A APPENDIX

A.1 IMPLEMENTATION DETAILS
A.1.1 EGOCENTRIC VIEW RECONSTRUCTION

To train the egocentric view reconstruction, we fine-tune a pre-trained LDM inpainting model (Rom-
bach et al., [2022). Based on the PyTorch Lightning framework (Falcon & The PyTorch Lightning
, we set the training settings included a batch size of 3, a learning rate of 1 x 10~°, and
the AdamW optimizer (Loshchilov & Hutter, 2017), for a total of 5 epochs. All experiments are
conducted on a single NVIDIA RTX 4090 GPU.

A.1.2 3D EGOCENTRIC HAND POSE ESTIMATOR

To train a 3D egocentric hand pose estimator from exocentric inputs, we adopt a backbone as ViT-
224 (Dosovitskiy et al., and a regressor as MLP, which consists of two linear layers and one
ReLU (Nair & Hinton, [2010) between linear layers. The input and output feature dimensions of the
first linear layer are 768 and 512, and those of the last linear layer are 512 and 126. Based on the
PyTorch framework (Paszke et all 2019)), we set the training settings included a batch size of 64, a
learning rate of 1 x 10~%, a criterion of MSE loss, and the Adam optimizer (Kingma & Bal 2015),
for a total of 100 epochs. All experiments were conducted on a single NVIDIA RTX 4090 GPU.

A.2 MORE RESULTS

Ground-truth Input MAE MAT MAT (Refined) Ours

Figure A: Results for backbones of egocentric view reconstruction. Compared to backbones (i.e.,

MAE 2022) and MAT 2022)), LDM (Rombach et al.| [2022)) outperforms with

respect to hand-object interaction and background regions for all cases.

A.2.1 BACKBONES OF EGOCENTRIC VIEW RECONSTRUCTION

Since egocentric view recon-

struction closely resembles the Table A: Results for backbones of egocentric view reconstruc-
image completion task, we com-  tjon, Compared to backbones (i.e., MAE (He et al., 2022) and

pare our method with state-of- MAT (Liet all 2022)), LDM (Rombach et al., 2022) outperforms
the-art image completion back- ip all metrics.

bones, such as MAE

2022), MAT @ 2022), Backbones \ FID/ PSNR{ SSIMtT LPIPS]
and LDM (]R()mEaCE et al. MAE (He et al.| 16991 24.623 0.4148 0.5041
@D' Specifically, MAE spe- MAT lm ) 89.933 28922 0.4370 0.4758

68.628 29.750  0.4731  0.4506

cializes in mask-based image 41334 31171 04814 03476

encoding, making it effective
for filling missing pixel regions.
MAT, a transformer-based model, excels at restoring large missing areas through long-range con-
text modeling. LDM, serving as the baseline for EgoWorld, differs from the others in its ability
to condition on diverse modalities such as text and pose. As shown in Fig. [A] our LDM-based
method reconstructs egocentric view images in a more natural and high-quality manner compared
to other methods. Although the vanilla MAT model performs well in filling missing areas, it often
struggles to maintain consistency with the surrounding content. For example, subtle differences in
table color are noticeable. To address this, we develop a refined version of MAT that uses random

LDM (Rombach et al.| 2
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Figure B: Results for 3D egocentric hand pose estimator. Green and red poses indicate the ground-
truth and estimated pose, respectively. Estimated poses are well-aligned with the ground-truth both

in 2D and 3D spaces.

Ground-truth

"The person is interacting with a book, which is a rectangular
object with a hard cover. The book is quite large and appears to
be made of a sturdy material, possibly cardboard or cardboard-
like plastic. The person is holding the book open with one hand
and using the other hand to manipulate a small object, which
appears to be a piece of paper or a card. The small object is
being held in the person's hand, and they are using their fingers
to manipulate it."

"The person is interacting with a small, circular object that
appears to be made of plastic. The object has a smooth and
shiny surface, and its size is approximately the same as the
person's hand. It is unclear what the function of this object is, but
the person is holding it in their hand and appears to be
examining or manipulating it. The object is being held by the
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Ground-truth

"The person is interacting with a small wooden object, which
appears to be a toy or a craft item. It has a rectangular shape
and a smooth texture. The person is holding it in their hand and
appears to be manipulating it, possibly by moving it along a
surface or adjusting its position. The object is made of wood and
has a natural, organic feel. It is not clear what its specific function
is, but it could be used for various purposes such as a craft
project, a game piece, or a decorative item."

"The person is interacting with a box of cereal, specifically
Quaker Oats, using their hands. The box is orange in color, with

Ground-truth Ours

"The person is interacting with a box of snack food, specifically
Pringles. The Pringles can is orange in color and has a ridged
texture. It is made of a corrugated cardboard material. The
person is holding the Pringles can in their left hand and is
touching the top of the can with their right hand. They are also
holding a piece of food with their left hand and are in the process
of putting it into the Pringles can.”

"The person is interacting with a small, intricate wooden puzzle.
The puzzle has a square shape and is made of wood. It appears

a blue and white logo on it. It is made of a
‘material and has a plastic tab on the top for easy opening. The
person is holding the box with their right hand and touching it
with their left hand, possibly checking the contents or the label
on the front."

tobe a ing task for the person, who is sitting at a dining
table and carefully handling the pieces. The puzzle is being held
or manipulated by the person using their hands, possibly to
assemble or disassemble it."

person's hand, which is placed near the top of the table."

Figure C: Results for incorrect textual description guidance of egocentric view reconstruction.
The red-colored texts represent incorrect descriptions, which are reflected as conditioning inputs for
EgoWorld to generate egocentric images.

patch masking and recovery. However, this approach tends to fail in preserving detailed local in-
teractions, such as hand-object interaction. In contrast, our LDM-based method, which operates by
adding and removing noise in latent space, achieves coherent restoration not only in local regions
but also in preserving consistency with existing areas. Moreover, as shown in Table[A] our approach
outperforms all other methods quantitatively across all evaluation metrics. Therefore, based on these
results, we adopt LDM as the backbone for EgoWorld.

A.2.2 3D EGOCENTRIC HAND POSE ESTIMATOR OF EXOCENTRIC VIEW OBSERVATION

To validate the effectiveness of our newly proposed exocentric image-based 3D egocentric hand
pose estimator, we conduct a qualitative analysis. As shown in Fig. given a single exocentric
view image as input, our model predicts 3D hand poses that closely resemble the ground-truth. This
demonstrates that the estimator is highly useful in the exocentric view observation stage for calcu-
lating the translation matrix, as well as in the egocentric view reconstruction stage for initializing
the hand pose map.

A.2.3 INCORRECT TEXTUAL DESCRIPTION GUIDANCE OF EGOCENTRIC VIEW
RECONSTRUCTION

To evaluate the effect of textual description guidance of the egocentric view reconstruction, we
intentionally provide an incorrect textual description that does not match the exocentric image. As
shown in Fig. [C] the object in the egocentric view is generated to match the object described in the
description. From this result, we observe two key insights: (1) the final egocentric image can vary
depending on the output of the VLM, highlighting the importance of the VLM’s performance; and
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Figure D: Results for generation consistency of egocentric view reconstruction. With four itera-
tions, the outputs are consistent, reliable, and similar to ground-truth.

(2) even when arbitrary exocentric images are fed, our model performed sufficient generalization to
unseen scenarios.

A.2.4 GENERATION CONSISTENCY OF EGOCENTRIC VIEW RECONSTRUCTION

To evaluate the consistency of our generative model, we generated egocentric images multiple times
under identical conditions. As shown in Fig. [D| we present four outputs generated from the same
exocentric image and corresponding sparse map, and our model consistently produces coherent
egocentric images across runs. Despite the inherent variability in generative models, our method
achieves stable and reliable exocentric-to-egocentric view translation, demonstrating its robustness
and consistency.

A.2.5 DIRECT CAMERA POSE REGRESSION OF EXOCENTRIC VIEW OBSERVATION

To compare the performance of the

egocentric hand pose estimation and  Taple B: Results for direct camera pose regression of ex-
direct camera pose regression, we ad-  gcentric view observation. The case of egocentric hand
ditionally build a camera pose regres- pose estimation showcases a higher score than that of direct
sion model with ViT camera pose regression.

2020) and MLP layers. Specifi-

cally, since it is targeted to estimate 4
x 4 relative pose (i.e., exocentric-to-
egocentric camera pose) estimation,
we formulate it as 6D rotation repre-
sentation for continuity in neural networks (Zhou et al, 2019). As shown in Tab. we test on
H20 (Kwon et al.} 202T)) unseen action scenarios, and found little difference between these settings.
Since we utilize the estimated egocentric hand pose to generate the natural and plausible hand-object
interaction image in the egocentric view reconstruction stage, our approach has more advantages in
terms of image quality.

Methods | FID, PSNRt SSIMf LPIPS|

44907 27.821 0.4311 0.4809
44.323  28.897 0.4408  0.4590

Direct Egocentric Camera Regression
Egocentric Hand Pose Estimation (Ours)

A.2.6 WHOLE-BODY POSE ESTIMATION OF EXOCENTRIC VIEW OBSERVATION

Instead of using hand pose estima-

tion models, we review the whole- Table C: Results for whole-body pose estimation of exo-
body pose estimation models (e.g.. centric view observation. The case of hand pose estimation
Hand4Whole (Moon et al} 2022) or  ghowcases a higher score than that of whole-body pose esti-

OSX (Lin et al., 2023)) and find that pation.
the performance was lower than that

. Method: MPJPE (left hand) |,  MPJPE (right hand
of the hand pose estimation as shown Wi 10 ; =" } 1(9652 and) v (lr;g@ and) |
. . . Tl ole-body rose stimation . .
in Tab. Ig In general’ hand ObJeCt n Hand Pose Estimation (Ours) 1.005 1.161

teraction situations in an exocentric
view are often the case where a per-
son is occluded by a desk or a table. However, since the hand is relatively visible, the performance
is more robust than the whole-body case.



Table F: Results for impact of individual sub-modules. Whether using the ground-truth or not,
EgoWorld outperforms baselines which use the ground-truth.

Methods | Pose | Depth | Text | FID| PSNRT SSIMt LPIPS|
pix2pixHD (Wang et al.|2018) | GT - - 211.10 24420 0.2854 0.6127
pixelNeRF (Yu et al.[|202T) GT (Camera) | — - 251.76  27.061 0.3950 0.8159
CFLD (Lu et al.[[2024) GT - - 50.953 28.529 0.4324 0.4593
EgoWorld (Ours) Prediction Prediction | Prediction (Gemini Team et al.|(2023)) | 42.323 28.897 0.4408 0.4590
Prediction GT Prediction (Qwen-VL Bai et al.|(2023)) | 41.198 29.002 0.4420 0.4379
GT Prediction | Prediction (Qwen-VL Bai et al.|(2023)) | 37.040 30.017 0.4487  0.4092
GT GT Prediction (Gemini Team et al.|(2023)) | 34.891 30.998 0.4501 0.3820
GT GT Prediction (Qwen-VL Bai et al.|(2023)) | 33.284 31.620 0.4566 0.3780

A.2.7 REPRESENTATIONS OF ESTIMATED HAND POSE

To examine the effect of MANO

(Romero et al., 2017) representation Taple D: Results for representations of estimated hand

for hand pose, we bUi!d an egocentric pose. The representation of the hand pose does not have a
MANO parameter estimator based on  gjopificant impact on performance.

ViT (Dosovitskiy et al.| [2020) and

MLP layers, and validate final results ~_Representations | FID, PSNRt SSIMt LPIPS|
on the egocentric view reconstruction  MANO (Romeroctal |2017) | 33208 31632 04609 03771
Keypoints (Ours) 33284 31.620 0.4566 0.3780

stage. As shown in Tab. [D| we test on
H20 (Kwon et al., [2021) unseen ac-
tions scenarios, and the trivial difference of performance on MANO is revealed. Although MANO
representation contains richer visual information than keypoints, it does not exert a strong influence
in the egocentric view reconstruction stage, as hand pose is fused with other modalities, i.e., sparse
maps and text descriptions.

A.2.8 ROBUSTNESS ON NOISY INPUT

With our proposed pipeline, the
heavy reliance on off-the-shelf esti- Taple E: Results for robustness on noisy input. EgoWorld
mators is likely to create error propa-  showcases robustness on noisy exocentric input and allevi-

gatioq vulperabilities under occlusion  gees the heavy reliance on off-the-shelf estimators.
or noisy inputs. Thus, we conduct

dditi 1 . t h h Test Sets | Methods | FID] PSNRT SSIM? LPIPS|
addi 1opa gxperlmen S On how muc All Cases pix2pixHD (Wang et al.|[2018) | 211.10 24.420 0.2854  0.6127
the noisy input affects the final re- pixelNeRF (Yuctal|2021] | 251.76 27.061 03950 0.8159
: CFLD (Lu et al.|[2024} 50.953 28.529 04324 0.4593

sult. We newly define a noisy test set EgoWorld (Ours) 33284 31620 04566 0.3780
from H20 (Kwon et a}., 2021) UNSEEN  “Noisy Cases | pix2pixHD (Wang et al|2018] | 233.09 23.897 02612  0.6553
actions scenario, which contains the pixelNeRF (Yu et al.{[2021} 255.10 26352 0.3892  0.8236
S CFLD (Lu et al.|[2024} 52879 27.090 04037 04701

cases causing incorrect depth or hand EgoWorld (Ours) 34910 30284 0.4455 0.3835

pose estimation (e.g., occluded hands
by object or hand, or blurry hand).
We manually select hard cases. As shown in Tab. [E] there was a slight deterioration in performance
for the noisy cases, but it still achieved outstanding performance compared to other baselines. Al-
though the off-the-shelf estimators may introduce some noise or slightly lower accuracy, our model
demonstrates significantly greater robustness compared to other baselines. This indicates that even
with current state-of-the-art estimators, our framework can produce reliable results. We expect even
better performance in the future as estimation models continue to improve.

A.2.9 IMPACT OF SUB-MODULES OF EXOCENTRIC VIEW OBSERVATION

To evaluate the impact of individual sub-modules in the observation pipeline (i.e., hand pose estima-
tor, depth estimator, and vision-language model), we conduct an experiment on H20 (Kwon et al.,
2021)) unseen actions scenario by distinguishing whether each sub-module (pose estimator, depth
estimator, and VLM) is used or the ground-truth is used. Note that since there are no ground-truths
for text description in the H20 dataset, we quantify the impact of VLM by comparing Qwen-VL
(Bai et al.} 2023)), which we already adopted, with Gemini (Team et al., [2023), which is the popular
foundation model. As shown in Tab. @ all prediction cases (last row) record the lowest score for all
metrics. However, this case outperforms all state-of-the-art baselines, which use ground-truth hand
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Figure E: Results for additional comparisons with state-of-the-arts on unseen scenarios. Com-

pared to state-of-the-arts (i.e., pix2pixHD (Wang et al [2018), pixelNeRF (Yu et all [2021)), and
CFLD @)), EgoWorld outperforms for all unseen scenarios.

pose or camera pose. It implies although the performance of each sub-module is crucial, we expect
the improvement of sub-modules will further increase our framework’s performance in the future.

A.2.10 ADDITIONAL COMPARISONS WITH STATE-OF-THE-ARTS

We provide additional state-of-the-art comparisons in this appendix as shown in Fig. [E] We evaluate
our method across four unseen scenarios (i.e., unseen objects, actions, scenes, and subjects) and
observe that it consistently outperforms baseline models. pix2pixHD 2018), which de-
pends on label map-based image-to-image translation, generates egocentric images with significant
noise; it implies pix2pixHD is ill-suited for tackling the exocentric-to-egocentric view translation
task. Likewise, pixeINeRF 2021), which is originally intended for novel view synthesis
using multiple inputs, produces blurry results that lack fine-grained details; it means pixelNeRF is
less effective for one-to-one view translation. On the other hand, CFLD 2024), which
focuses on generating view-aware person images using hand pose maps, shows better performance
than the previous methods. However, its strengths are largely confined to hand region translation
only, and it struggles to accurately reconstruct surrounding information like objects and scenes.
In contrast, our approach, EgoWorld, produces robust and coherent results even in complex and
previously unseen scenarios involving rich contextual elements. Therefore, we verify EgoWorld’s
generalization ability across diverse, unseen situations.
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Figure F: Results for failure examples in H20 (Kwon et al.,2021). Subtle finger movements and
dependency of VLMs make the reconstructed ouptuts of hands and objects quite unsatisfying.

A.2.11 LIMITATIONS AND FUTURE WORK

In Fig. [ we illustrate failure examples on H20 (Kwon et al, [2021). In some cases, the recon-
structed hand poses or objects are different from the ground-truth. For hand poses, subtle finger
movements that are difficult to observe from the exocentric view are similarly hard to reproduce
accurately in the egocentric view. We believe these limitations could be mitigated by developing a
more advanced 3D egocentric hand pose estimator or by leveraging improved depth estimation to
generate more reliable sparse maps, leading to better hand-aligned image completions. For objects,
parts that are occluded or not visible in the exocentric image may appear distorted or inaccurately
reconstructed in the egocentric view. Additionally, the object could be reconstructed incorrectly
from the egocentric image when VLMs generates inaccurate text descriptions from the exocentric
image. We anticipate that such issues can be addressed in the future with the development of more
powerful VLMs.
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