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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 EGOCENTRIC VIEW RECONSTRUCTION

To train the egocentric view reconstruction, we fine-tune a pre-trained LDM inpainting model (Rom-
bach et al., 2022). Based on the PyTorch Lightning framework (Falcon & The PyTorch Lightning
team, 2019), we set the training settings included a batch size of 3, a learning rate of 1× 10−5, and
the AdamW optimizer (Loshchilov & Hutter, 2017), for a total of 5 epochs. All experiments are
conducted on a single NVIDIA RTX 4090 GPU.

A.1.2 3D EGOCENTRIC HAND POSE ESTIMATOR

To train a 3D egocentric hand pose estimator from exocentric inputs, we adopt a backbone as ViT-
224 (Dosovitskiy et al., 2020) and a regressor as MLP, which consists of two linear layers and one
ReLU (Nair & Hinton, 2010) between linear layers. The input and output feature dimensions of the
first linear layer are 768 and 512, and those of the last linear layer are 512 and 126. Based on the
PyTorch framework (Paszke et al., 2019), we set the training settings included a batch size of 64, a
learning rate of 1 × 10−4, a criterion of MSE loss, and the Adam optimizer (Kingma & Ba, 2015),
for a total of 100 epochs. All experiments were conducted on a single NVIDIA RTX 4090 GPU.

A.2 MORE RESULTS

Figure A: Results for backbones of egocentric view reconstruction. Compared to backbones (i.e.,
MAE (He et al., 2022) and MAT (Li et al., 2022)), LDM (Rombach et al., 2022) outperforms with
respect to hand-object interaction and background regions for all cases.

A.2.1 BACKBONES OF EGOCENTRIC VIEW RECONSTRUCTION

Table A: Results for backbones of egocentric view reconstruc-
tion. Compared to backbones (i.e., MAE (He et al., 2022) and
MAT (Li et al., 2022)), LDM (Rombach et al., 2022) outperforms
in all metrics.

Backbones FID↓ PSNR↑ SSIM↑ LPIPS↓
MAE (He et al., 2022) 169.91 24.623 0.4148 0.5041
MAT (Li et al., 2022) 89.933 28.922 0.4370 0.4758
MAT (Refined) (Li et al., 2022) 68.628 29.750 0.4731 0.4506
LDM (Rombach et al., 2022) 41.334 31.171 0.4814 0.3476

Since egocentric view recon-
struction closely resembles the
image completion task, we com-
pare our method with state-of-
the-art image completion back-
bones, such as MAE (He et al.,
2022), MAT (Li et al., 2022),
and LDM (Rombach et al.,
2022). Specifically, MAE spe-
cializes in mask-based image
encoding, making it effective
for filling missing pixel regions.
MAT, a transformer-based model, excels at restoring large missing areas through long-range con-
text modeling. LDM, serving as the baseline for EgoWorld, differs from the others in its ability
to condition on diverse modalities such as text and pose. As shown in Fig. A, our LDM-based
method reconstructs egocentric view images in a more natural and high-quality manner compared
to other methods. Although the vanilla MAT model performs well in filling missing areas, it often
struggles to maintain consistency with the surrounding content. For example, subtle differences in
table color are noticeable. To address this, we develop a refined version of MAT that uses random
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Figure B: Results for 3D egocentric hand pose estimator. Green and red poses indicate the ground-
truth and estimated pose, respectively. Estimated poses are well-aligned with the ground-truth both
in 2D and 3D spaces.

Figure C: Results for incorrect textual description guidance of egocentric view reconstruction.
The red-colored texts represent incorrect descriptions, which are reflected as conditioning inputs for
EgoWorld to generate egocentric images.

patch masking and recovery. However, this approach tends to fail in preserving detailed local in-
teractions, such as hand-object interaction. In contrast, our LDM-based method, which operates by
adding and removing noise in latent space, achieves coherent restoration not only in local regions
but also in preserving consistency with existing areas. Moreover, as shown in Table A, our approach
outperforms all other methods quantitatively across all evaluation metrics. Therefore, based on these
results, we adopt LDM as the backbone for EgoWorld.

A.2.2 3D EGOCENTRIC HAND POSE ESTIMATOR OF EXOCENTRIC VIEW OBSERVATION

To validate the effectiveness of our newly proposed exocentric image-based 3D egocentric hand
pose estimator, we conduct a qualitative analysis. As shown in Fig. B, given a single exocentric
view image as input, our model predicts 3D hand poses that closely resemble the ground-truth. This
demonstrates that the estimator is highly useful in the exocentric view observation stage for calcu-
lating the translation matrix, as well as in the egocentric view reconstruction stage for initializing
the hand pose map.

A.2.3 INCORRECT TEXTUAL DESCRIPTION GUIDANCE OF EGOCENTRIC VIEW
RECONSTRUCTION

To evaluate the effect of textual description guidance of the egocentric view reconstruction, we
intentionally provide an incorrect textual description that does not match the exocentric image. As
shown in Fig. C, the object in the egocentric view is generated to match the object described in the
description. From this result, we observe two key insights: (1) the final egocentric image can vary
depending on the output of the VLM, highlighting the importance of the VLM’s performance; and
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Figure D: Results for generation consistency of egocentric view reconstruction. With four itera-
tions, the outputs are consistent, reliable, and similar to ground-truth.

(2) even when arbitrary exocentric images are fed, our model performed sufficient generalization to
unseen scenarios.

A.2.4 GENERATION CONSISTENCY OF EGOCENTRIC VIEW RECONSTRUCTION

To evaluate the consistency of our generative model, we generated egocentric images multiple times
under identical conditions. As shown in Fig. D, we present four outputs generated from the same
exocentric image and corresponding sparse map, and our model consistently produces coherent
egocentric images across runs. Despite the inherent variability in generative models, our method
achieves stable and reliable exocentric-to-egocentric view translation, demonstrating its robustness
and consistency.

A.2.5 DIRECT CAMERA POSE REGRESSION OF EXOCENTRIC VIEW OBSERVATION

Table B: Results for direct camera pose regression of ex-
ocentric view observation. The case of egocentric hand
pose estimation showcases a higher score than that of direct
camera pose regression.

Methods FID↓ PSNR↑ SSIM↑ LPIPS↓
Direct Egocentric Camera Regression 44.907 27.821 0.4311 0.4809
Egocentric Hand Pose Estimation (Ours) 44.323 28.897 0.4408 0.4590

To compare the performance of the
egocentric hand pose estimation and
direct camera pose regression, we ad-
ditionally build a camera pose regres-
sion model with ViT (Dosovitskiy
et al., 2020) and MLP layers. Specifi-
cally, since it is targeted to estimate 4
× 4 relative pose (i.e., exocentric-to-
egocentric camera pose) estimation,
we formulate it as 6D rotation repre-
sentation for continuity in neural networks (Zhou et al., 2019). As shown in Tab. B, we test on
H2O (Kwon et al., 2021) unseen action scenarios, and found little difference between these settings.
Since we utilize the estimated egocentric hand pose to generate the natural and plausible hand-object
interaction image in the egocentric view reconstruction stage, our approach has more advantages in
terms of image quality.

A.2.6 WHOLE-BODY POSE ESTIMATION OF EXOCENTRIC VIEW OBSERVATION

Table C: Results for whole-body pose estimation of exo-
centric view observation. The case of hand pose estimation
showcases a higher score than that of whole-body pose esti-
mation.

Methods MPJPE (left hand) ↓ MPJPE (right hand) ↓
Whole-Body Pose Estimation 19.52 19.49
Hand Pose Estimation (Ours) 1.005 1.161

Instead of using hand pose estima-
tion models, we review the whole-
body pose estimation models (e.g.,
Hand4Whole (Moon et al., 2022) or
OSX (Lin et al., 2023)) and find that
the performance was lower than that
of the hand pose estimation as shown
in Tab. C. In general, hand-object in-
teraction situations in an exocentric
view are often the case where a per-
son is occluded by a desk or a table. However, since the hand is relatively visible, the performance
is more robust than the whole-body case.
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Table F: Results for impact of individual sub-modules. Whether using the ground-truth or not,
EgoWorld outperforms baselines which use the ground-truth.

Methods Pose Depth Text FID↓ PSNR↑ SSIM↑ LPIPS↓
pix2pixHD (Wang et al., 2018) GT – – 211.10 24.420 0.2854 0.6127
pixelNeRF (Yu et al., 2021) GT (Camera) – – 251.76 27.061 0.3950 0.8159
CFLD (Lu et al., 2024) GT – – 50.953 28.529 0.4324 0.4593

EgoWorld (Ours) Prediction Prediction Prediction (Gemini Team et al. (2023)) 42.323 28.897 0.4408 0.4590
Prediction GT Prediction (Qwen-VL Bai et al. (2023)) 41.198 29.002 0.4420 0.4379
GT Prediction Prediction (Qwen-VL Bai et al. (2023)) 37.040 30.017 0.4487 0.4092
GT GT Prediction (Gemini Team et al. (2023)) 34.891 30.998 0.4501 0.3820
GT GT Prediction (Qwen-VL Bai et al. (2023)) 33.284 31.620 0.4566 0.3780

A.2.7 REPRESENTATIONS OF ESTIMATED HAND POSE

Table D: Results for representations of estimated hand
pose. The representation of the hand pose does not have a
significant impact on performance.

Representations FID↓ PSNR↑ SSIM↑ LPIPS↓
MANO (Romero et al., 2017) 33.208 31.632 0.4609 0.3771
Keypoints (Ours) 33.284 31.620 0.4566 0.3780

To examine the effect of MANO
(Romero et al., 2017) representation
for hand pose, we build an egocentric
MANO parameter estimator based on
ViT (Dosovitskiy et al., 2020) and
MLP layers, and validate final results
on the egocentric view reconstruction
stage. As shown in Tab. D, we test on
H2O (Kwon et al., 2021) unseen ac-
tions scenarios, and the trivial difference of performance on MANO is revealed. Although MANO
representation contains richer visual information than keypoints, it does not exert a strong influence
in the egocentric view reconstruction stage, as hand pose is fused with other modalities, i.e., sparse
maps and text descriptions.

A.2.8 ROBUSTNESS ON NOISY INPUT

Table E: Results for robustness on noisy input. EgoWorld
showcases robustness on noisy exocentric input and allevi-
ates the heavy reliance on off-the-shelf estimators.

Test Sets Methods FID↓ PSNR↑ SSIM↑ LPIPS↓
All Cases pix2pixHD (Wang et al., 2018) 211.10 24.420 0.2854 0.6127

pixelNeRF (Yu et al., 2021) 251.76 27.061 0.3950 0.8159
CFLD (Lu et al., 2024) 50.953 28.529 0.4324 0.4593
EgoWorld (Ours) 33.284 31.620 0.4566 0.3780

Noisy Cases pix2pixHD (Wang et al., 2018) 233.09 23.897 0.2612 0.6553
pixelNeRF (Yu et al., 2021) 255.10 26.352 0.3892 0.8236
CFLD (Lu et al., 2024) 52.879 27.090 0.4037 0.4701
EgoWorld (Ours) 34.910 30.284 0.4455 0.3835

With our proposed pipeline, the
heavy reliance on off-the-shelf esti-
mators is likely to create error propa-
gation vulnerabilities under occlusion
or noisy inputs. Thus, we conduct
additional experiments on how much
the noisy input affects the final re-
sult. We newly define a noisy test set
from H2O (Kwon et al., 2021) unseen
actions scenario, which contains the
cases causing incorrect depth or hand
pose estimation (e.g., occluded hands
by object or hand, or blurry hand).
We manually select hard cases. As shown in Tab. E, there was a slight deterioration in performance
for the noisy cases, but it still achieved outstanding performance compared to other baselines. Al-
though the off-the-shelf estimators may introduce some noise or slightly lower accuracy, our model
demonstrates significantly greater robustness compared to other baselines. This indicates that even
with current state-of-the-art estimators, our framework can produce reliable results. We expect even
better performance in the future as estimation models continue to improve.

A.2.9 IMPACT OF SUB-MODULES OF EXOCENTRIC VIEW OBSERVATION

To evaluate the impact of individual sub-modules in the observation pipeline (i.e., hand pose estima-
tor, depth estimator, and vision-language model), we conduct an experiment on H2O (Kwon et al.,
2021) unseen actions scenario by distinguishing whether each sub-module (pose estimator, depth
estimator, and VLM) is used or the ground-truth is used. Note that since there are no ground-truths
for text description in the H2O dataset, we quantify the impact of VLM by comparing Qwen-VL
(Bai et al., 2023), which we already adopted, with Gemini (Team et al., 2023), which is the popular
foundation model. As shown in Tab. F, all prediction cases (last row) record the lowest score for all
metrics. However, this case outperforms all state-of-the-art baselines, which use ground-truth hand
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Figure E: Results for additional comparisons with state-of-the-arts on unseen scenarios. Com-
pared to state-of-the-arts (i.e., pix2pixHD (Wang et al., 2018), pixelNeRF (Yu et al., 2021), and
CFLD (Lu et al., 2024))), EgoWorld outperforms for all unseen scenarios.

pose or camera pose. It implies although the performance of each sub-module is crucial, we expect
the improvement of sub-modules will further increase our framework’s performance in the future.

A.2.10 ADDITIONAL COMPARISONS WITH STATE-OF-THE-ARTS

We provide additional state-of-the-art comparisons in this appendix as shown in Fig. E. We evaluate
our method across four unseen scenarios (i.e., unseen objects, actions, scenes, and subjects) and
observe that it consistently outperforms baseline models. pix2pixHD (Wang et al., 2018), which de-
pends on label map-based image-to-image translation, generates egocentric images with significant
noise; it implies pix2pixHD is ill-suited for tackling the exocentric-to-egocentric view translation
task. Likewise, pixelNeRF (Yu et al., 2021), which is originally intended for novel view synthesis
using multiple inputs, produces blurry results that lack fine-grained details; it means pixelNeRF is
less effective for one-to-one view translation. On the other hand, CFLD (Lu et al., 2024), which
focuses on generating view-aware person images using hand pose maps, shows better performance
than the previous methods. However, its strengths are largely confined to hand region translation
only, and it struggles to accurately reconstruct surrounding information like objects and scenes.
In contrast, our approach, EgoWorld, produces robust and coherent results even in complex and
previously unseen scenarios involving rich contextual elements. Therefore, we verify EgoWorld’s
generalization ability across diverse, unseen situations.
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Figure F: Results for failure examples in H2O (Kwon et al., 2021). Subtle finger movements and
dependency of VLMs make the reconstructed ouptuts of hands and objects quite unsatisfying.

A.2.11 LIMITATIONS AND FUTURE WORK

In Fig. F, we illustrate failure examples on H2O (Kwon et al., 2021). In some cases, the recon-
structed hand poses or objects are different from the ground-truth. For hand poses, subtle finger
movements that are difficult to observe from the exocentric view are similarly hard to reproduce
accurately in the egocentric view. We believe these limitations could be mitigated by developing a
more advanced 3D egocentric hand pose estimator or by leveraging improved depth estimation to
generate more reliable sparse maps, leading to better hand-aligned image completions. For objects,
parts that are occluded or not visible in the exocentric image may appear distorted or inaccurately
reconstructed in the egocentric view. Additionally, the object could be reconstructed incorrectly
from the egocentric image when VLMs generates inaccurate text descriptions from the exocentric
image. We anticipate that such issues can be addressed in the future with the development of more
powerful VLMs.
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