
A Appendix398

A.1 Observation and Action Space399

The observation of the policy is composed of two main components: state observation and goal400

observation. State observation at time t include the linear velocity (v) and angular velocity (ω) of401

the base in local coordinates, current joint angles (θj), current joint velocities (θ̇j), projected gravity402

in the base frame (gproj), base height (h) and previous actions (aprev),403

st = {v,ω,θj , θ̇j , gproj , h,aprev}t. (6)

A variable number of keyframes K =
(
k1,k2, ...,knk

)
are specified as targets for the robot. At404

each time step t, each keyframe ki is transformed spatially and temporally into a robot-centric view.405

Then, the goal observation is prepared by calculating the remaining time to goal t̂i − t and the error406

to target goals (∆gi
t),407

∆gi
t ⊂ {∆pi

b,∆ϕ
i,∆ζi,∆ψi,∆θi

j}. (7)

Here, ∆pi
b denotes the error between robot base position and keyframe position in the base coordi-408

nate frame, ∆θi
j is the error in joint angles, and ∆ϕi, ∆ζi and ∆ψi denote the errors in roll, pitch409

and yaw angles, respectively, which are wrapped to (−π, π].410

The policy receives the sequence of tokens Xt = (x0
t , ...,x

nk
t ) as input to the encoder, where411

x0
t = (st,0, 0), and xi

t = (st,∆gi
t, t̂

i − t) for i = 1, ..., nk. Thanks to the transformer-based412

keyframe encoding, the extra tokens can be masked to enable arbitrary number of goals. In addition,413

keyframes with a time over one second past the current time are also masked to avoid any long-term414

influence on reaching the future goals.415

The action (at) space of the policy is set to target joint angles, which are tracked using a PD con-416

troller to compute the motor torques.417

A.2 Reward Terms418

We include three groups of rewards in this framework: regularization, style, and goal. For each419

reward group, the final reward is computed as a multiplication of individual reward terms,420

rgroup =
∏

i∈group

ri. (8)

Regularization rewards are designed to provide a smooth output of the policy and consist of several421

terms defined in Table A1. Here, K is an exponential kernel function defined in Eq. 9 where σ and422

δ are the sensitivity and tolerance of the kernel function, respectively.423

K(x, σ, δ) = exp

(
−
(
max (0, ∥x∥ − δ)

σ

)2
)

(9)

To generate natural motion between the keyframes, we use AMP proposed by Peng et al. [12], which424

involves training a discriminator D to identify motions that are similar to those of the offline expert425

Table A1: Regularization Reward Terms

Action rate K (ȧ, 8.0, 0)

Base horizontal acceleration K(p̈xy, 8.0, 0)

Joint acceleration K(θ̈j , 150.0, 10.0)

Joint soft limits K (max (θj − θj,min,θj,max − θ) , 0.1, 0)
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dataset. The style reward is defined based on the discriminator output of the latest state transition of426

the robot (st−1, st),427

rstyle = max
(
1− 0.25(D(st−1, st)− 1)2, 0

)
. (10)

Goal rewards are defined with a temporally sparse kernel Φi(x)428

Φi(x) =

{
x, t = t̂i

0, otherwise
, (11)

and only activated when the corresponding timestep for that goal t̂i is reached in the episode. The429

detailed reward terms are defined in table A2.430

Table A2: Goal Reward Terms

Goal position Φi
(
K(p− p̂i, 0.2, 0)

)
Goal roll Φi

(
K(ϕ− ϕ̂i, 0.1, 0)

)
Goal pitch Φi

(
K(ζ − ζ̂i, 0.1, 0)

)
Goal yaw Φi

(
K(ψ − ψ̂i, 0.3, 0)

)
Goal posture Φi

(
K(
∥∥∥θj − θ̂i

j

∥∥∥ , 0.2, 0))

A.3 Dataset Preparation431

We use a database of motion capture from dogs introduced by Zhang et al. [44]. The motions are432

retargeted to the robot skeleton using inverse kinematics for the end-effectors’ positions with some433

local offsets to compensate for the different proportions of the robot and dog. A subset of around434

20 minutes of data was used, removing the undesired motions such as smelling the ground, walking435

on slopes, etc. We augment this dataset with other motion clips animated by artists to include more436

diversity in the dataset. The frame rate is adjusted to that of the simulation, i.e. 50 frames per437

second.438

A.4 Training Procedure439

We utilize Isaac Gym [55] for simulating the physical environment. At the start of each episode, the440

robot is either set to a default state or initialized according to a posture and height sampled from the441

dataset with Reference State Initialization (RSI). RSI plays a crucial role in capturing and learning442

the specific style of motion, as highlighted in previous studies such as Peng et al. [56]. Keyframes are443

derived either randomly or directly from a reference data trajectory. Our methodology incorporates444

a learning curriculum, beginning with keyframes entirely sourced from reference data and progres-445

sively increasing the proportion of randomly generated keyframes. To generate random keyframes,446

we start by selecting a time interval for each goal within a predetermined range. Subsequently, the447

distance and direction of the target position relative to the previous goal (or the initial position for448

the first goal) are sampled based on a specified range. The yaw angle is also chosen from a set range449

and adjusted relative to the previous goal. The robot’s full posture is sampled from the dataset to450

ensure the target posture is feasible. The roll, pitch, and height of the keyframe are aligned with the451

corresponding attributes of the target posture frame.452

The meticulous sampling of target keyframes is critical for ensuring their feasibility and preventing453

them from impeding effective policy learning. We train the policy to handle a maximum number of454

keyframes, randomly selecting the actual number of keyframes for each episode. To avoid negative455

impacts on training, unused goals are masked when input into the transformer encoder. For stability,456

the episode does not terminate immediately after the last goal is reached; instead, it terminates457

approximately one second later. The training setup for a full keyframe comprising time, position,458
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roll, pitch, yaw, and posture targets with up to 5 maximum keyframes requires approximately 17459

hours on a system equipped with Nvidia GeForce RTX 4090.460

A.5 Hardware Implementation Details461

Domain randomization is added during training to achieve a robust policy that can be executed462

on hardware. Similar to Kang et al. [58], we randomize friction coefficients, motor stiffness and463

damping gains and actuator latency. Furthermore, we add external pushes during training. Although464

joint limits are softly taken into account in the simulation, we found it crucial to terminate episodes465

when reaching joint limits to ensure a stable deployment on hardware. We use a motion capture466

system to receive the global position and orientation of the robot. These are used to compute the467

relative errors to the target goals and are then passed to the policy. Other observations are computed468

based on the outputs from the state estimator.469

A.6 Future goal anticipation470

Details of target keyframes used for Table 1 are given in Table A3.471

Table A3: Details of Keyframe Scenarios

Scenario
First Goal Second Gaol

Time (steps) Position (m) Time (steps) Position (m)
Straight 50 (0, 0.32, 1.0) 75 (0, 0.32, 2.0)

Turn 50 (0, 0.32, 1.0) 75 (1.0, 0.32, 1.5)

Turn (Slow) 50 (0, 0.32, 1.0) 100 (1.0, 0.32, 1.5)

A.7 Training Hyperparameters472

Table A4 provides details of hyperparameters used for training.473

Table A4: Summery of Training Hyperparameters
Number of environments 4096
Number of mini-batches 4
Number of learning epochs 5
Learning rate 0.0001
Entropy coefficient 0.02
Target KL divergence 0.02
Gamma 0.99
Lambda 0.95
Discriminator learning rate 0.0003
Transformer encoder layers 2
Transformer heads 1
Transformer feed-forward dimensions 512
MLP dimensions [512, 256]

Initial standard deviation 1.0
Activation function ELU
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