uses powerful frontier models to construct structured capability hierarchies and
generate tasks with reference solutions; (2) it actively evaluates a subject model by learning its capability
function in a latent space and selectively probing informative capabilities. The framework codebase is
available at https://anonymous.4open.science/r/ace-7EAF for reproducibility and creating
new evaluation benchmarks.

Our contributions are as follows:

• Reframing capability evaluation. We introduce ACE as the first framework that formulates
evaluation as approximating a latent capability function, rather than exhaustively scoring on fixed
benchmarks. We further show that the latent space, constructed via pretrained text encoders and
dimensionality reduction, reliably preserves semantic relationships between capabilities, making
principled generalization possible.

• Adaptive coverage and efficiency. By combining LLM-based capability decomposition with active
learning in latent semantic space, ACE simultaneously expands coverage (capturing overlooked
skills) and improves efficiency (minimizing evaluation cost). This resolves the long-standing
trade-off between breadth and scalability in evaluation.

• Large-scale empirical validation. In Mathematics, spanning 433 capabilities and 11,800 tasks,
ACE reveals capability- and area-level differences invisible to aggregate metrics. It recovers nearly
the entire Wikipedia capability space, showing that automated benchmarks can surpass static,
human-curated ones in coverage, granularity, and cost-effectiveness.

2 AUTOMATED CAPABILITY EVALUATION

2.1 PROBLEM STATEMENT

In our framework, we define a capability as an atomic skill or competence of the subject model (e.g., solving
linear equations, factoring polynomials, or summarizing a passage). Capabilities are probed through tasks,
each of which consists of a problem and a reference solution used for scoring. We formulate capability
evaluation as the problem of approximating a latent capability function that reflects how well a model
performs across a large space of candidate skills. Following Lu et al. (2025), the model under evaluation is
referred to as the subject model. To construct the capability hierarchy and generate tasks autonomously, our
framework relies on a set of frontier models with domain knowledge and reasoning ability. These models,
collectively referred to as the scientist models, are responsible for proposing candidate capabilities, producing
task instances, and supplying reference solutions for evaluation.

Let C = {ci}Ni=1 denote the set of candidate capabilities produced by the scientist models. For evaluating
a subject model, Ω, each capability ci can be probed using an evaluation module Evaluate(·; Ω) that
generates multiple tasks, computes their outcomes, and returns an aggregated score si ∈ R+ for the subject
model. Collectively, these scores define the latent capability function,

fΩ : C → R+, where, fΩ(ci) = E[Evaluate(ci; Ω)].

For simplicity, we omit Ω from the notation when it is clear from context. Obtaining a subject model’s
capability score via Evaluate() is expensive as it requires designing, solving, and verifying tens of tasks.

2

https://anonymous.4open.science/r/ace-7EAF

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

Therefore, the objective is to approximate f accurately while minimizing the number of calls to Evaluate().
This differs from static benchmarks, which predefine a fixed subset {ci}mi=1 ⊂ C and estimate f by exhaustive
evaluation on all tasks. Instead, we treat evaluation as an active learning problem in which we reliably
estimate model performance across tasks while minimizing the number of capability evaluations by exploiting
semantic relationships across C.

Two challenges make this problem non-trivial:

• Coverage. The space of candidate capabilities is vast and open-ended; without principled generation,
important skills may be missed.

• Efficiency. Even when capabilities are well-defined, an exhaustive evaluation could be expensive.
A scalable framework must identify a small, informative subset that suffices to approximate the
capability function reliably.

ACE addresses these challenges through two components: structured capability discovery, which organizes C
into meaningful hierarchies, and latent modeling with active learning, which adaptively approximates f .

2.2 CAPABILITY HIERARCHY AND TASK DESIGN

Capability Hierarchy. Building on the definition of capabilities above, we next describe how they are
organized and operationalized. At the top level, a domain, e.g., Mathematics, is divided into broad areas
such as Algebra, Calculus, or Probability and Statistics; each area is then refined into specific capabilities,
for example, Probability and Statistics is further broken down into capabilities such as Bayesian Inference,
Markov Chain Probabilities, etc. This hierarchy is extensible and can support multiple levels of granularity
depending on evaluation needs (Figure 1).

Task Instantiation. For each capability, the scientist models generate a set of tasks, each consisting of a
problem and reference solution. Task formats are domain-dependent: in structured domains like Mathematics,
problems usually admit unique solutions that can be deterministically verified; in open-ended domains such as
summarization or scientific writing, multiple valid responses may exist, requiring more nuanced evaluation.

Scoring. The performance of a subject model on a task can be quantified either as a binary score, e.g., solved
(1) vs. not solved (0), in domains with well-defined solutions, or as a continuous value in [0, 1] to capture
partial correctness or graded quality in open-ended domains. To obtain reliable capability-level estimates,
the subject model is evaluated on a sufficiently large set of tasks through Evaluate(), which computes
and aggregates task-level scores. By default, the mean is used; when tasks vary in difficulty or importance,
weighted averages are applied, and in settings sensitive to outliers, the median is preferred.

Verification. Since the problem and reference solution for each task are generated automatically by the
scientist models, we introduce a verification step. First, verification models review reference solutions for
correctness. To further safeguard quality, we conduct targeted human inspection of outputs from both the
task generation and verification stages (Appendix D). This ensures that the ground truth used for evaluation
is reliable and reduces the risk of propagating errors during scoring. Second, subject model responses are
evaluated against these references through Evaluate(). For structured tasks with deterministic answers
(e.g., Mathematics), correctness is established through direct comparison. For close-ended solutions, exact
match will be considered for evaluation. For open-ended tasks, we employ a judge model that scores responses
against the task and reference solution on criteria such as accuracy, completeness, coherence, and relevance.

The judge model is provided with the task description, the reference solution, and the subject model’s
response. Judge prompts can be calibrated, and multiple judges can be ensembled to improve robustness. This
layered approach ensures that both the ground-truth references and the subject model’s outputs are evaluated
rigorously and consistently. An abstract overview of our pipeline is provided in Figure 1 (Right).

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Evaluated & Selected
Capabilities

Unevaluated
Capabilities

Human Expert

Embed/Reduce
Dimensionality

Task Generation

Review the proposed task and
solution. Provide step-by-step

reasoning, identify potential flaws or
ambiguities, and issue a final

judgment on validity.

Scientist Model

Design K tasks for the given
capability, each accompanied

by a reference solution.

Verifier

Compare the subject’s
solution against the reference
solution. Assign a numerical
score based on accuracy,

completeness, and
adherence to scoring criteria.

Capability Evaluation

Capability Function
Approximation

Select
Candidates

Judge Model

Given the following
task, produce the most

accurate solution
possibleSubject Model

Generate N broad, non-
overlapping areas within the
<domain>. For each area,

produce M distinct
capabilities that

comprehensively span the
area’s scope.

Scientist Model

Capability Generation

Candidate Pool

Mathematics

Domain

Area

Capability Differentiation

Task1

Geometry Calculus

Integration

TaskN

Validate and refine
selected tasks and
solutions to ensure
domain fidelity and

correctness.

Figure 1: An overview of ACE. Left: Example capability hierarchy in Mathematics. Right: The ACE
pipeline combining automated capability generation, task generation and verification, and active learning in
latent space for efficient model evaluation.

2.3 LATENT MODELING OF CAPABILITIES

Embedding. We assume that capabilities in a domain are specified in a discrete space T . For example, T
could be the text space, where each capability is described by a short natural language statement. Direct
function approximation in this space is challenging. We, therefore embed capabilities into a continuous latent
space Z ⊂ Rd using a pretrained encoder E : T → Z . Each capability ti ∈ T is mapped to zi = E(ti),
yielding dense semantic representations that support generalization across related capabilities. We assume
the underlying capability function, f , is smooth in this space. This assumption is supported by empirical
observations that LLMs exhibit correlated performance across related skills (Wang et al., 2024; Siska et al.,
2024; Ilić & Gignac, 2024).

A key requirement of our approach is that semantically similar capabilities in T are mapped to nearby points
in Z . This property is essential for reliable generalization and uncertainty modeling. In Section 3.4, we
empirically demonstrate that modern encoders satisfy this condition. Given an initial set of capability-score
pairs {(ti, si)}Ni=1, with scores si obtained from the subject model, the learning task reduces to approximating
the capability function f from the set of embedded pairs {(zi, si)}Ni=1.

Function Approximation via Active Learning. Exhaustive evaluation of all capabilities in C could be very
expensive, as each call to Evaluate() involves generating, verifying, and scoring many tasks. To address
this, we employ active learning to adaptively select informative capabilities. At each iteration, we compute
the active learning acquisition scores1 across unevaluated capabilities, select the optimal candidate, invoke
Evaluate() on it, and add it to the training set for approximating the capability function. We then update
the regression model. For regression, we adopt Gaussian Processes (GP), which provide both predictive means
and uncertainty estimates, making it suitable for active learning (Malkomes, 2019; Gorissen et al., 2009;
Fu, 2022; Riis et al., 2021; Chabanet et al., 2021). In our implementation we adopt the variance-reduction
strategy of Cohn (1996), which selects the candidate capability that yields the largest expected reduction in
posterior variance over the domain of f . This choice offers strong sample efficiency when evaluation budget
is limited. Further details on GP regression and acquisition alternatives are provided in Appendix B.

1Acquisition function in active learning refers to the function used for selecting a candidate in each round.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Dimensionality Reduction. Capability embeddings are often high-dimensional, which, due to curse of
dimensionality, can hinder GP regression. To address this, we apply dimensionality reduction φ : Rd →
Rd′

where d′ ≪ d, using methods such as Principal Component Analysis (PCA) or t-SNE (Van der Maaten
& Hinton, 2008).

Bringing everything together, Algorithm 1 in Appendix A presents the full active learning procedure for
capability function approximation.

3 EXPERIMENTS

3.1 SETUP

To assess the ACE framework, we focus on the domain of mathematics, which offers a hierarchical structure
and well-defined problem formats, making it a natural testbed for capability-centric evaluation. In our
experiments, we employ two scientist models, OpenAI gpt-4o2 and Anthropic Claude 3.7 Sonnet3.4
The capability hierarchy is generated by the gpt-4o model, while tasks were generated by both models.
To construct a diverse capability set, the scientist model is first prompted to propose broad and distinct
areas within Mathematics. For each area, it is further prompted to produce specific capabilities in the
modified METR5 format following Lu et al. (2025). Each capability includes a name, description, and a
corresponding Python class, which specifies exemplar tasks, task-solving instructions, and the scoring
method. Full prompts for area- and capability-level generation are provided in Appendix F.1 and F.2.

These capabilities serve as input to the task generation pipeline. The pipeline begins by generating multiple
diverse problems per capability. Each problem is then solved using the task-solving instructions specified in
the capability’s Python class to produce a solution. Together, the problem and solution form a complete
task. We verify each task using a separate LLM call to confirm the correctness of the solution and to filter out
incorrectly solved or unsolved tasks. Full task generation prompts are provided in Appendix F.3.

For evaluation, we use the Inspect framework (AI Security Institute, UK, 2024), which dynamically
generates evaluation scripts based on the task-solving instructions and scoring method defined in each
capability’s Python class. For Mathematics, we adopt a binary scoring scheme: the subject model
receives a score of 1 if its solution matches the reference solution, and 0 otherwise.

Following this procedure, we generate a benchmark of 433 distinct capabilities spanning 10 diverse mathe-
matical areas. Although ACE does not require pre-generated task sets, for the purposes of experimentation
and analysis we generated 11,800 tasks, with 27 tasks per capability on average. Experiments proceed
in four stages: (i) coverage and task validity, (ii) capability benchmarking, (iii) validation of latent-space
structure, and (iv) adaptive evaluation that approximates the capability function with active learning.

3.2 COVERAGE AND TASK VALIDITY

Our first question is whether ACE-generated benchmarks provide comprehensive coverage and valid, dis-
criminative tasks compared to established resources? We compare three capability sets: (i) 287 ground-truth
capabilities from Wikipedia (all sub-areas of mathematics from Wikipedia6), (ii) our ACE-generated synthetic
benchmark, and (iii) Static human-curated math datasets, including MATH (Hendrycks et al., 2021b) and
GSM8K (Cobbe et al., 2021).

2https://platform.openai.com/docs/models/gpt-4o
3https://www.anthropic.com/news/claude-3.7-sonnet
4At the time of this analysis these models were the frontier models of these companies.
5https://metr.org/
6https://en.wikipedia.org/wiki/Glossary_of_areas_of_mathematics

5

https://platform.openai.com/docs/models/gpt-4o
https://www.anthropic.com/news/claude-3.7-sonnet
https://metr.org/
https://en.wikipedia.org/wiki/Glossary_of_areas_of_mathematics

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

Alge
bra

an
d F

un
cti

on
s

Arith
meti

c a
nd

Num
be

r T
he

ory
Calc

ulu
s

an
d A

na
lys

is

Diffe
ren

tia
l

Eq
ua

tio
ns

an
d

Dyn
am

ica
l S

yst
em

s

Disc
ret

e M
ath

em
ati

cs

an
d C

om
bin

ato
ric

s

Geo
metr

y a
nd

Sp
ati

al
Re

aso
nin

g
Lin

ea
r

Alge
bra

 an
d

Matr
ix T

he
ory

Math
em

ati
cal

Log
ic a

nd

Se
t T

he
ory

Math
em

ati
cal

 Mod
elin

g

an
d A

pp
lica

tio
ns

Pro
ba

bili
ty

an
d S

tat
isti

cs
0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f T
as

ks
ACE
GSM8K Dataset
MATH Dataset

(a)

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Synthetic Tasks Score

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
AT

H
Da

ta
se

t S
co

re

MATH Dataset vs Synthetic Tasks Performance by Model

o1
o3-mini

(b)

Figure 2: Coverage and validity of ACE-generated benchmarks. (a) Task distributions across mathematical
areas for ACE (orange), GSM8K dataset (blue) and MATH dataset (green). (b) Subject model performance
on MATH vs. ACE (synthetic) tasks. Stars indicate average score across all capabilities.

Wikipedia Coverage. To quantify the overlap and differences between Wikipedia and ACE capability
sets, we perform bidirectional matching analyses. Specifically, we use Qwen2.5-32B-Instruct with a
classification prompt to map each capability from a source set to the most relevant capability in the target set.
This constitutes a many-to-one matching problem: a given capability may map to a single best counterpart in
the target set, but multiple source capabilities may map to the same target. Since many-to-one mappings are
not symmetric, we conduct the analysis in both directions: Wikipedia→ ACE and ACE→Wikipedia. Here,
A→ B indicates how many of capabilities in A are covered by B.

From the perspective of Wikipedia→ ACE, 269 of 287 Wikipedia capabilities (94%) were matched to ACE
capabilities, suggesting that ACE reliably captures nearly all widely recognized mathematical skills. From
the perspective of ACE→Wikipedia, 405 of 433 ACE capabilities (93%) were covered by Wikipedia, while
the remaining 28 appear to represent novel and potentially meaningful capabilities not explicitly covered in
Wikipedia.

Dataset Coverage. To assess the coverage of static versus synthetic benchmarks, we categorize problems
from MATH and GSM8K datasets into the high-level mathematical areas defined in ACE (see Section F.4 for
details). The resulting distributions are shown in Figure 2(a). GSM8K exhibits a highly skewed distribution
with a large fraction of tasks falling into the Arithmetic and Number Theory area, while other important
areas (e.g., Differential Equations, Discrete Mathematics) are scarcely represented or entirely absent. The
MATH dataset is less skewed than GSM8K, yet it lacks coverage in areas like Differential Equations. In
contrast, ACE tasks are generated to achieve balanced coverage across all areas by design. This comparison
highlights a key limitation of static benchmarks such as GSM8K and MATH: their task distributions often
reflect dataset construction biases, leading to overrepresentation of certain skills and underrepresentation of
others. Synthetic benchmarks like ACE mitigate this issue by enabling systematic and uniform coverage
across the full capability space of the domain.

Discriminative Power of Synthetic Benchmarks. In this study we compare subject model scores on a
synthetic benchmark and the MATH dataset. To construct the synthetic benchmark for each of the seven areas
in MATH7, we generate tasks using the scientist model. For each area, we then evaluate the performance of a
subject model on synthetic tasks and the corresponding subset of MATH problems. We evaluate two subject

7Pre-algebra, Algebra, Number Theory, Counting and Probability, Geometry, Intermediate Algebra, and Pre-calculus

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

(a)

[Capability
], T-

SNE

[Capability
, Descri

ption], T-
SNE

[Area, Capability
, Descri

ption], T-
SNE

[Capability
], PCA

[Capability
, Descri

ption], PCA

[Area, Capability
, Descri

ption], PCA
0.220

0.225

0.230

0.235

0.240

0.245

0.250

RM
SE

0.240 0.240

0.231

0.244

0.236 0.236

(b)

Figure 3: (a) Area-level benchmarking: subject model scores across mathematical areas. The reported score
for each area is the average score of all capabilities within that area. (b) Semantic structure in latent space:
Effect of input text and dimensionality reduction technique on capability function approximation.

models and show the results in Figure 2(b). For both subject models, comparing the distribution of scores
across the two benchmarks reveals greater variation in scores on the synthetic benchmark. This indicates
that tasks in the synthetic benchmark span a broader range of problem types and difficulties for each area.
Consequently, this benchmark provides a more nuanced and discriminative assessment of model strengths
and weaknesses.

3.3 FINE-GRAINED BENCHMARKING

Using ACE, we perform fine-grained evaluation of four subject models on all 433 capabilities of Mathematics.
Area-level scores are computed by averaging capability-level scores. Figure 3(a) shows the results. Among
these subject models Claude-3.5-Sonnet is the strongest and most consistent performer, maintaining
high accuracy across nearly all areas. o3-mini follows closely. o1-mini performs well in Differential
Equations and Dynamical Systems, but lags behind in several other areas. Finally, Gemini-2.0-Flash
exhibits relatively low performance in areas such as Differential Equations or Calculus. These results illustrate
the value of a structured fine-grained evaluation: even among generally strong models, there are differences
in performance that may not be apparent in aggregate performance metrics.

3.4 SEMANTIC STRUCTURE IN LATENT SPACE

Reliable approximation of the capability function, f , depends on whether the latent space Z preserves
semantic relationships between capabilities. In particular, capabilities within the same area should be
embedded close to each other in Z . Two components influence the structure of the latent space: the text
encoder, which maps natural language descriptions of capabilities to high-dimensional embeddings, and the
dimensionality reduction technique used to project these embeddings into a lower-dimensional space.

We first study the effect of the text encoder in isolation. We embed a subset of 20 capabilities sampled from 5
areas of Mathematics using the OpenAI text-embedding-3-small model8(512-dimensional output).

8https://platform.openai.com/docs/guides/embeddings/

7

https://platform.openai.com/docs/guides/embeddings/

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300
Active Learning Iteration

0.23

0.24

0.25

0.26

0.27
RM

SE
o3-mini
95% CI

0 50 100 150 200 250 300
Active Learning Iteration

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Av
er

ag
e

St
an

da
rd

 D
ev

ia
tio

n

o3-mini (mean)
95% CI

Figure 4: Performance of approximating the capability function. (Left) RMSE, (Right) Uncertainty (average
standard deviation) over iterations of active learning. Shaded areas indicate 95% confidence intervals.

Each embedding is generated by concatenating the area name, capability name, and capability
description. Pairwise cosine similarity analysis reveals clear intra-area clustering (Appendix C.2),
indicating that embeddings capture meaningful semantic relations.

Next, we assess the combined effect of the text encoder and dimensionality reduction. We embed all 433
capabilities using the same encoder and project the resulting representations into a 2D latent space using
t-SNE or PCA. Figure 5 in the Appendix shows the distribution of capabilities in the latent space. Both
techniques preserve semantic relationships to varying degrees, but t-SNE produces more distinct clusters for
capabilities within each area.

Finally, we assess how the encoder input choice and dimensionality reduction affect approximation of the
capability function. Options for encoding a capability include (1) capability name, (2) capability name and
description, and (3) capability name, description, and area name. Dimensionality reduction techniques consist
of t-SNE and PCA. A Gaussian Process model is trained on 80% of the capability set, and Root Mean Square
Error (RMSE) is reported on the test set. Figure 3(b) summarizes the results. We find that including richer
input text (capability name, description, area name) and t-SNE yields the best performance.

3.5 ADAPTIVE EVALUATION FOR EFFICIENT APPROXIMATION

We conduct an ablation study of active learning in ACE to investigate the trade-off between efficiency and
accuracy in function approximation. In practical model evaluation, the candidate pool for active learning
would consist of all capabilities. For this experiment, however, we allocate 80% of the capabilities to the
candidate pool and reserve the remaining 20% as a held-out test set for measuring generalization error. A
GP model is initialized with two randomly selected capabilities from the training set and iteratively updated
through active learning. At each iteration, the capability chosen is the one that yields the largest expected
reduction in posterior variance over the domain of f (Cohn, 1996) (see Appendix B). We use the scores
of the o3-mini subject model for this study. Figure 4 presents RMSE (left), and predictive uncertainty
(right) on the test set across active learning iterations. These results indicate that by evaluating the subject
model on fewer than 50% of the capabilities (150 out of 346), the GP model achieves an RMSE within
0.01 of the target generalization error. Moreover, we observe a steady reduction in predictive uncertainty
throughout the process.9 These findings demonstrate that incorporating active learning in ACE provides
effective generalization while substantially reducing evaluation cost.

9Additionally, Figure 7 in the Appendix shows area-level scores of the subject model when the capability function is
fit on a fraction of capability scores. Note that these are reported scores only on the test set.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

4 RELATED WORK

Traditional Evaluation. Early evaluation efforts relied on static, manually curated benchmarks such as
MMLU (Hendrycks et al., 2021a), BIG-bench (Srivastava et al., 2022), and HELM (Liang et al., 2022), which
aimed for broad coverage of general knowledge and reasoning. Other datasets target specific weaknesses,
e.g., TruthfulQA (Lin et al., 2022) for factual reliability and ARC (Clark et al., 2018) for scientific reasoning.
While influential, these benchmarks are inherently static, susceptible to contamination (Deng et al., 2024),
and uneven across domains. Mathematics, for example, is relatively well served (e.g., GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021b), but many applied and professional areas lack dedicated benchmarks.
This motivates the need for adaptive frameworks that go beyond frozen datasets.

Automated Evaluation. Recent work leverages LLMs to generate, adapt, or score test cases, aiming to
scale evaluation beyond fixed datasets. Model-assisted methods such as Dynabench (Kiela et al., 2021) and
Adaptive Testing (Ribeiro & Lundberg, 2022) iteratively harden test sets. Structured approaches build task
hierarchies (DARG (Zhang et al., 2024b), EvalTree (Zeng et al., 2025), TaskBench (Shen et al., 2024)), while
autonomous systems such as AutoBencher (Li et al., 2025) and Automated Capability Discovery (Lu et al.,
2025) aim for fully generative benchmarks. Other approaches optimize for particular objectives such as
difficulty (Li et al., 2024), ethical reasoning (Jiang et al., 2025; Brown et al., 2025), or adversarial robustness
(HarmBench (Mazeika et al., 2024)). These methods reveal important gaps overlooked by static resources but
often remain constrained by predefined evaluation goals or reliance on existing benchmarks.

Efficiency and Benchmark Optimization. Benchmark generation is costly, and recent work explores active
learning to target the most informative samples. Hassan et al. (Hassan et al., 2024) use clustering to expose
rare, safety-critical cases, while Li et al. (Li et al., 2024) introduce RL-based subset selection for efficient
evaluation. Despite these advances, many approaches remain tied to fixed datasets or optimize for narrow
objectives, leaving open the broader challenge of discovering new capabilities and efficiently approximating
performance across large and evolving skill spaces.

5 CONCLUSION

We introduced ACE, a framework for scalable, structured, and efficient evaluation of foundation models.
ACE leverages frontier models to construct semantically meaningful capability hierarchies and associated
evaluation tasks for a target domain. It further employs active learning in a latent semantic space to efficiently
estimate a model’s capability function and uncover strengths and weaknesses with minimal evaluation cost.

A limitation of the ACE framework is its reliance on frontier (scientist) models to generate, verify, and score
tasks. While practical and scalable, this design raises valid questions about model hallucination, biases,
and data contamination; however, employing several scientist models mitigate such risks to some extent.
Designing a multi-agent framework where agents debate and critic each other’s work could reduce some
of these risks (Du et al., 2023; Liang et al., 2023). In addition, to estimate the true label (e.g., correctness
of a generated solution), we can adopt statistical models such as the Dawid–Skene model (Dawid & Skene,
1979) or frameworks based on Item Response Theory (Baker, 2001), both of which are designed to aggregate
noisy or uncertain judgments from multiple models. Adopting these techniques in the context of LLM-based
evaluation is a promising direction for future work.

We believe ACE is a step toward scalable and adaptive evaluation of foundation models. As these models
are increasingly deployed in high-stakes domains, the demand for fine-grained and cost-effective evaluation
grows. By integrating frontier models with active learning, ACE lays the groundwork for rigorous and reliable
evaluation.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

ACE reduces human labor and improves scalability in capability evaluation, but it also relies on frontier
“scientist models” to generate, verify, and score tasks. This design introduces risks of hallucination, bias
in generated content, and potential data contamination from pretraining corpora. We mitigate these risks
through multi-pass verification, targeted human inspection, and transparent reporting of limitations. Future
extensions of ACE could incorporate multi-agent debate mechanisms or statistical aggregation methods (e.g.,
Dawid–Skene, Item Response Theory) to further improve robustness.

Our experiments are restricted to mathematics, where problems and solutions can be deterministically verified,
minimizing risks of direct harm. While the framework could be extended to sensitive domains such as
healthcare or law, such applications should proceed only with domain-specific oversight, ethical safeguards,
and regulatory compliance (e.g., IRB approval, privacy protections).

By providing fine-grained, cost-efficient, and extensible evaluation, ACE can improve transparency and
reliability in assessing foundation models, uncovering strengths and weaknesses that aggregate metrics
overlook. However, uncritical adoption carries risks: benchmarks generated by ACE may inherit biases or
errors from underlying models, and use in socially sensitive contexts without safeguards could exacerbate
inequities. We emphasize that ACE should be applied responsibly, with human oversight and alignment to
community standards on fairness, accountability, and transparency.

7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The ACE framework source code,
along with experimental configurations, training/test splits, acquisition functions, and analysis scripts, is
open-sourced in our GitHub repository (https://anonymous.4open.science/r/ace-7EAF). A
complete description of generated capabilities, tasks, evaluation procedures, and prompts is provided in
the appendix and supplementary materials. In addition, we release JSON files containing all capabilities,
areas, and scores produced by the scientist models, along with subject model scores and predictions from
active learning. These resources make it possible for researchers to reproduce our benchmark construction
end-to-end or to reuse any component of the framework independently.

REFERENCES

AI Security Institute, UK. Inspect AI: Framework for Large Language Model Evaluations. https:
//github.com/UKGovernmentBEIS/inspect_ai, 2024. Accessed: 2024-05.

Frank B Baker. The basics of item response theory. ERIC, 2001.

Davis Brown, Prithvi Balehannina, Helen Jin, Shreya Havaldar, Hamed Hassani, and Eric Wong. Adaptively
evaluating models with task elicitation, 2025. URL https://arxiv.org/abs/2503.01986.

Sylvain Chabanet, Hind Bril El-Haouzi, and Philippe Thomas. Coupling digital simulation and machine
learning metamodel through an active learning approach in industry 4.0 context. Computers in Industry,
133:103529, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

10

https://anonymous.4open.science/r/ace-7EAF
https://github.com/UKGovernmentBEIS/inspect_ai
https://github.com/UKGovernmentBEIS/inspect_ai
https://arxiv.org/abs/2503.01986

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems, 2021. URL https://arxiv. org/abs/2110.14168, 9, 2021.

David A Cohn. Neural network exploration using optimal experiment design. Neural networks, 9(6):
1071–1083, 1996.

Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer error-rates using
the em algorithm. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(1):20–28, 1979.

Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Investigating data contam-
ination in modern benchmarks for large language models, 2024. URL https://arxiv.org/abs/
2311.09783.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factuality and
reasoning in language models through multiagent debate, 2023. URL https://arxiv. org/abs/2305.14325, 3,
2023.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. Drop:
A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv preprint
arXiv:1903.00161, 2019.

Siwei Fu. Active learning for solving expensive optimization problems, 2022.

Dirk Gorissen, Karel Crombecq, Ivo Couckuyt, and Tom Dhaene. Automatic approximation of expensive
functions with active learning. Foundations of Computational, Intelligence Volume 1: Learning and
Approximation, pp. 35–62, 2009.

Sabit Hassan, Anthony Sicilia, and Malihe Alikhani. Active learning for robust and representative llm
generation in safety-critical scenarios, 2024. URL https://arxiv.org/abs/2410.11114.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding, 2021a. URL https://arxiv.org/abs/
2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS, 2021b.

David Ilić and Gilles E Gignac. Evidence of interrelated cognitive-like capabilities in large language models:
Indications of artificial general intelligence or achievement? Intelligence, 106:101858, 2024.

Han Jiang, Xiaoyuan Yi, Zhihua Wei, Ziang Xiao, Shu Wang, and Xing Xie. Raising the bar: Investigating
the values of large language models via generative evolving testing, 2025. URL https://arxiv.org/
abs/2406.14230.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vidgen,
Grusha Prasad, Amanpreet Singh, Pratik Ringshia, et al. Dynabench: Rethinking benchmarking in nlp.
arXiv preprint arXiv:2104.14337, 2021.

Xiang Lisa Li, Farzaan Kaiyom, Evan Zheran Liu, Yifan Mai, Percy Liang, and Tatsunori Hashimoto.
Autobencher: Towards declarative benchmark construction, 2025. URL https://arxiv.org/abs/
2407.08351.

11

https://arxiv.org/abs/2311.09783
https://arxiv.org/abs/2311.09783
https://arxiv.org/abs/2410.11114
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2406.14230
https://arxiv.org/abs/2406.14230
https://arxiv.org/abs/2407.08351
https://arxiv.org/abs/2407.08351

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Yang Li, Jie Ma, Miguel Ballesteros, Yassine Benajiba, and Graham Horwood. Active evaluation acquisition
for efficient llm benchmarking, 2024. URL https://arxiv.org/abs/2410.05952.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang,
Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language models. arXiv
preprint arXiv:2211.09110, 2022.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent debate. arXiv
preprint arXiv:2305.19118, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human falsehoods,
2022. URL https://arxiv.org/abs/2109.07958.

Cong Lu, Shengran Hu, and Jeff Clune. Automated capability discovery via model self-exploration. arXiv
preprint arXiv:2502.07577, 2025.

David JC MacKay. Information-based objective functions for active data selection. Neural computation, 4(4):
590–604, 1992.

Gustavo Malkomes. Automating active learning for gaussian processes. 2019.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee, Nathaniel
Li, Steven Basart, Bo Li, David Forsyth, and Dan Hendrycks. Harmbench: A standardized evaluation
framework for automated red teaming and robust refusal, 2024. URL https://arxiv.org/abs/
2402.04249.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang,
Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint arXiv:2501.14249,
2025.

Ameya Prabhu, Vishaal Udandarao, Philip Torr, Matthias Bethge, Adel Bibi, and Samuel Albanie. Efficient
lifelong model evaluation in an era of rapid progress. Advances in Neural Information Processing Systems,
37:74089–74121, 2024.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning, volume 2.
MIT press Cambridge, MA, 2006.

Marco Tulio Ribeiro and Scott Lundberg. Adaptive testing and debugging of NLP models. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 3253–3267, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.230. URL
https://aclanthology.org/2022.acl-long.230/.

Christoffer Riis, Francisco Antunes, Gérald Gurtner, Francisco Camara Pereira, Luis Delgado, and Carlos
M Lima Azevedo. Active learning metamodels for atm simulation modeling. In 11th SESAR Innovation
Days, 2021.

Matthias Seeger. Pac-bayesian generalisation error bounds for gaussian process classification. Journal of
machine learning research, 3(Oct):233–269, 2002.

Sambu Seo, Marko Wallat, Thore Graepel, and Klaus Obermayer. Gaussian process regression: Active data
selection and test point rejection. In Mustererkennung 2000, pp. 27–34. Springer, 2000.

12

https://arxiv.org/abs/2410.05952
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2402.04249
https://arxiv.org/abs/2402.04249
https://aclanthology.org/2022.acl-long.230/

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,
and Yueting Zhuang. Taskbench: Benchmarking large language models for task automation, 2024. URL
https://arxiv.org/abs/2311.18760.

Charlotte Siska, Katerina Marazopoulou, Melissa Ailem, and James Bono. Examining the robustness of llm
evaluation to the distributional assumptions of benchmarks. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 10406–10421, 2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615, 2022.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

Xiaoqiang Wang, Lingfei Wu, Tengfei Ma, and Bang Liu. Fac2e: Better understanding large language model
capabilities by dissociating language and cognition. arXiv preprint arXiv:2403.00126, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Zhiyuan Zeng, Yizhong Wang, Hannaneh Hajishirzi, and Pang Wei Koh. Evaltree: Profiling language model
weaknesses via hierarchical capability trees, 2025. URL https://arxiv.org/abs/2503.08893.

Zhehao Zhang, Jiaao Chen, and Diyi Yang. Darg: Dynamic evaluation of large language models via adaptive
reasoning graph. Advances in Neural Information Processing Systems, 37:135904–135942, 2024a.

Zhehao Zhang, Jiaao Chen, and Diyi Yang. Darg: Dynamic evaluation of large language models via adaptive
reasoning graph, 2024b. URL https://arxiv.org/abs/2406.17271.

13

https://arxiv.org/abs/2311.18760
https://arxiv.org/abs/2503.08893
https://arxiv.org/abs/2406.17271

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

APPENDIX

A ACTIVE LEARNING FOR CAPABILITY FUNCTION APPROXIMATION

Algorithm 1: Active Learning for Capability Function Approximation
Input:

Initial capability set C = {ci}Ni=1 generated by the scientist models
Pretrained encoder E : C → Rd

Dimensionality reduction method φ (e.g., PCA, t-SNE)
Evaluation module Evaluate() to score a capability
Active learning acquisition function α(·)
Target latent dimension d′ ≪ d

Initialization:
1. Encode all capabilities: Z = {E(ci)|ci ∈ C}
2. Reduce dimensionality: Z′ = φ(Z) ∈ RN×d′

3. Initialize training set D by randomly selecting a small number of capabilities (e.g., 2) from C and
scoring them using Evaluate()

// Active learning
while stopping conditions not met do

1. Fit GP model, f , on current D (non-parametric)
2. Compute acquisition scores: ∀z′i ∈ Z′ \ D, αi ← α(z′i; f)
3. Select the best candidate: j ← argmaxi αi

4. Obtain capability score: sj ← Evaluate(cj)
5. Update training set: D ← D ∪ {(z′j , sj)}

end
return D

B ACTIVE LEARNING WITH GAUSSIAN PROCESSES

A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint Gaussian
distribution (Rasmussen & Williams, 2006). It is fully specified by a mean function m(x) = E[f(x)] and a
covariance (kernel) function k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]:

f(x) ∼ GP(m(x), k(x,x′))

Consider a regression task with training data D = {(xi, yi)}Ni=1 where yi = f(xi) + ϵi with ϵi ∼ N (0, σ2
n).

For a test input x∗, the predictive distribution is Gaussian:

p(f∗|x∗,D) = N (E[f∗],V[f∗]),

with predictive mean and variance:

E[f∗] = k∗
⊤(K+ σ2

nI)
−1y (1)

V[f∗] = k(x∗,x∗)− k∗
⊤(K+ σ2

nI)
−1k∗, (2)

in which K is the kernel matrix with Kij = k(xi,xj), y = {y1, . . . , yN}, and k∗ =
[k(x1,x∗), ..., k(xN ,x∗)]

⊤.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

The function-space view interprets the GP as defining a distribution over functions, where the kernel function
encodes prior assumptions such as smoothness. A common choice is the squared exponential kernel:

k(x,x′) = σ2
f exp

(
−||x− x′||2

2l2

)
.

GPs naturally lend themselves to active learning due to the availability of posterior mean and variance
estimates. In particular two well-known approaches leverage GP posterior variance for active learning.
MacKay (1992) aims at maximizing the expected information gain by selecting the data where the model has
maximum variance. This is performed by selecting points that maximize the posterior variance:

x∗ = argmax
x∈U

V[f(x)], (3)

where U is the pool of unlabeled candidates. This is equivalent to maximizing the reduction in entropy H of
the GP posterior:

x∗ = argmax
x∈U

H[p(f |D)]− Ey|x[H[p(f |D ∪ (x, y))]].

It is possible to perform optimization of Eq. 2 with respect to x∗ using, e.g., gradient ascent (Seo et al., 2000).

The second method is motivated by minimizing the generalization error in terms of mean squared error (MSE).
Using the bias-variance decomposition of MSE and making some assumptions with respect to the magnitude
of bias, it can be shown that minimizing MSE can be approximated by choosing the candidate point that
reduces the expected predictive variance over the entire input space (Cohn, 1996):

x∗ = argmin
x∈U

Ey|x

[∫
V[f(x′)|D ∪ (x, y)]dx′

]
(4)

In practice the integration in Eq. 4 can be approximated by Monte Carlo or by calculating the variance over a
holdout set.

For GPs, both approaches can be approximated efficiently as the posterior covariance matrix can be updated
incrementally using rank-1 updates (Seeger, 2002). The active learning process iteratively fits the GP to
current labeled data, L, computes the acquisition score (Eq. 3 or 4) for all x ∈ U , selects x∗ that maximizes
the acquisition score, queries for y∗ at x∗, and updates the labeled and candidate sets, L ← L ∪ {(x∗, y∗)},
U ← U \ {x∗}.

C CAPABILITY DETAILS

In this section, we provide details on the generated capabilities, their embeddings used in our method, and
LLM scores evaluated on each capability.

C.1 CAPABILITY EMBEDDINGS

Figure 5 shows the distribution of capabilities in a latent 2D space for t-SNE (left) and PCA (right) dimen-
sionality reduction techniques.

C.2 CAPABILITY SIMILARITY HEATMAP

As expected, capability embeddings generated from capability names, areas, and descriptions carry the
semantic similarity of the capabilities. Therefore, as the heatmap in Figure 6 shows, capability embeddings
within the same area have higher cosine similarity compared to the capabilities in other areas.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

60 40 20 0 20 40 60

40

20

0

20

40

60

t-SNE Embedding

0.4 0.2 0.0 0.2 0.4 0.6

0.2

0.0

0.2

0.4

0.6
PCA Embeddings

Discrete Mathematics and
Combinatorics
Calculus and Analysis
Differential Equations and
Dynamical Systems
Mathematical Modeling and
Applications
Arithmetic and Number Theory
Algebra and Functions
Mathematical Logic and Set
Theory
Probability and Statistics
Geometry and Spatial Reasoning
Linear Algebra and Matrix
Theory

Figure 5: Two-dimensional representation of Mathematics capabilities using t-SNE (left) and PCA (right).
Each point corresponds to a capability, and colors indicate high-level areas. Stars indicate the mean of
capability representations for each area.

D MANUAL INSPECTION OF TASKS

To evaluate the quality of the task generation pipeline and the reliability of the automated verification step,
we conducted a manual inspection of a subset of tasks. Specifically, we randomly selected 12 capabilities
across three mathematical areas. For each capability, we sampled 15 tasks, resulting in a total of 180
problem–solution pairs. Each task’s problem, solution, and verification model output were manually reviewed
by solving the problem and comparing the correct solution to the automated verification outcome.

The results indicate a high degree of agreement between human and automated verification. Of the 180 tasks,
we observed the following confusion matrix: True Positives = 158, False Negatives = 14, False Positives = 1,
and True Negatives = 7. This corresponds to a precision of 99.4%, recall of 91.9%, and overall verification
accuracy of 91.7%. These results support the conclusion that the automated pipeline for task generation
and verification is reliable for evaluating model capabilities at scale. Despite strong performance in task
generation, our inspection surfaced a few recurring issues that are important to address in future iterations of
the framework:

1. Rounding Errors. Infrequent but notable rounding inaccuracies occurred when intermediate
numerical results were used in subsequent calculations. These rounding issues sometimes led to
small deviations in final answers and highlight the need for improved numerical precision handling.

2. Lack of Task Diversity. Many tasks within a capability were structurally or conceptually similar.
Increasing task diversity—across difficulty levels and subtopics—would yield a more comprehensive
assessment of model performance.

3. Inter-Task Dependencies. Since multiple tasks were generated from a single prompt (to minimize
repetition), some questions inadvertently referenced earlier tasks. Future prompts should explicitly
enforce task independence to avoid this issue.

4. Parsing Limitations. Some task-solving instructions required the model to output the final answer
after an "ANSWER" keyword. The current parsing logic does not support multi-line answers, which
can result in incomplete ground truth extraction and premature task rejection during verification.
Improving parsing robustness would reduce unnecessary filtering of valid tasks.

Addressing these issues will further enhance the robustness and reliability of automated task generation and
verification.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

rat
ion

al_
sim

plif
ica

tio
n

matr
ix_

alg
eb

ra

ad
va

nce
d_s

ym
bo

lic

fun
cti

on
al_

eq
ua

tio
ns

gra
ph

_th
eo

ry_
com

bin
ato

ric
s

com
bin

ato
ria

l_e
nu

mera
tio

n

dis
cre

te_
pro

ba
bili

ty

com
bin

ato
ria

l_d
esi

gn
s

cal
cul

us_
lim

its

cal
cul

us_
int

eg
rat

ion

ser
ies

_co
nv

erg
en

ce

cal
cul

us_
dif

fer
en

tia
tio

n

3d
_ge

om
etr

y_c
ha

llen
ge

s

ad
va

nce
d_g

eo
metr

y_p
roo

fs

ge
om

etr
ic_

con
str

uct
ion

s

spa
tia

l_tr
an

sfo
rm

ati
on

s

ad
va

nce
d_p

rob
ab

ilit
y_s

tat
isti

cs

de
scr

ipt
ive

_st
ati

stic
s

ba
ye

sia
n_i

nfe
ren

ce

pro
ba

bili
ty_

dis
trib

uti
on

s

rational_simplification

matrix_algebra

advanced_symbolic

functional_equations

graph_theory_combinatorics

combinatorial_enumeration

discrete_probability

combinatorial_designs

calculus_limits

calculus_integration

series_convergence

calculus_differentiation

3d_geometry_challenges

advanced_geometry_proofs

geometric_constructions

spatial_transformations

advanced_probability_statistics

descriptive_statistics

bayesian_inference

probability_distributions

1.00 0.35 0.52 0.44 0.21 0.36 0.35 0.33 0.35 0.33 0.38 0.31 0.26 0.28 0.38 0.29 0.26 0.28 0.29 0.30

0.35 1.00 0.54 0.53 0.37 0.36 0.33 0.33 0.46 0.49 0.42 0.42 0.35 0.58 0.50 0.43 0.40 0.39 0.36 0.33

0.52 0.54 1.00 0.55 0.36 0.38 0.38 0.36 0.37 0.40 0.39 0.40 0.33 0.53 0.44 0.34 0.49 0.36 0.27 0.23

0.44 0.53 0.55 1.00 0.42 0.45 0.43 0.46 0.57 0.60 0.50 0.62 0.42 0.54 0.46 0.35 0.48 0.36 0.33 0.40

0.21 0.37 0.36 0.42 1.00 0.56 0.56 0.61 0.38 0.35 0.41 0.34 0.41 0.42 0.46 0.32 0.49 0.38 0.29 0.42

0.36 0.36 0.38 0.45 0.56 1.00 0.64 0.81 0.36 0.36 0.44 0.36 0.37 0.34 0.49 0.31 0.48 0.42 0.40 0.50

0.35 0.33 0.38 0.43 0.56 0.64 1.00 0.65 0.33 0.32 0.42 0.36 0.36 0.36 0.42 0.27 0.59 0.43 0.48 0.68

0.33 0.33 0.36 0.46 0.61 0.81 0.65 1.00 0.38 0.39 0.42 0.40 0.47 0.37 0.52 0.34 0.46 0.38 0.33 0.43

0.35 0.46 0.37 0.57 0.38 0.36 0.33 0.38 1.00 0.76 0.62 0.70 0.49 0.47 0.51 0.37 0.46 0.40 0.34 0.37

0.33 0.49 0.40 0.60 0.35 0.36 0.32 0.39 0.76 1.00 0.63 0.76 0.49 0.48 0.47 0.36 0.47 0.38 0.34 0.32

0.38 0.42 0.39 0.50 0.41 0.44 0.42 0.42 0.62 0.63 1.00 0.56 0.40 0.35 0.51 0.35 0.46 0.41 0.38 0.36

0.31 0.42 0.40 0.62 0.34 0.36 0.36 0.40 0.70 0.76 0.56 1.00 0.42 0.45 0.43 0.32 0.47 0.41 0.27 0.34

0.26 0.35 0.33 0.42 0.41 0.37 0.36 0.47 0.49 0.49 0.40 0.42 1.00 0.58 0.69 0.56 0.40 0.33 0.24 0.34

0.28 0.58 0.53 0.54 0.42 0.34 0.36 0.37 0.47 0.48 0.35 0.45 0.58 1.00 0.58 0.42 0.57 0.33 0.36 0.36

0.38 0.50 0.44 0.46 0.46 0.49 0.42 0.52 0.51 0.47 0.51 0.43 0.69 0.58 1.00 0.59 0.45 0.50 0.35 0.36

0.29 0.43 0.34 0.35 0.32 0.31 0.27 0.34 0.37 0.36 0.35 0.32 0.56 0.42 0.59 1.00 0.34 0.39 0.21 0.28

0.26 0.40 0.49 0.48 0.49 0.48 0.59 0.46 0.46 0.47 0.46 0.47 0.40 0.57 0.45 0.34 1.00 0.57 0.51 0.66

0.28 0.39 0.36 0.36 0.38 0.42 0.43 0.38 0.40 0.38 0.41 0.41 0.33 0.33 0.50 0.39 0.57 1.00 0.46 0.54

0.29 0.36 0.27 0.33 0.29 0.40 0.48 0.33 0.34 0.34 0.38 0.27 0.24 0.36 0.35 0.21 0.51 0.46 1.00 0.52

0.30 0.33 0.23 0.40 0.42 0.50 0.68 0.43 0.37 0.32 0.36 0.34 0.34 0.36 0.36 0.28 0.66 0.54 0.52 1.00

Embedding Similarity Heatmap

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: The heatmap illustrating the cosine similarity matrix of capability embeddings. The diagonal red
squares show the intra-group similarity between capabilities within the same area.

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Figure 7: Area level evaluation of the subject model over fractions of training data via active learning.

E FINE-GRAINED EVALUATION OF ACTIVE LEARNING

F PROMPTS

F.1 CAPABILITY AREA GENERATION PROMPTS

Capability Area Generation User Prompt

You are an expert in designing capabilities to assess the abilities of large language models (LLMs). Identify
num_areas broad and diverse areas for capability generation for the domain domain. Each area should
cover num_capabilities_per_area capabilities, which will be generated in the next step. The
areas should be relevant to the domain domain, should be high level and should not overlap with each
other.

Respond precisely in the following format:

RESPONSE JSON:

{
"area_0": <STR>,
"area_1": <STR>,
...

}

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

F.2 CAPABILITY GENERATION PROMPTS

Capability Generation System Prompt

You are an expert in designing capabilities to assess the abilities of large language models (LLMs). Your
goal is to create novel, diverse capabilities that can reveal the breadth and depth of LLMs’ skills within the
specified domain. You will be particularly rewarded for uncovering capabilities that could reveal surprising
abilities or failures of LLMs. Valid capabilities will be added to a capability archive. In each generation,
previously accepted capabilities for the specified domain will be provided as context.

Each capability should be designed according to the METR Standard, which requires the following Python
format:
class Capability:

@staticmethod
def repr_tasks() -> dict[str, dict]:

Returns a mapping from task ids to arbitrary data that is
specific to each capability.
Each capability should contain 3 distinct tasks
in the dictionary, labelled "1", "2" and "3".
Each task should be a dictionary with the following keys:
- "problem": The problem or question text.
- "answer": The expected answer to the problem.
... implementation ...

@staticmethod
def get_instructions(t: dict) -> str:

This method should return a string containing
initial capability instructions.
... implementation ...

@staticmethod
def score(t: dict, submission: str) -> float | None:

‘score‘ is called after the subject model submits a solution.
Return 0 on failure and 1 on success.
Throwing an exception will result in a score of 0.
... implementation ...

The following points should be considered while designing the Capability class:
1. The instructions should enforce the final answer in the form "ANSWER: $ANSWER" ONLY for

those capabilities that expect a short and objective answer. It should not be part of instructions for
capabilities with long-form, detailed and subjective answers for e.g. explanations, proofs, essays,
etc.

2. If the instructions enforces the final answer in the form "ANSWER: $ANSWER", then the score
function should first call a helper function to parse the submission string and extract the answer:

def parse_submission(submission: str) -> str:
Parse the submission string to extract the answer
based on the "ANSWER" keyword.
Return an empty string if no match is found.

3. The score function should use a helper function that uses LLM as a judge to score the submission:

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

def evaluate_with_llm_judge(
submission: str,
target: str,

) -> bool:
Evaluate the submission using an LLM judge.

4. DO NOT re-implement the parse_submission() or evaluate_with_llm_judge()
helper functions.

Respond precisely in the following format, including the JSON start and end markers:

THOUGHT: <THOUGHT>

RESPONSE JSON:
{

"capability_0": <JSON>,
"capability_1": <JSON>,
...

}

In <THOUGHT>, briefly think and reason about what kind of capability you want to propose. In <JSON>,
provide a JSON response of the new capability with the following fields:

- "name": A concise, descriptive label (lowercase, no spaces, e.g.,
math_competition_algebra).

- "description": A clear explanation of what the capability entails (e.g., The capability consists of
challenging competition mathematics problems in algebra).

- "domain": The domain to which the capability belongs to (e.g., math, physics, etc.).
- "class": The fully implemented Python code for the Capability class. This should be easily

human-readable.
Do not download additional data from the internet or access the file system.

Be creative and design capabilities that can distinguish between models with varying levels of expertise,
but ensure that the capability remains relevant to the domain. Also ensure that the proposed capabilities
ARE DISTINCT compared to the existing capabilities. Names of all existing capabilities will be provided.

Your response will be automatically parsed so ensure it adheres to the specified format.

Capability Generation User Prompt

A sample capability JSON is provided below. The names of all existing capabilities are also provided.

Sample capability:
sample_capability_json

Existing capability names:
prev_capabilities

Generate num_gen_capabilities new, interesting capabilities for the "capability_area" area
within the domain domain.

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

F.3 TASK GENERATION PROMPTS

Task Generation System Prompt

You are an expert in designing tasks for a given capability. The name, description, domain and a few
sample tasks for the capability will be provided. You will be particularly rewarded for designing diverse
tasks spanning a wide range of difficulty levels for the given capability.

Respond precisely in the following format, including the JSON start and end markers:

THOUGHT: <THOUGHT>
RESPONSE JSON:
{

"task_1": <STR>,
"task_2": <STR>,
...

}

In <THOUGHT>, briefly think and reason about what kind of tasks you want to propose.
In <STR>, provide a string containing the task text.

Be careful to make sure that all proposed tasks are unique. Also ensure that all tasks are within the scope of
the given capability. If the text includes mathematical symbols or equations, ensure they are appropriately
formatted using LaTeX. Ensure the single backlash "\" included in a LateX string is escaped as "\\". For
example, the LaTeX string "\[2x+3 = 11\]" should be formatted as "\\[2x+3 = 11\\]" in the task text.

Your response will be automatically parsed so ensure it adheres to the specified format.

Task Generation User Prompt

Design tasks for the following capability:

Name: capability_name
Description: capability_description
Domain: capability_domain
Sample tasks:
capability_sample_tasks

Generate num_gen_tasks new tasks for the given capability.

Task Solver System Prompt

You are an expert in completing tasks for the capability_name capability in the
capability_domain domain. Complete the given task by carefully following the provided instruc-
tions.

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

Task Verifier System Prompt

You are an expert in evaluating answers to problems for the capability_domain domain. Your
goal is to determine whether the provided answer correctly and completely solves the given problem.
You must carefully analyze the problem and the answer, and provide a judgement along with your reasoning.

Respond precisely in the following format:

THOUGHT: <THOUGHT>
JUDGEMENT:
<JUDGEMENT>

In <THOUGHT>, briefly explain your reasoning process for evaluating the answer.
In <JUDGEMENT>, respond with "yes" if the answer correctly and completely solves the problem,
otherwise respond with "no".

Be objective and thorough in your evaluation. Ensure that your reasoning is clear and directly supports
your judgement.

Task Verifier User Prompt

Evaluate the following problem and answer for the capability_name capability in the
capability_domain domain:

Problem: problem
Answer: answer

Determine if the answer correctly and completely solves the problem. Provide your reasoning and
judgement.

F.4 STATIC DATASET COMPARISON PROMPT

Task Verifier System Prompt

Available mathematical areas:

area_1
area_2
...

Problem: question

Answer with ONLY the exact area name from the list above, or none if the problem does not fit any of
the given areas.

Task Verifier User Prompt

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

You are an expert in mathematical problem categorization.

Given the list of area names and a math word problem, respond with ONLY the exact area name from
the list. If the problem does not fit any of the given areas, respond with none. No explanations, no extra
text.

23

	Introduction
	Automated Capability Evaluation
	Problem Statement
	Capability Hierarchy and Task Design
	Latent Modeling of Capabilities

	Experiments
	Setup
	Coverage and Task Validity
	Fine-Grained Benchmarking
	Semantic Structure in Latent Space
	Adaptive Evaluation for Efficient Approximation

	Related Work
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Active Learning for Capability Function Approximation
	Active Learning with Gaussian Processes
	Capability Details
	Capability Embeddings
	Capability Similarity Heatmap

	Manual Inspection of Tasks
	Fine-Grained Evaluation of Active Learning
	Prompts
	Capability Area Generation Prompts
	Capability Generation Prompts
	Task Generation Prompts
	Static Dataset Comparison Prompt

