
RobotKeyframing: Learning Locomotion with
High-Level Objectives via Mixture of Dense and

Sparse Rewards

Anonymous Author(s)
Affiliation
Address
email

Abstract: This paper presents a novel learning-based control framework that uses1

keyframing to incorporate high-level objectives in natural locomotion for legged2

robots. These high-level objectives are specified as a variable number of partial3

or complete pose targets that are spaced arbitrarily in time. Our proposed frame-4

work utilizes a multi-critic reinforcement learning algorithm to effectively handle5

the mixture of dense and sparse rewards. Additionally, it employs a transformer-6

based encoder to accommodate a variable number of input targets, each associated7

with specific time-to-arrivals. Throughout simulation and hardware experiments,8

we demonstrate that our framework can effectively satisfy the target keyframe9

sequence at the required times. The experiments also show that the multi-critic10

method significantly reduces the effort for hyperparameter tuning compared to11

the standard single-critic alternative. Moreover, the proposed transformer-based12

architecture enables robots to anticipate future goals, which results in quantitative13

improvements in their ability to reach their targets.14

Keywords: Legged Robots, Multi-Critic Reinforcement Learning, Motion Imita-15

tion16

Figure 1: RobotKeyframing: Locomotion policy trained with our framework meets the keyframes
with position and full posture targets (yellow) at specified times on hardware experiments.

1 Introduction17

Legged robots hold a significant promise for becoming household companions or automated per-18

formers in the entertainment industry [1, 2, 3]. In these applications, it is crucial for robot controllers19

to perform natural and directable behavior from simple high-level user command inputs beyond the20

common commands used in the robotic domain such as joystick velocity commands [4, 5] or target21

base position [6, 7].22

In the character animation domain, a widely used technique for specifying character behavior from23

simple and sparse inputs is keyframing [8, 9]. It involves defining the target position or kinematic24

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.



pose of the character at particular points in time, allowing animators to create smooth movements25

by interpolating between these keyframes. Despite its proven effectiveness within the kinematic26

animation pipeline, incorporating keyframing for achieving time-specific targets remains unexplored27

in the realm of physics-based robot control.28

Inspired by character animation, we aim to equip legged robots with more refined control by in-29

corporating sparse and temporal high-level objectives as keyframes. The primary goal of this work30

is to develop a locomotion controller that enables the robot to fulfill specified partial or full-pose31

targets while infilling natural behavior during the intermediate periods. This goal aligns with recent32

advancements in using reinforcement learning (RL) for legged robots due to their promising robust-33

ness and flexibility [10, 11]. However, learning a policy that accurately meets keyframes without34

imposing undesired constraints at intermediate periods presents challenges, particularly due to the35

need to handle sparsity in the keyframe objectives. Acquiring effective policies requires a meticu-36

lous reward design procedure that carefully balances these sparse rewards with other dense rewards37

which are crucial for regularizing and encouraging natural motion.38

In this work, we present a novel framework that unifies timed high-level objectives with natural lo-39

comotion of legged robots through temporal keyframes. Along with the imitation objective similar40

to Peng et al. [12] for natural motion generation, our pipeline allows specifying full or partial high-41

level targets, including base position, orientation, and joint postures. We propose using a multi-critic42

RL framework to address the challenge of managing groups of sparse and dense rewards by learning43

distinct value functions. Our method also employs a novel transformer-based architecture to encode44

a variable number of goals with arbitrary time intervals. Unlike typical sequence-to-sequence trans-45

formers [13], we propose a lightweight sequence-to-token module that can be used autoregressively46

within a feedback control loop. We demonstrate the effectiveness of our framework through experi-47

ments both in simulation and on real-world hardware. Our policies successfully guides the robot to48

meet multiple keyframes at the required times, for both position and posture targets. Furthermore,49

the multi-critic approach showcases better convergence with less hyperparameter tuning compared50

to the conventional single-critic method. Our experiments also reveals that using a transformer-based51

encoder to anticipate future goals significantly enhances goal-reaching accuracy.52

The contribution of this paper is threefold: (i) We introduce RobotKeyframing, a novel learning-53

based framework for integrating high-level objectives in natural locomotion of legged robots; (ii)54

We propose using multi-critic RL to handle the mixture of dense and sparse rewards and a novel55

sequence-to-token encoder to accommodate a variable number of keyframes; (iii) We validate the56

effectiveness of our method through extensive experiments in simulation and on hardware.57

2 Related Work58

2.1 Reinforcement Learning for Legged Robots59

Over the last decade, reinforcement learning has been increasingly applied to develop locomotion60

policies for legged robots [4, 14, 15]. The primary focus has been to achieve robust control policies61

that can accurately track velocity commands from joysticks [11, 16, 17]. More recently, researchers62

have attempted to enhance the versatility of legged robot controllers by incorporating high-level ob-63

jectives, particularly through position- or orientation-based targets [18, 19, 20]. This high-level con-64

trol is typically accomplished through hierarchical frameworks, where a high-level policy is learned65

to drive a low-level controller [7, 21, 22]. Conversely, end-to-end approaches aim to develop a uni-66

fied policy for both high- and low-level control, allowing high-level objectives to directly influence67

low-level decisions [6, 18, 23]. However, the aforementioned methods typically urge the robot to68

reach a target as fast as possible, lacking refined control over the temporal profile of achieving the69

target. Inspired by keyframing in animation, this work aims to further expand control over robot70

motion by incorporating multiple keyframes as input to the control policy, thereby enabling robots71

to generate diverse behaviors in reaching targets. We further enhance this versatility by allowing72

partial or full targets, including base position, orientation, and joint postures.73

2



2.2 Natural Motion for Characters and Robots74

Synthesizing naturalistic behavior from existing motion datasets while fulfilling spatial or temporal75

conditions has been extensively studied in the character animation domain [24, 25, 26, 27]. Existing76

research for generating natural motions between keyframes [28, 29, 30] has mainly focused on the77

kinematic properties of characters and thus cannot be directly applied to physics-based characters78

or robots, whose dynamic interactions with the environment require consideration of both kinemat-79

ics and dynamics. Various efforts have also been made to combine kinematic motion generation80

with physically controlled robots to achieve natural behavior on hardware [31, 32, 33, 34]. Another81

thread of research focuses on controlling characters in physically simulated environments, incorpo-82

rating motion datasets as demonstrations [35, 36, 37, 38]. Some of these methods have also been83

successfully transferred to robot control for quadrupeds or humanoids [39, 40, 41, 42]. Among84

these works, Adversarial Motion Priors (AMP) [12] provides a flexible way to encourage the pol-85

icy to have natural, expert-like behavior by connecting generative adversarial networks (GAN) [43]86

with RL given an offline motion dataset. We also incorporate an AMP-based imitation objective to87

encourage naturalistic motion for the policy and further extend it to infilling keyframes for robots.88

3 Method89

3.1 Problem Setup90

To integrate high-level control objectives into the robotic control framework, we employ sparse91

keyframes that require a robot to achieve specific goals at predetermined times. Each keyframe con-92

tains a full or partial combination of a variety of targets such as global base position p̂ ∈ R3, global93

base orientation (ϕ̂, ζ̂, ψ̂) ∈ R3 where ϕ, ζ, ψ denote roll, pitch, and yaw angles respectively, and94

full posture specified by joint angles θ̂j ∈ RNj where Nj is the number of joints. Each keyframe is95

also assigned with a specific time t̂ ∈ R in the future at which the robot is expected to meet the goals.96

In summary, the high-level objectives are specified through these keyframes K =
(
k1,k2, ...,knk

)
,97

where ki =
(
ĝ, t̂
)i

and ĝ ⊂
{
p̂, ϕ̂, ζ̂, ψ̂, θ̂j

}
. Here, nk ≤ Nk where nk and Nk denote the ac-98

tual and the maximal number of keyframes, respectively. We aim to support an arbitrary number of99

keyframes, allowing for the flexible specification of high-level objectives only as needed.100

The main goal is to train a locomotion policy for legged robots that not only meets these keyframes101

but also maintains a natural style in the intervals between them. To avoid undesired restrictions on102

the intermediate periods, policy’s task performance is evaluated exclusively at the designated times,103

making the keyframe objectives temporally sparse. However, relying solely on keyframes to train104

the control policy may result in undesirable motions. Thus, it is crucial to have additional rewards105

for regularizing and promoting a natural motion style. In this regard, we incorporate AMP [12] as106

a general style guide for the robot, encouraging the policy to behave naturally and similarly to an107

offline motion dataset from real animals [44]. The style and regularization rewards are evaluated at108

every step of the episode, making them temporally dense. The mixture of sparse and dense rewards109

presents a unique challenge that is difficult to manage effectively with standard RL frameworks.110

Further details on the observation, action, reward definitions, and training procedure can be found111

in Appendix A.112

3.2 Multi-Critic RL for Dense-Sparse Reward Mixture113

Modern RL algorithms [45, 46, 47] typically employ the actor-critic paradigm, where the actor114

decides the action to take, and the critic evaluates the action by estimating the value function. To115

effectively manage a complex mixture of temporally dense and sparse rewards, we employ a multi-116

critic (MuC) RL framework by Martinez-Piazuelo et al. [48] as shown in Fig. 2. It involves training117

a set of critic networks {Vϕi
}ni=0 to learn distinct value functions associated with different reward118

groups {ri}ni=0. Similar concepts have been used to balance a set of dense rewards [49, 50]; however,119

we aim to adapt the multi-critic method to the context of dense and sparse reward combination.120

3



We design each reward group to contain either exclusively dense or sparse rewards. This division121

is essential for effectively managing the distinct temporal characteristics of each reward type and122

facilitates value estimation.123

We integrate the multi-critic concept to Proximal Policy Optimization (PPO) [46], as shown124

in Alg. 1. Particularly, each value network Vϕi(·) is trained independently for a specific reward125

group ri with temporal difference loss,126

L(ϕi) = Êt

[
∥ri,t + γVϕi(st+1)− Vϕi(st)∥

2
]
, (1)

where Êt is the empirical average and γ is the discount factor. The value functions calculated by each127

critic are used to individually estimate the advantage {Âi}ni=0 for each reward group. Subsequently,128

these advantages are synthesized into a policy improvement step by calculating the multi-critic ad-129

vantage as a weighted sum of the normalized advantages from each reward group130

ÂMuC =

n∑
i=0

wi ·
Âi − µÂi

σÂi

, (2)

where µÂi
and σÂi

are the batch mean and standard deviation of the advantage from group i. Similar131

to PPO, the surrogate loss for policy gradient is clipped132

LCLIP−MuC(θ) = Êt

[
min

(
αt(θ)ÂMuC,t, clip(αt(θ), 1− ϵ, 1 + ϵ)ÂMuC,t

)]
, (3)

where αt(θ) and ϵ respectively denote the probability ratio and the clipping hyperparameter. This133

formulation integrates feedback from both dense and sparse rewards into the policy update, facili-134

tating a balanced and effective learning process.135

Figure 2: Multi-Critic RL.

Algorithm 1 Multi-Critic PPO

1: Initialize policy parameters θ and parame-
ters of each critic, ϕi.

2: for n = 1 to N do
3: Rollout policy πθ to fill the buffer.
4: for each mini-batch do
5: Estimate Âi for each ri.
6: Compute ÂMuC with Eq. 2.
7: Update policy with Eq. 3.
8: Update each critic with Eq. 1.
9: end for

10: end for

136

Assigning distinct critics for dense and sparse rewards helps achieve each set of objectives more ef-137

fectively while reducing the reliance on extensive hyperparameter tuning. To illustrate this, consider138

a simple scenario with an episode length of T involving two types of rewards: a temporally dense139

reward rd that is active at every step and a temporally sparse reward rs that is only active at the final140

step of an episode141

rs,t =

{
r̂s, t = T

0, otherwise.
(4)

In the conventional single-critic RL, the total reward of each time step t is typically computed as a142

linear combination of different reward terms rt = wsrs,t + wdrd,t. The value in this scenario is143

V (st) = E

[
wsγ

(T−t)r̂s + wd

T∑
k=t

γkrd,k

]
. (5)

We define the reward sparsity ratio as the number of dense reward steps per sparse reward horizon,144

which is here equal to T . The second term in Eq. 5 consists of a summation over T − t individual145

reward terms, whereas the first term includes only a single component. This highlights the impact of146

4



different reward sparsities on the learning process, suggesting that the weight of reward groups must147

be adjusted for different sparsity ratios to achieve a proper balance. This challenge is amplified when148

the sparsity ratio changes between episodes, for example, when keyframe timings are randomly149

sampled within a range. These variations can complicate the hyperparameter tuning process and150

hinder the efficacy of the learning algorithm.151

In the multi-critic approach, on the other hand, the advantage for each reward group is normalized152

independently, ensuring that a fixed weight ratio for the advantages is adequate to maintain the de-153

sired balance, regardless of variations in the sparsity ratio. This method decouples reward frequency154

and magnitude from the learning process, enabling more effective policy optimization and reducing155

the effort for manual hyperparameter tuning.156

3.3 Transformer-based Keyframe Encoding157

The transformer framework [51] has achieved great success in modeling sequential data not only158

in the natural language processing [52, 53] but also in other areas including robotics [54]. The159

attention mechanism, serving as the core of transformer networks, models the correlation between160

each element of the input sequence and reweights them accordingly. To handle a variable number of161

keyframes in our problem, we utilize a transformer-based encoder to process the sequence of goals162

for both the policy and critics. However, unlike the typical application of transformers in sequence-163

to-sequence tasks, we adapt the architecture to function in a sequence-to-token manner, as shown164

in Fig. 3. This adaptation makes it suitable for autoregressive feedback control in robotic systems.165

Figure 3: Policy with transformer-based keyframe encoder.

In our system, each input token corresponds to a particular keyframe. At every time step t, each166

keyframe ki is transformed spatially and temporally into a robot-centric view, resulting in a goal167

error ∆gi
t and a calculated time to goal t̂i − t. These are then concatenated with the robot state168

st to form a single token. Additionally, we incorporate a self-goal keyframe, x0
t , as the first token169

in the sequence. This token represents a state with zero error and zero time to goal, which ensures170

that the control system remains operational despite the absence of active goals or after achieving171

all goals. The transformer encoder receives the sequence of tokens Xt = (x0
t , ...,x

nk
t ), where172

x0
t = (st,0, 0), and xi

t = (st,∆gi
t, t̂

i − t) for i = 1, ..., nk.173

In scenarios where the number of active keyframes is less than the maximum capacity of the system,174

we apply masking to ignore the surplus tokens and focus only on the relevant keyframes. Further-175

more, we also apply masking to keyframes once their designated time is reached and surpassed by a176

few steps. This practice prevents past goals from inappropriately influencing the long-term behavior177

of the policy. The output from the transformer encoder is then forwarded to a max-pooling layer,178

which condenses the encoded goal features for delivery to the subsequent multilayer perceptrons179

(MLP). By leveraging transformer’s ability to handle sequences of varying lengths, our architecture180

can effectively integrate multiple and arbitrary numbers of goals into the control process.181

4 Results182

The control policies are trained for quadruped robots with 12 degrees of freedom (DoF) using Isaac183

Gym [55]. At the start of each episode, the robot is either set to a default state or initialized according184

5



(a)

t=0 s t=1 s t=2 s

Target time =2 s

t=0 s t=2 s t=3 st=1 s t=4 s

Target time =4 s

(b)

Figure 4: a) Horizontal trajectories of the robot base given two sets of position goals (dots). b) Spec-
ifying different temporal profiles generates diverse behaviors for the same position goal.

to a posture and height sampled from the dataset, a technique known as Reference State Initialization185

(RSI) [56]. We incorporate a learning curriculum, beginning with keyframes entirely sourced from186

reference data and progressively increasing the proportion of randomly generated keyframes, with187

time intervals, position targets, and yaw angles each sampled from a predetermined range. In this188

section, we present the qualitative and quantitative experiment results in simulation and on hardware.189

4.1 Keyframe Tracking190

We demonstrate that our trained policy effectively reaches keyframes at the designated times through191

several simulation experiments. Given keyframes consisting of position goals, our policy reaches its192

targets with notable precision, as illustrated in Fig. 4a by the horizontal trajectories for two example193

scenarios with different number of keyframes. Furthermore, our framework offers control over194

target reaching time and can generate diverse behaviors for the same targets by specifying different195

time profiles. This is depicted in Fig. 4b through snapshots of robot motion when provided with196

keyframes consisting of the same position goal, but different target times. Full posture targets are197

also supported along with position and orientation goals. Fig. 5 shows snapshots of the robot motion198

given different keyframe scenarios, highlighting that our policy accurately meets its full posture199

targets and maintains a natural style while reaching them.200

4.2 Multi-Critic RL201

In this section, we conduct a comparative analysis between multi-critic and single-critic approaches202

in the keyframing setup. Learning curves for both methods are presented in Fig. 6, with each method203

trained across three different ranges of sparsity ratios by sampling keyframes with varying time204

Figure 5: Snapshots of the robot motion given keyframes with full postures: moving forward (top),
jumping (middle) and raising the paw up (bottom). Target keyframes are displayed in yellow.

6



Figure 6: Convergence comparison of single-critic (left) and multi-critic (right) for different ranges
of keyframe time horizons ([25, 50], [50, 75], [75, 100]) with fixed weights.

(a)

(b)

t=0 s

t=0 s

t=1 s

t=1 s

t=1.5 s

t=1.5 s

Figure 7: The policy aware of all goals (a) adjusts its yaw angle earlier to better reach the second
goal compared to the policy only aware of the next goal (b). Keyframes are placed at 1 and 1.5
seconds in time. Left: snapshots, right: trajectories.

horizons. Initially, reward and advantage weights are tuned separately for single- and multi-critic205

according to the time horizon range [25, 50]. New policies are then trained using the same weights206

for another two scenarios of time horizons, [50, 75] and [75, 100]. The learning curves reveal that the207

multi-critic algorithm achieves a similarly fast convergence without retuning the advantage weights208

for different scenarios. In contrast, the single-critic method displays significant delays in reward209

increase due to the sparser nature with longer keyframe horizons, underscoring the efficiency of the210

multi-critic in reducing the need for extensive manual hyperparameter tuning. This feature makes211

multi-critic particularly valuable in environments with varying reward sparsities.212

4.3 Future Goal Anticipation213

An advantage of using a transformer-based encoder is that it enables the policy to incorporate multi-214

ple and a varying number of goals as input. If the goals are temporally close to each other, awareness215

of future goals influences the robot’s motion to achieve all of them more accurately. The phe-216

nomenon of future goal anticipation is demonstrated in Fig. 7 where we compare a policy aware of217

all goals and a policy only aware of the immediate next goal, both trained with only position goals in218

the keyframe. The policy trained with multiple keyframes adopts a larger yaw angle at the first goal,219

leaning more towards the second one to be able to reach it with higher accuracy. Table 1 provides a220

quantitative comparison of the two policies across three different scenarios: straight, turn and slow221

turn, the latter featuring a longer time horizon for the second goal. The results indicate that future222

goal anticipation helps the policy to adjust its motion while approaching earlier goals to gain better223

accuracy for the subsequent targets. This is particularly important when keyframes are temporally224

close, resulting in higher accuracy gains in fast and dynamic movements, compared to slower ones.225

4.4 Hardware Deployment226

We validate our method through extensive hardware experiments using the Unitree Go2 [57], a227

12-DoF commercial quadruped robot. Fig. 8 illustrates the outcomes of a policy that manages up228

7



First Goal Straight Turn Turn (Slow)
Aware of all goals 0.0872± 0.0336 0.0781± 0.0236 0.0806± 0.0265
Aware of next goal 0.0898± 0.0317 0.0841± 0.0335 0.0787± 0.0208

Straight

Second Goal Straight Turn Turn (Slow)
Aware of all goals 0.0472± 0.0187 0.3340± 0.1162 0.0566± 0.0804
Aware of next goal 0.1332± 0.0605 0.7271± 0.1528 0.1711± 0.1071

Turn

Table 1: Average position error (m) for three keyframe scenarios (depicted on right) across 20
experiments. The policy aware of all goals achieves better accuracy in reaching them.

Figure 8: Hardware deployment of RobotKeyframing for position targets (top), and full-pose targets
(bottom). Posture keyframes are displayed in yellow.

to 5 positional goals arranged in different courses, and a policy trained for full pose targets that229

successfully drives the robot to achieve various posture keyframes. These experiments underscore230

the adaptability and effectiveness of our keyframing approach in enhancing high-level control in231

robotic systems. Readers are encouraged to watch the videos provided in the supplementary material232

for a more comprehensive presentation of these results.233

5 Discussion234

Conclusion: This paper presents RobotKeyframing, a learning-based control framework designed235

to incorporate high-level objectives into the natural locomotion of legged robots through a sequence236

of keyframes. Simulation and hardware experiments demonstrate the efficacy of our framework.237

The sparse reward imposed by keyframe objectives is effectively handled by a multi-critic PPO238

algorithm. In addition, the transformer-based architecture is adaptive to an arbitrary number of239

target keyframes and improves accuracy in reaching targets through future goal anticipation.240

Limitations and future work: First, if the timing values are infeasible for the specified goals, the241

robot may fail to meet the targets. However, it is worth noting that such cases do not result in uncon-242

trolled behaviors, such as falling down. Second, our approach inherits the mode collapse issue from243

the AMP framework [12], which can be mitigated in future research through the integration of style244

embeddings. Third, the performance of our policy is currently limited by the motions in the dataset,245

restricting its ability to generalize to out of distribution motions or targets. Looking ahead, our246

method can be expanded to incorporate diverse types of goals in the keyframes, such as end-effector247

targets or more intuitive high-level inputs such as skill or text. Additionally, RobotKeyframing can be248

extended to more complex characters and potentially used for physics-based motion in-betweening249

in the character animation domain.250

8



References251

[1] M. Hopkins, G. Wiedebach, K. Cesare, J. Bishop, E. Knoop, and M. Bächer. In-252

teractive design of stylized walking gaits for robotic characters. ACM Transactions253

on Graphics (ToG), 2024. URL https://la.disneyresearch.com/publication/254

interactive-design-of-stylized-walking-gaits-for-robotic-characters/.255

[2] Sony Electronics. Aibo companion robot. https://electronics.sony.com/t/aibo.256

[3] Walt Disney Imagineering. A new approach to disney’s robotic character pipeline. https:257

//youtu.be/-cfIm06tcfA?si=G1y14ZTBdlYE8ZtP, 2023.258

[4] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal lo-259

comotion over challenging terrain. Science Robotics, 5(47):eabc5986, 2020. doi:10.1126/260

scirobotics.abc5986.261

[5] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust per-262

ceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,263

2022.264

[6] N. Rudin, D. Hoeller, M. Bjelonic, and M. Hutter. Advanced skills by learning locomotion and265

local navigation end-to-end. In 2022 IEEE/RSJ International Conference on Intelligent Robots266

and Systems (IROS), pages 2497–2503. IEEE, 2022.267

[7] D. Hoeller, N. Rudin, D. Sako, and M. Hutter. Anymal parkour: Learning agile navigation for268

quadrupedal robots. Science Robotics, 9(88):eadi7566, 2024.269

[8] D. Sturman. Interactive key frame animation of 3-d articulated models. In Graphics Interface,270

volume 86, 1984.271

[9] F. Thomas and O. Johnston. Disney animation: The illusion of life. Disney Editions, 1981.272

[10] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learn-273

ing agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.274

[11] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.275

Robotics: Science and Systems, 2021.276

[12] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa. Amp: adversarial motion priors277

for stylized physics-based character control. ACM Transactions on Graphics (ToG), 40(4), jul278

2021. ISSN 0730-0301. doi:10.1145/3450626.3459670.279

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-280

sukhin. Attention is all you need. Advances in neural information processing systems, 30,281

2017.282

[14] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke. Sim-283

to-real: Learning agile locomotion for quadruped robots. arXiv preprint arXiv:1804.10332,284

2018.285

[15] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learn-286

ing agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.287

[16] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged locomotion in challenging terrains288

using egocentric vision. In K. Liu, D. Kulic, and J. Ichnowski, editors, Proceedings of The 6th289

Conference on Robot Learning, volume 205 of Proceedings of Machine Learning Research,290

pages 403–415. PMLR, 14–18 Dec 2023.291

[17] G. B. Margolis and P. Agrawal. Walk these ways: Tuning robot control for generalization with292

multiplicity of behavior. In Conference on Robot Learning, pages 22–31. PMLR, 2023.293

9



[18] J. Cheng, M. Vlastelica, P. Kolev, C. Li, and G. Martius. Learning diverse skills for local294

navigation under multi-constraint optimality. arXiv preprint arXiv:2310.02440, 2023.295

[19] T. Miki, J. Lee, L. Wellhausen, and M. Hutter. Learning to walk in confined spaces using 3d296

representation. arXiv preprint arXiv:2403.00187, 2024.297

[20] P. Arm, M. Mittal, H. Kolvenbach, and M. Hutter. Pedipulate: Enabling manipulation skills298

using a quadruped robot’s leg. arXiv preprint arXiv:2402.10837, 2024.299

[21] J. Truong, D. Yarats, T. Li, F. Meier, S. Chernova, D. Batra, and A. Rai. Learning naviga-300

tion skills for legged robots with learned robot embeddings. In 2021 IEEE/RSJ International301

Conference on Intelligent Robots and Systems (IROS), pages 484–491. IEEE, 2021.302

[22] J. Lee, M. Bjelonic, A. Reske, L. Wellhausen, T. Miki, and M. Hutter. Learning robust au-303

tonomous navigation and locomotion for wheeled-legged robots. Science Robotics, 9(89):304

eadi9641, 2024.305

[23] X. Cheng, K. Shi, A. Agarwal, and D. Pathak. Extreme parkour with legged robots. arXiv306

preprint arXiv:2309.14341, 2023.307

[24] D. Holden, T. Komura, and J. Saito. Phase-functioned neural networks for character control.308

ACM Transactions on Graphics (TOG), 36(4):1–13, 2017.309

[25] H. Zhang, S. Starke, T. Komura, and J. Saito. Mode-adaptive neural networks for quadruped310

motion control. ACM Transactions on Graphics (TOG), 37(4):1–11, 2018.311

[26] H. Y. Ling, F. Zinno, G. Cheng, and M. Van De Panne. Character controllers using motion312

vaes. ACM Transactions on Graphics (TOG), 39(4):40–1, 2020.313

[27] G. Tevet, S. Raab, B. Gordon, Y. Shafir, D. Cohen-or, and A. H. Bermano. Human motion314

diffusion model. In The Eleventh International Conference on Learning Representations, 2023.315

URL https://openreview.net/forum?id=SJ1kSyO2jwu.316

[28] F. G. Harvey, M. Yurick, D. Nowrouzezahrai, and C. Pal. Robust motion in-betweening. ACM317

Transactions on Graphics (TOG), 39(4):60–1, 2020.318

[29] J. Qin, Y. Zheng, and K. Zhou. Motion in-betweening via two-stage transformers. ACM319

Transactions on Graphics (TOG)., 41(6):184–1, 2022.320

[30] P. Starke, S. Starke, T. Komura, and F. Steinicke. Motion in-betweening with phase manifolds.321

Proc. ACM Comput. Graph. Interact. Tech., 6(3), aug 2023. doi:10.1145/3606921.322

[31] D. Kang, F. De Vincenti, N. C. Adami, and S. Coros. Animal motions on legged robots using323

nonlinear model predictive control. In 2022 IEEE/RSJ International Conference on Intelligent324

Robots and Systems (IROS), pages 11955–11962. IEEE, 2022.325

[32] D. Kang, S. Zimmermann, and S. Coros. Animal gaits on quadrupedal robots using motion326

matching and model-based control. In 2021 IEEE/RSJ International Conference on Intelligent327

Robots and Systems (IROS), pages 8500–8507. IEEE, 2021.328

[33] X. Huang, Y. Chi, R. Wang, Z. Li, X. B. Peng, S. Shao, B. Nikolic, and K. Sreenath. Diffuse-329

loco: Real-time legged locomotion control with diffusion from offline datasets. arXiv preprint330

arXiv:2404.19264, 2024.331

[34] I. Radosavovic, B. Zhang, B. Shi, J. Rajasegaran, S. Kamat, T. Darrell, K. Sreenath, and J. Ma-332

lik. Humanoid locomotion as next token prediction. arXiv preprint arXiv:2402.19469, 2024.333

[35] X. B. Peng, P. Abbeel, S. Levine, and M. Van de Panne. Deepmimic: Example-guided deep re-334

inforcement learning of physics-based character skills. ACM Transactions On Graphics (TOG),335

37(4):1–14, 2018.336

10



[36] K. Bergamin, S. Clavet, D. Holden, and J. R. Forbes. Drecon: data-driven responsive control337

of physics-based characters. ACM Transactions on Graphics (TOG), 38(6):1–11, 2019.338

[37] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa. Amp: Adversarial motion priors339

for stylized physics-based character control. ACM Transactions on Graphics (TOG), 40(4):340

1–20, 2021.341

[38] H. Yao, Z. Song, B. Chen, and L. Liu. Controlvae: Model-based learning of generative con-342

trollers for physics-based characters. ACM Transactions on Graphics (TOG), 41(6):1–16,343

2022.344

[39] A. Escontrela, X. B. Peng, W. Yu, T. Zhang, A. Iscen, K. Goldberg, and P. Abbeel. Adver-345

sarial motion priors make good substitutes for complex reward functions. In 2022 IEEE/RSJ346

International Conference on Intelligent Robots and Systems (IROS), pages 25–32. IEEE, 2022.347

[40] T. Li, Y. Zhang, C. Zhang, Q. Zhu, J. Sheng, W. Chi, C. Zhou, and L. Han. Learning terrain-348

adaptive locomotion with agile behaviors by imitating animals. In 2023 IEEE/RSJ Interna-349

tional Conference on Intelligent Robots and Systems (IROS), pages 339–345. IEEE, 2023.350

[41] H. Shi, T. Li, Q. Zhu, J. Sheng, L. Han, and M. Q.-H. Meng. An efficient model-based approach351

on learning agile motor skills without reinforcement. arXiv preprint arXiv:2403.01962, 2024.352

[42] Q. Zhang, P. Cui, D. Yan, J. Sun, Y. Duan, A. Zhang, and R. Xu. Whole-body humanoid robot353

locomotion with human reference. arXiv preprint arXiv:2402.18294, 2024.354

[43] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,355

and Y. Bengio. Generative adversarial networks. Communications of the ACM, 63(11):139–356

144, 2020.357

[44] H. Zhang, S. Starke, T. Komura, and J. Saito. Mode-adaptive neural networks for quadruped358

motion control. ACM Transactions on Graphics (ToG), 37(4), jul 2018. ISSN 0730-0301.359

doi:10.1145/3197517.3201366.360

[45] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.361

In International conference on machine learning, pages 1889–1897. PMLR, 2015.362

[46] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization363

algorithms. arXiv preprint arXiv:1707.06347, 2017.364

[47] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy365

deep reinforcement learning with a stochastic actor. In International conference on machine366

learning, pages 1861–1870. PMLR, 2018.367

[48] J. Martinez-Piazuelo, D. E. Ochoa, N. Quijano, and L. F. Giraldo. A multi-critic reinforcement368

learning method: An application to multi-tank water systems. IEEE Access, 8:173227–173238,369

2020. doi:10.1109/ACCESS.2020.3025194.370

[49] S. Mysore, G. Cheng, Y. Zhao, K. Saenko, and M. Wu. Multi-critic actor learning: Teaching371

rl policies to act with style. In International Conference on Learning Representations, 2021.372

[50] P. Xu, X. Shang, V. Zordan, and I. Karamouzas. Composite motion learning with task373

control. ACM Transactions on Graphics (TOG), 42(4), jul 2023. ISSN 0730-0301. doi:374

10.1145/3592447.375

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-376

sukhin. Attention is all you need. Advances in neural information processing systems, 30,377

2017.378

11



[52] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,379

N. Goyal, E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models.380

arXiv preprint arXiv:2302.13971, 2023.381

[53] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.382

Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways.383

Journal of Machine Learning Research, 24(240):1–113, 2023.384

[54] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-385

man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv386

preprint arXiv:2212.06817, 2022.387

[55] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,388

A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for389

robot learning. arXiv preprint arXiv:2108.10470, 2021.390

[56] X. B. Peng, P. Abbeel, S. Levine, and M. Van de Panne. Deepmimic: Example-guided deep re-391

inforcement learning of physics-based character skills. ACM Transactions on Graphics (TOG),392

37(4):1–14, 2018.393

[57] Unitree Robotics. https://www.unitree.com/en/go2.394

[58] D. Kang, J. Cheng, M. Zamora, F. Zargarbashi, and S. Coros. Rl+ model-based control: Using395

on-demand optimal control to learn versatile legged locomotion. IEEE Robotics and Automa-396

tion Letters, 2023.397

12



A Appendix398

A.1 Observation and Action Space399

The observation of the policy is composed of two main components: state observation and goal400

observation. State observation at time t include the linear velocity (v) and angular velocity (ω) of401

the base in local coordinates, current joint angles (θj), current joint velocities (θ̇j), projected gravity402

in the base frame (gproj), base height (h) and previous actions (aprev),403

st = {v,ω,θj , θ̇j , gproj , h,aprev}t. (6)

A variable number of keyframes K =
(
k1,k2, ...,knk

)
are specified as targets for the robot. At404

each time step t, each keyframe ki is transformed spatially and temporally into a robot-centric view.405

Then, the goal observation is prepared by calculating the remaining time to goal t̂i − t and the error406

to target goals (∆gi
t),407

∆gi
t ⊂ {∆pi

b,∆ϕ
i,∆ζi,∆ψi,∆θi

j}. (7)

Here, ∆pi
b denotes the error between robot base position and keyframe position in the base coordi-408

nate frame, ∆θi
j is the error in joint angles, and ∆ϕi, ∆ζi and ∆ψi denote the errors in roll, pitch409

and yaw angles, respectively, which are wrapped to (−π, π].410

The policy receives the sequence of tokens Xt = (x0
t , ...,x

nk
t ) as input to the encoder, where411

x0
t = (st,0, 0), and xi

t = (st,∆gi
t, t̂

i − t) for i = 1, ..., nk. Thanks to the transformer-based412

keyframe encoding, the extra tokens can be masked to enable arbitrary number of goals. In addition,413

keyframes with a time over one second past the current time are also masked to avoid any long-term414

influence on reaching the future goals.415

The action (at) space of the policy is set to target joint angles, which are tracked using a PD con-416

troller to compute the motor torques.417

A.2 Reward Terms418

We include three groups of rewards in this framework: regularization, style, and goal. For each419

reward group, the final reward is computed as a multiplication of individual reward terms,420

rgroup =
∏

i∈group

ri. (8)

Regularization rewards are designed to provide a smooth output of the policy and consist of several421

terms defined in Table A1. Here, K is an exponential kernel function defined in Eq. 9 where σ and422

δ are the sensitivity and tolerance of the kernel function, respectively.423

K(x, σ, δ) = exp

(
−
(
max (0, ∥x∥ − δ)

σ

)2
)

(9)

To generate natural motion between the keyframes, we use AMP proposed by Peng et al. [12], which424

involves training a discriminator D to identify motions that are similar to those of the offline expert425

Table A1: Regularization Reward Terms

Action rate K (ȧ, 8.0, 0)

Base horizontal acceleration K(p̈xy, 8.0, 0)

Joint acceleration K(θ̈j , 150.0, 10.0)

Joint soft limits K (max (θj − θj,min,θj,max − θ) , 0.1, 0)

13



dataset. The style reward is defined based on the discriminator output of the latest state transition of426

the robot (st−1, st),427

rstyle = max
(
1− 0.25(D(st−1, st)− 1)2, 0

)
. (10)

Goal rewards are defined with a temporally sparse kernel Φi(x)428

Φi(x) =

{
x, t = t̂i

0, otherwise
, (11)

and only activated when the corresponding timestep for that goal t̂i is reached in the episode. The429

detailed reward terms are defined in table A2.430

Table A2: Goal Reward Terms

Goal position Φi
(
K(p− p̂i, 0.2, 0)

)
Goal roll Φi

(
K(ϕ− ϕ̂i, 0.1, 0)

)
Goal pitch Φi

(
K(ζ − ζ̂i, 0.1, 0)

)
Goal yaw Φi

(
K(ψ − ψ̂i, 0.3, 0)

)
Goal posture Φi

(
K(
∥∥∥θj − θ̂i

j

∥∥∥ , 0.2, 0))

A.3 Dataset Preparation431

We use a database of motion capture from dogs introduced by Zhang et al. [44]. The motions are432

retargeted to the robot skeleton using inverse kinematics for the end-effectors’ positions with some433

local offsets to compensate for the different proportions of the robot and dog. A subset of around434

20 minutes of data was used, removing the undesired motions such as smelling the ground, walking435

on slopes, etc. We augment this dataset with other motion clips animated by artists to include more436

diversity in the dataset. The frame rate is adjusted to that of the simulation, i.e. 50 frames per437

second.438

A.4 Training Procedure439

We utilize Isaac Gym [55] for simulating the physical environment. At the start of each episode, the440

robot is either set to a default state or initialized according to a posture and height sampled from the441

dataset with Reference State Initialization (RSI). RSI plays a crucial role in capturing and learning442

the specific style of motion, as highlighted in previous studies such as Peng et al. [56]. Keyframes are443

derived either randomly or directly from a reference data trajectory. Our methodology incorporates444

a learning curriculum, beginning with keyframes entirely sourced from reference data and progres-445

sively increasing the proportion of randomly generated keyframes. To generate random keyframes,446

we start by selecting a time interval for each goal within a predetermined range. Subsequently, the447

distance and direction of the target position relative to the previous goal (or the initial position for448

the first goal) are sampled based on a specified range. The yaw angle is also chosen from a set range449

and adjusted relative to the previous goal. The robot’s full posture is sampled from the dataset to450

ensure the target posture is feasible. The roll, pitch, and height of the keyframe are aligned with the451

corresponding attributes of the target posture frame.452

The meticulous sampling of target keyframes is critical for ensuring their feasibility and preventing453

them from impeding effective policy learning. We train the policy to handle a maximum number of454

keyframes, randomly selecting the actual number of keyframes for each episode. To avoid negative455

impacts on training, unused goals are masked when input into the transformer encoder. For stability,456

the episode does not terminate immediately after the last goal is reached; instead, it terminates457

approximately one second later. The training setup for a full keyframe comprising time, position,458

14



roll, pitch, yaw, and posture targets with up to 5 maximum keyframes requires approximately 17459

hours on a system equipped with Nvidia GeForce RTX 4090.460

A.5 Hardware Implementation Details461

Domain randomization is added during training to achieve a robust policy that can be executed462

on hardware. Similar to Kang et al. [58], we randomize friction coefficients, motor stiffness and463

damping gains and actuator latency. Furthermore, we add external pushes during training. Although464

joint limits are softly taken into account in the simulation, we found it crucial to terminate episodes465

when reaching joint limits to ensure a stable deployment on hardware. We use a motion capture466

system to receive the global position and orientation of the robot. These are used to compute the467

relative errors to the target goals and are then passed to the policy. Other observations are computed468

based on the outputs from the state estimator.469

A.6 Future goal anticipation470

Details of target keyframes used for Table 1 are given in Table A3.471

Table A3: Details of Keyframe Scenarios

Scenario
First Goal Second Gaol

Time (steps) Position (m) Time (steps) Position (m)
Straight 50 (0, 0.32, 1.0) 75 (0, 0.32, 2.0)

Turn 50 (0, 0.32, 1.0) 75 (1.0, 0.32, 1.5)

Turn (Slow) 50 (0, 0.32, 1.0) 100 (1.0, 0.32, 1.5)

A.7 Training Hyperparameters472

Table A4 provides details of hyperparameters used for training.473

Table A4: Summery of Training Hyperparameters
Number of environments 4096
Number of mini-batches 4
Number of learning epochs 5
Learning rate 0.0001
Entropy coefficient 0.02
Target KL divergence 0.02
Gamma 0.99
Lambda 0.95
Discriminator learning rate 0.0003
Transformer encoder layers 2
Transformer heads 1
Transformer feed-forward dimensions 512
MLP dimensions [512, 256]

Initial standard deviation 1.0
Activation function ELU

15


