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ABSTRACT

We introduce the FRactional-Order graph Neural Dynamical network (FROND),
a learning framework that extends traditional graph neural ordinary differential
equation (ODE) models by incorporating the time-fractional Caputo derivative. Due
to its non-local nature, fractional calculus allows our framework to capture long-
term memories in the feature updating process, in contrast to the Markovian nature
of updates in traditional graph neural ODE models. This can lead to improved
graph representation learning. We offer an interpretation of the feature updating
process on graphs from a non-Markovian random walk perspective when the feature
updating is governed by a diffusion process. We demonstrate analytically that over-
smoothing can be mitigated in this setting. To experimentally demonstrate the
versatility of the FROND framework, we evaluate the fractional counterparts of
various established graph ODE models. Their consistently superior performance,
compared to their original counterparts, highlights the potential of the FROND
framework as an effective extension to boost the efficacy of various graph neural
ODE models.

1 INTRODUCTION

Graph Neural Networks (GNNs) have excelled in diverse domains, e.g., chemistry (Yue et al., 2019),
finance (Ashoor et al., 2020), and social media (Kipf & Welling, 2017; Zhang et al., 2022; Wu
et al., 2021). The message passing scheme (Feng et al., 2022), where features are aggregated along
edges and iteratively propagated through layers, is crucial for the success of GNNs. Over the past
few years, numerous types of GNNs have been proposed, including Graph Convolutional Networks
(GCN) (Kipf & Welling, 2017), Graph Attention Networks (GAT) (Velickovi¢ et al., 2018), and
GraphSAGE (Hamilton et al., 2017). Recent works, such as (Chamberlain et al., 2021c; Thorpe et al.,
2022; Rusch et al., 2022; Song et al., 2022; Choi et al., 2023; Zhao et al., 2023), have incorporated
various continuous dynamical processes to propagate information over the graph nodes, inspiring a
new class of GNNs based on ordinary differential equations (ODEs)' on graphs which enables the
interpretation of GNNs as evolutionary dynamical systems. These models have demonstrated notable
performance, for instance, in enhancing robustness and addressing heterophilic graphs.

Within these graph neural ODE models, the differential operator d”/dt? is conventionally con-
strained to integer values of [3, primarily 1 or 2. However, over recent decades, the wider scientific
community has delved into the domains of fractional-order differential operators, where (3 can be any
real number. These expansions have proven pivotal in various applications characterized by nonlocal
and memory-dependent behaviors, with prime examples including viscoelastic materials (Bagley &
Torvik, 1983), anomalous transport mechanisms (Gémez-Aguilar et al., 2016), and fractal media
(Mandelbrot & Mandelbrot, 1982). The distinction lies in the fact that the conventional integer-order
derivative measures the function’s instantaneous change rate, concentrating on the proximate vicinity
of the point. In contrast, the fractional-order derivative (Tarasov, 2011) is influenced by the entire
historical trajectory of the function, which substantially diverges from the localized impact found in
integer-order derivatives. For detailed definitions of fractional-order derivatives, readers are referred
to Section 2.1 and Appendix B. We introduce the FRactional-Order graph Neural Dynamical network
(FROND) framework, a new approach that broadens the capabilities of traditional graph neural

"Models like GRAND (Chamberlain et al., 2021c) primarily utilize ODEs on graphs, albeit inspired by
partial differential equations. We consistently refer to such models as graph neural ODE models.
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ODE models by incorporating fractional calculus. It naturally generalizes the integer-order derivative
d?/ dt? in graph neural ODE models to accommodate any positive real number (3. This modification
gives FROND the ability to incorporate memory-dependent dynamics for information propagation
and feature updating, enabling refined graph representations and improved performance potentially.
Importantly, this technique assures at least equivalent performance to integer-order models, as, when
[ assumes integer values, the models revert to conventional graph ODE models without memory.

Several works like (Maskey et al., 2023) have incorporated fractional graph shift operators within
graph neural ODE models. These studies are distinct from our research, wherein we focus on
incorporating time-fractional derivatives for updating graph node features, modeled as a memory-
inclusive dynamical process. Other works like (Liu et al., 2022) have used fractional calculus in
gradient propagation for the training process, which is different from leveraging fractional differential
equations (FDEs) in modeling the node feature updating. We provide a detailed discussion of the
differences between FROND and these other works in Appendix A.

It is worth noting that the further enhancement garnered from employing fractional calculus can be
contingent on the graph dataset’s topology and features. Our proposed feature updating mechanism,
leveraging fractional derivatives, demonstrates proficiency in processing datasets with prominent
tree-like structures. Hyperbolic GNNs (Chami et al., 2019; Liu et al., 2019) have proposed to embed
graph nodes in hyperbolic spaces instead of the familiar Euclidean spaces. This is based on a pivotal
work in network science (Krioukov et al., 2010), which established that hyperbolic geometry is
aptly designed to encapsulate complex networks, especially those manifesting scale-free hierarchical
structures reminiscent of trees. By scale-free, we refer to the characteristic where the node degree
distribution adheres to a power law: P(k) o k~“. This exponent « can be viewed as a reflection of
the negative curvature inherent to the underlying hyperbolic geometry (Krioukov et al., 2010).

Our work leads us down a slightly different but related geometric path: that of fractal geometry. The
scale-free attribute hints at a pervasive self-similarity across varied scales, indicative of inherent fractal
behavior (Kim et al., 2007; Masters, 2004). Here, “scale” refers to the clustering of interconnected
nodes at various granularities, reminiscent of hierarchical tree branching. This phenomenon means
that the power law distribution, even post scaling, continues to adhere to the identical distribution
law, i.e., P(ck) o< k~°. The degree distribution’s exponent « also naturally acts as a reflection of
the fractal dimension of the underlying fractal geometry (Song et al., 2005). Dynamical processes
with self-similarity on such fractal media are well known to be better described using FDEs. For
example, when heat or mass disperses over such structures, its concentration is best described
using fractional diffusion equations (Diaz-Diaz & Estrada, 2022). The non-integer order derivatives
elegantly encapsulate the fractal characteristics of the media. Further exploration reveals that the
fractal dimension is intrinsically linked to the order of fractional derivatives (Nigmatullin, 1992;
Tarasov, 2011). In other words, the exponent « has a profound connection to the parameter J in
d?/ dtP. This revelation births a compelling insight: the optimal /3 in our models, which may differ
from integers, can pave the way for enhanced node classification and potentially unearth insights into
the inherent “fractal” nature of the graph datasets.

Main contributions. Our objective in this paper is to formulate a generalized fractional-order graph
learning framework that can serve as a reliable plugin for various graph ODE models. Our key
contributions are summarized as follows:

e We propose a novel, generalized graph framework that incorporates time-fractional derivatives.
This framework generalizes prior graph neural ODE models (Chamberlain et al., 2021c; Thorpe
et al., 2022; Rusch et al., 2022; Song et al., 2022; Choi et al., 2023; Zhao et al., 2023), subsuming
them as special instances. Specifically, when the fractional order 5 equals 1, the non-local fractional
derivative operator d?/ dt reverts to the conventional local first-order derivative d/ dt utilized
in graph neural ODE models. This approach also lays the groundwork for a diverse new class of
GNNs that can accommodate a broad array of learnable feature-updating processes with memory.

e We provide an interpretation from the perspective of a non-Markovian graph random walk when
the model feature-updating dynamics is inspired by the fractional heat diffusion process (cf. F-
GRAND-L in (9)). Contrasting with the traditional Markovian random walk implicit in traditional
graph neural diffusion models whose convergence to the stationary equilibrium is exponentially
swift, we establish that in FROND, convergence follows an algebraic rate. This characteristic
enhances FROND’s ability to mitigate over-smoothing, as verified by our experimental results.

e We underscore the compatibility of FROND, emphasizing its capability to be seamlessly integrated
to augment the performance of existing graph ODE models across diverse datasets. Our exhaustive
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experiments, encompassing the fractional differential extension of (Chamberlain et al., 2021c;
Thorpe et al., 2022; Rusch et al., 2022; Song et al., 2022; Choi et al., 2023; Zhao et al., 2023),
substantiate this claim. Through detailed ablation studies, we provide insights into the choice of
numerical schemes and parameters.

2 PRELIMINARIES

This work proposes a novel GNN framework based on fractional calculus. We succinctly outline
fractional calculus principles and prevalent graph neural ODE models. In Section 3, we augment
these models with fractional differential extensions, introducing a new GNN class featuring memory-
inclusive feature updating dynamics. For an extensive overview of fractional calculus, readers are
directed to Appendix B.

2.1 THE CAPUTO TIME-FRACTIONAL DERIVATIVE

The literature offers various fractional derivative definitions, notably by Riemann, Liouville, Chap-
man, and Caputo (Tarasov, 2011). Our study mainly leverages the Caputo fractional derivative, due to
the reasons listed in Appendix B.4. The traditional first-order derivative of a scalar function f(¢) rep-

resents the local rate of change of the function at a point, defined as: d{i?) = limas_sg fE+A)-f(@)

At
Let F'(s) denote the Laplace transform of f(t), assumed to exist on [sg, 00) for some sy € R. Under

certain conditions (Korn & Korn, 2000), the Laplace transform of dﬁ(tt) is given by:

c {dﬁff)} — oF(s) - £(0) )

The Caputo fractional derivative of order 5 € (0, 1] for a function f(t) is defined as follows:

b —71 t —7) 7B () dr
DI10) = g [, = @

where I'(-) denotes the gamma function, and f’(7) is the first-order derivative of f. The broader
definition for 8 > 0 is deferred to Appendix B. In the primary models of this paper, we focus on
cases where /3 € (0, 1]. The Caputo fractional derivative inherently integrates the entire history of the
system through the integral term, emphasizing its non-local nature. For s > max {0, s¢ }, the Laplace
transform of the Caputo fractional derivative is given by (Diethelm, 2010)[Theorem 7.1]:

c{Dlrt)} = 5" F(s) = "1 f(0). ©
Comparing the Laplace transforms of the traditional and Caputo fractional derivatives, as depicted in
(1) and (3), it is evident that the Caputo derivative serves as a generalization of the traditional one. The
alteration in the exponent of s introduces memory-dependent properties, as observed in (2), enabling
the development of enhanced GNN models. As 8 — 1, the Laplace transform of the Caputo fractional
derivative converges to that of the traditional first-order derivative. Thus, when 3 = 1, D} f = f’is
uniquely determined through the inverse Laplace transform (Cohen, 2007). In summary, the Caputo
fractional derivative and its Laplace transform can be seen as a natural extension of the traditional
first-order derivative from the frequency domain using the Laplace transform. For a vector-valued
function, the Caputo fractional derivative is defined component-wise for each dimension, similar to
the first-order derivative.

2.2  GRAPH NEURAL ODE MODELS T
We denote an undirected graph as G = (X, W), where X = ([x(l)]T S, [x(N)]T) € RVxd

consists of rows x() € R? as node feature vectors and i is the node index. The N x N matrix
W := (W;;) has elements W;; indicating the edge weight between the i-th and j-th feature vectors
with W;; = Wj;. The subsequent feature updating process leverages ODEs to facilitate information
propagation amongst graph nodes, modifying the node features X. We present prevalent graph neural
ODE models as follows.
GRAND: Inspired by the heat diffusion equation, GRAND (Chamberlain et al., 2021c) utilizes the
following nonlinear autonomous dynamical system:

dX(t

PO (ax) - Dx(0). @
where A (X(t)) is a learnable, time-variant attention matrix, calculated using the features X(¢), and
I denotes the identity matrix. The feature update outlined in (4) is referred to as the GRAND-nl
version (due to the nonlinearity in A (X(¢))). We define d; = Z?:l W;; and let D be a diagonal
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matrix with D;; = d;. The random walk Laplacian is then represented as L = T — WD ! Ina
simplified context, we employ the following linear dynamical system:

d);(t) — (WD! - T)X(t) = —LX(2). 5)
The feature update process in (5) is the GRAND-I version. For implementations of (5), one may set
W = A(X(0)), rather than using a plain weight. Notably, in this time-invariant setting, the attention
weight matrix, reliant on the initial node features, stays unchanged throughout the feature evolution
period, and D = T if the attention matrix is chosen to be row-stochastic.
GRAND++: The work by (Thorpe et al., 2022) introduces graph neural diffusion with a source term,
aimed at graph learning in scenarios with a limited number of labeled nodes.
GraphCON: Inspired by oscillator dynamical systems, GraphCON (Rusch et al., 2022) is defined
through the employment of second-order ODEs. It is crucial to highlight that, the second-order ODE
is equivalent to two first-order ODEs.
CDE: To navigate the challenges presented by heterophilic graphs, Zhao et al. (2023) incorporates
convection-diffusion equations (CDE) into GNNss, leading to the proposal of the neural CDE model.
GREAD: To address the challenges posed by heterophilic graphs, Choi et al. (2023) presents the
GREAD model. This model enhances the GRAND model by incorporating a reaction term, thereby
formulating a diffusion-reaction equation within GNNss.

We do not present the detailed formulations for each graph ODE model but refer the interested reader
to their respective primary papers and Appendix E.1. Broadly, the models diverge in their approaches
to feature updating dynamics, and transformations on X may be performed preceding the ODE
module.

3 FRACTIONAL-ORDER GRAPH NEURAL DYNAMICAL NETWORK

In this section, we introduce the FROND framework, a novel approach that augments traditional graph
neural ODE models by incorporating fractional calculus. We elucidate the fractional counterparts
of several well-established graph ODE models, including GRAND, GRAND++, GraphCON, CDE,
and GREAD, as referenced in Section 2.2. We provide a detailed study of the fractional extension of
GRAND, and present insights into the inherent memory mechanisms of fractional calculus through a
random walk interpretation. Our theoretical findings suggest a potential mitigation of over-smoothness
due to the model’s algebraic convergence to stationarity. Subsequently, we outline techniques for the
numerical FDE solver pertinent to FROND.

3.1 FRAMEWORK

Consider a graph G = (V, W) composed of |V| = N nodes and W the set of edge weights as
defined in Section 2.2. Analogous to the implementation in traditional graph neural ODE models,
a preliminary learnable encoder function ¢ : VV — R? that maps each node to a feature vector can
be applied. Stacking all the feature vectors together, we obtain X € RY*? Employing the Caputo
time fractional derivative outlined in Section 2.1, the information propagation and feature updating
dynamics in FROND are characterized by the following graph neural FDE:

DIX(t) = F(W,X(1)), 8>0, ©)
where 3 denotes the fractional order of the derivative, and F is a dynamic operator on the graph
like the models presented in Section 2.2. The initial condition for (6) is set as X([F1-1(0) = ... =
X (0) = X consisting of the preliminary node features?, where [3] denotes the smallest integer
greater than or equal to /3, akin to the initial conditions seen in ODEs. In alignment with the graph
neural ODE models (Chamberlain et al., 2021c; Thorpe et al., 2022; Rusch et al., 2022; Song et al.,
2022; Choi et al., 2023; Zhao et al., 2023), we set an integration time parameter 7" to yield X (7).
The final node embedding for subsequent downstream tasks may be decoded as ¢ (X (7")) with 9
being a learnable decoder function.

The GNN framework in (6) incorporates the fractional feature updating process, forming a novel
message-passing mechanism for GNNs. When 8 = 1, (6) reverts to the traditional graph neural
diffusion elaborated in Section 2.2, with the infinitesimal variation of features dependent on their
present state. Conversely, when 5 < 1, the Caputo fractional derivative definition (2) illustrates that
it is the entire history of the feature updating process that is implicated, not merely the features’

?In the main paper, we mainly consider 3 € (0, 1] and the initial condition is X (0) = X. See Appendix B.3.2.
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instantaneous change rate. This insight induces memory-dependent dynamics for information prop-
agation and feature updating. For further insights into memory dependence, readers are directed
to Section 3.3, where time discretization enables numerical resolution of the system, showing how
time persistently serves as an analog to the layer index in ODE models and how the non-local
nature of fractional derivatives introduces nontrivial dense or skip connections between layers. In
Section 3.2, when the dynamic operator F is designated as the diffusion process in (5), we offer a
broader memory-dependent non-Markov random walk interpretation of the fractional graph diffusion
process. Here, as § — 1, the non-Markov random walk increasingly detaches from the path history,
becoming a Markov walk at 5 = 1, which is interpretable as the traditional diffusion process as
shown in (Thorpe et al., 2022). The parameter 3 provides flexibility to adjust the extent of memorized
dynamics embedded in the framework. As clarified in Section 1, our methodology also adopts a
fractal geometric interpretation. Within this perspective, the dynamics pertaining to information
propagation can be more effectively represented using FDEs, particularly in fractal networks. The
FROND framework may elegantly encapsulate the fractal attributes in graph datasets.

3.1.1 FRACTIONAL MODEL EXAMPLES

When the operator F in (5) is specified to the dynamics depicted in various notable graph neural
ODE models, as illustrated in Section 2.2, we formulate fractional GNN variants such as F-GRAND,
F-GRAND++, F-GREAD, F-CDE, and F-GraphCON. These serve as fractional counterparts to the
graph ODE models.

F-GRAND: Mirroring the GRAND model, the fractional GRAND (F-GRAND) is divided into two
versions. The F-GRAND-nl employs a time-variant FDE as follows:

DIX(t) = (A(X(1) ~DX(t), 0<B<L. ™
It is computed using X (¢) and the attention mechanism derived from the Transformer model (Vaswani
etal., 2017). The entries of A(X(¢)) are given by:

a(x;,x;) = softmax

d ®

In this formulation, W and W are the learned matrices, and d;, signifies a hyperparameter
defining the dimensionality of W . In parallel, the F-GRAND-I version stands as the fractional

equivalent of (5): D,?X(t) ~LLX(), 0<B<1. ©)
F-GRAND++, F-GREAD, F-CDE, and F-GraphCON: Due to space constraints, we direct the
reader to Appendix E for detailed formulations. Succinctly, they represent the fractional extensions of
GRAND++, GraphCON, CDE, and GREAD. To highlight FROND’s compatibility and its potential
to enhance the performance of existing graph ODE models across a variety of datasets, exhaustive
experiments are provided in Section 4 and Appendix E.

(WKXz')TWQXj> .

3.2 RANDOM WALK PERSPECTIVE OF F-GRAND-L

The established Markov interpretation of GRAND-I (5), as outlined in (Thorpe et al., 2022), aligns
with F-GRAND-1 (9) when = 1. We herein broaden this interpretation to encompass non-Markov
random walks when [ is a non-integer, thereby elucidating the memory effects inherent in FDEs
through a consideration of the walker’s path history. In contrast to the Markovian walk, which
converges exponentially to equilibrium, our strategy assures algebraic convergence, enhancing
F-GRAND-I’s efficacy in mitigating over-smoothing as evidenced in Section 4.3.

To begin, we discretize the time domain into time instants as ¢,, = no,oc > 0,n =0,1,2,..., where
o is assumed to be small enough to ensure the validity of the approximation. Let R.(¢,,) be a random
walk on the graph nodes {x(9)}I_; that is, in general, not a Markov process and R (t,11) depends
on the path history (R(to), R(t1), ..., R(ts)) of the random walker. For convenience, we introduce
the coefficients ¢y, for £ > 1 and b,,, for m > 0 from (Gorenflo et al., 2002), which are used later to
define the random walk transition probability:

an(8) = (-1 (fj) - ‘(i) ‘ bm(8) = Zu)‘“(ﬁ), (10)

where the generalized binomial coefficient (g) = % and the gamma function I are

employed in the definition of the coefficients. The sequences ¢y and b,,, consist of positive numbers,
not greater than 1, decreasing strictly monotonically to zero (see supplementary material for details)
and satisfy 22:1 ci, + b, = 1. Using these coefficients, we define the transition probabilities of the
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random walk starting from xU°) as
P(R(tn+1) — xUn+1) R(to) = X(jo)’ R(t)) = X(h)7 O R(tn) = X(jn))

¢ —o” if staying at current location with j,+1 = Jn,
W,
of —ntLif jumping to neighboring nodes with jn41 # jn, an
= In
Cntl—k if revisiting historical positions with jp4+1 = jr, 1 <k <n—1,

bn if revisiting historical positions with jn4+1 = jo.
This formulation integrates memory effects, considering the walker’s time, position, and path history.
The transition mechanism of the memory-inclusive random walk between ¢,, and ¢,, 1 is elucidated
as follows: Suppose the walker is at node j,, at time ¢,,, having a full path history (jo, j1, - - - jn)-
Generating a uniform random number 0 < p < 1, we divide the interval [0, 1) into adjacent sub-
intervals with lengths ¢y, ca, . . . , ¢y, b,. We further subdivide the first interval (with length c;) into
sub-intervals of lengths ¢; — ¢ and o¥.

1. If pis in the first interval with length c;, the walker either moves to a neighbor j,+1 = k
with probability o? % or remains at the current position with probability ¢; — .
In

2. For p in subsequent intervals, the walker jumps to a previously visited node in the history
(Jo, J1s -« - Jn—1), specifically, to j,+1_ if in ¢, or to jo if in b,,.
When § < 1, the random walk can, with positive probability, revisit its history, which prevents the
walker from drifting too far away from its local region. Using the technique from (Gorenflo et al.,
2002), we can prove the following:

Theorem 1. When o — 0 and no = t, B;R(t,) converges to x\)(t), the i-th component of the
solution X (t) to (9). Here, E; denotes the expectation over the random walk, defined by transition
probabilities in (11), which begins at node i with initial distribution R(0) = x() with probability 1.
Remark 1. Theorem I relates F-GAND-I (9) to the non-Markovian random walk in (11), illustrating
memory dependence in FROND. As 8 — 1, this process reverts to the Markov random walk
found in GRAND-I (Thorpe et al., 2022) in (12). It underscores the FROND framework’s capability
to apprehend more complex dynamics than graph ODE models, potentially improving predictive
performance.

PRt 1) = X0 [ R(to) = X0, R(t1) =x),. R(t) = xU7)) (12
. . 1—0 if staying at current location with 'n = 'n
:P(R(tn+1) = xUme) I R(t,) = X(j")) =\ o Wininis o e
GT if jumping to neighbors with In+1 7& In

since we have that all these coefficients vanishing except c; = 1, i.e.,
=1, limce(B)=0, k>2, limb, =0 m>1. (13)
B—1 B—1

The approximation solution to (9) at 8 = 1 via the Markov random walk (12) is established in
(Thorpe et al., 2022). Similarly, in the continuous domain, a solution to the heat equation can be
represented by random Brownian motion from the positions (Durrett, 2019, Theorem 9.2.2).

3.2.1 OVER-SMOOTHING MITIGATION OF F-GRAND-L COMPARED TO GRAND-L

The stationary distribution for the Markov random walk, as given by (12), is recognized as
T = (Z]'\zll FIREREE Zﬁj P ). The seminal research (Oono & Suzuki, 2020)[Corollary 3. and Re-
mark 1] ‘has incisivel])j underscored that GNN over-smoothing is the exponential convergence to
the stationary distribution when considering a GNN as a layered dynamical system. More specif-
ically, according to (Chung, 1997), we have the fast exponential convergence for GRAND as
[P(R(t,)) — 7"||, ~ O(e~""™)?, where P(R(t,)) is the probability column vector, with its j-th
clement given as P(R(t,) = x(j)). Here, 7’ is a positive value related to the eigenvalues of the
matrix L, and || - ||2 denotes the #2 norm. The continuous limit also shows analogous exponential
convergence with r > 0:

IP(R(#)) = =[], ~ O(e™™). (14)
In contrast, we next prove that the non-Markovian random walk with memory, as defined in (11),
converges to the stationary distribution at a slow algebraic rate, thereby helping to mitigate over-
smoothing. As 5 — 0, the convergence is expected to be arbitrarily slow. In real-world scenarios

>We use the asymptotic order notations from (Notations, 2023) in this paper.
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where we operate within a finite horizon, this slower rate of convergence may be sufficient to alleviate
over-smoothing, particularly when it is imperative for a deep model to extract distinctive features
instead of achieving exponentially fast convergence to a stationary distribution.

Theorem 2. Under the assumption that the graph is strongly connected and aperiodic, the stationary

probability for the non-Markov random walk (11), with0 < B < 1, is m = ( ill FREREE Z;:Ai P ),

which is unique. This mirrors the stationary probability of the Markovian random walk as defined by
(12) when B = 1. Notably, when < 1, the convergence of the distribution distinct from 7 to T is

algebraic: _
s IB(R(t) = 7]l ~ ©(). (15)
Remark 2. For clarity, Theorem 2 indicates that the feature x*) (t), for all node 1, is converging to
x(k)dk

the same stationary feature equilibrium xs ==, at a slow algebraic rate. More specifically,

Z?I:1 d;

we have: . 2
[xO@) = x|, = I xR~ milll3 = © () forall node . (16)
k

) — Xs

where P; refers to that we have the initial probability as a one-hot vector with the i-th component
being 1. This is because Theorem 2 confirms ||w), — P;(R(2))k| = © (t77) for some k.

In (Rusch et al., 2022), the phenomenon of over-smoothness is defined through the exponential
convergence of Dirichlet energy to zero. However, the following Corollary 1 establishes that the
Dirichlet energy of F-GRAND-I1 converges algebraically to zero, mitigating over-smoothness issues
as corroborated by the plots in Section 4.3 and Appendix D.7.

Corollary 1. The Dirichlet energy, E(X(t)), with X(t) being the solution to (9), has the convergence
rate ©(t=29). Here, Dirichlet energy E(X(t)) is formally defined as

2
E(X(t) =3 [x0) - x| (17)
3.3 SOLVING FROND i€V jev 2
The studies by (Chen et al., 2018b; Quaglino et al., 2019; Yan et al., 2018) introduce numerical solvers
specifically designed for neural ODE models when £ is an integer in the FROND framework. Our
research, in contrast, engages with FDEs, entities inherently more intricate than ODEs. To address
the scenario where (3 is non-integer, we introduce the fractional explicit Adams—Bashforth—Moulton
method, incorporating three variants employed in this study: the basic predictor discussed in
Appendix C.1, the predictor-corrector elaborated in Appendix C.2, and the short memory principle
detailed in Appendix C.3. Additionally, we present one implicit L1 solver in Appendix C.4. These
methods exemplify how time persistently acts as a continuous analog to the layer index and elucidate
how resultant memory dependence manifests as nontrivial dense or skip connections between layers
(see Figs. 2 and 3), stemming from the non-local properties of fractional derivatives.

4 EXPERIMENTS

We execute a series of experiments to illustrate that graph neural ODE models, structured under
the FROND framework and utilizing D?, achieve superior performance compared to the traditional
models reliant on the % approach. Importantly, our primary aim is not to achieve state-of-the-art
results, but rather to demonstrate the additional effectiveness of the FROND framework when
applied to existing graph neural ODE models. In the main paper, we detail the impressive results
achieved by F-GRAND, particularly emphasizing its efficacy on tree-structured data, and F-CDE,
highlighting its proficiency in managing large heterophilic datasets. We also further validate the slow
algebraic convergence, as discussed in Theorem 2, by constructing deeper GNNs with non-integer
B < 1. To maintain consistency in the experiments presented in the main paper, the basic predictor
solver is used instead of other solvers when 3 < 1.

More Experiments In the Appendix: The Appendix D section provides additional details covering
various aspects such as experimental settings, described in Appendices D.1 to D.3, the performance
of different solver variants in Appendix D.5, the computational complexity of F-GRAND in Ap-
pendix D.6, and analysis of F-GRAND’s robustness against adversarial attacks in Appendix D.9.
Furthermore, results related to other FROND-based graph neural ODE models are extensively pre-
sented in the Appendix E. In the main text, we utilize the basic predictor, as delineated in (33), while
the exploration of its variants is reserved for the Appendix D.5. The fractal dimensions of some
datasets are computed using the Compact-Box-Burning algorithm (Song et al., 2007). The correlation
between fractional dimension and the optimal fractional-derivative order 3, steering the extent of
memorized dynamics over graph datasets, is delineated in Appendix D.11.

7
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4.1

Datasets and splitting. We utilize datasets with varied topologies, including citation networks
(Cora (McCallum et al., 2004), Citeseer (Sen et al., 2008), Pubmed (Namata et al., 2012)), tree-
structured datasets (Disease and Airport (Chami et al., 2019)), coauthor and co-purchasing graphs
(CoauthorCS (Shchur et al., 2018), Computer and Photo (McAuley et al., 2015)), and the ogbn-arxiv
dataset (Hu et al., 2020). We follow the same data splitting and pre-processing in (Chami et al., 2019)
for Disease and Airport datasets. Consistent with experiment settings in GRAND (Chamberlain et al.,
2021c), we use random splits for the largest connected component of each other dataset. We also
incorporate the large-scale Ogbn-Products dataset (Hu et al., 2021) to demonstrate the scalability of
the FROND framework, with the results displayed in Table 7.

Methods. For a comprehensive performance comparison, we select several prominent GNN models
as baselines, including GCN (Kipf & Welling, 2017), and GAT (Velickovi¢ et al., 2018). Given the
inclusion of tree-structured datasets, we also incorporate well-suited baselines: HGCN(Chami et al.,
2019) and GIL (Zhu et al., 2020). To highlight the benefits of memorized dynamics in FROND,
we include GRAND (Chamberlain et al., 2021c) as a special case of F-GRAND with § = 1. In
line with (Chamberlain et al., 2021c), we examine two F-GRAND variants: F-GRAND-1 (7) and
F-GRAND-nl (9). Graph rewiring is not explored in this study. Where available, results from the
paper (Chamberlain et al., 2021c) are used.

NODE CLASSIFICATION OF F-GRAND

Performance. The results for graph node classification are summarized in Table 1, which also report
the optimal 3 obtained via hyperparameter tuning. Consistent with our expectations, F-GRAND
surpasses GRAND across nearly all datasets, given that GRAND represents a special case of FROND
with 8 = 1. This underscores the consistent performance enhancement offered by the integration of
memorized dynamics. This advantage is particularly noticeable on tree-structured datasets such as
Airports and Disease, where F-GRAND markedly outperforms the baselines. For instance, F-GRAND-
1 outperforms both GRAND and GIL by approximately 7% on the Airport dataset. Interestingly,
our experiments indicate a smaller 5 (signifying greater dynamic memory) is preferable for such
fractal-structured datasets, aligning with previous studies on fractional differential equations in
biological and chemical systems (Nigmatullin, 1986; Mandelbrot & Mandelbrot, 1982; Tonescu et al.,
2017). We refer readers to Section 4.4 for more analysis of 5. Supporting our intuition with evidence,
we evaluated graph datasets’ fractal dimensions using Compact-Box-Burning (Song et al., 2007),
and compared it to the optimal f3, fractal dimension, and ¢-hyperbolicity (as referenced in (Chami
et al., 2019) for assessing tree-like structures—with lower values suggesting more tree-like graphs) as
outlined in Table 18. Notably, we discerned a trend: a larger fractal dimension typically corresponds
to a smaller optimal /3. This observation strengthens our initial hypothesis in Section 1 that there
exists some relationship between the fractal dimension and the order of the fractional dynamics.

Table 1: Node classification results(%) for random train-val-test splits. The best and the second-best
result are highlighted in red and blue, respectively.

Method ‘ Cora  Citeseer Pubmed CoauthorCS Computer  Photo  CoauthorPhy ogbn—arxiv‘ Airport  Disease
GCN 81.5£1.3 71.9£1.9 77.8£29 91.1+0.5 82.6+24 912£12 92.8+1.0 72.240.3 |81.64+0.6 69.840.5
GAT 81.8+£1.3 71.4£1.9 78.7£2.3 90.5+0.6 78.0£19.0 85.7+20.3 92.5£0.90 73.7+0.1 |81.64+0.4 70.4+0.5
HGCN 78.7£1.0 65.842.0 76.4+0.8 90.6+£0.3 80.6+1.8 88.2+1.4 90.8+1.5 59.6+0.4 |85.4+0.7 89.9%1.1
GIL 82.1£1.1 71.1£1.2 77.8£0.6 89.4%1.5 - 89.6+1.3 - - 91.5+1.7 90.8+0.5

GRAND-1 83.61+1.0 73.44+0.5 78.8+1.7 92.9+04 83.7+1.2 923409 93.5+£09 71.940.2 |80.5+9.6 74.5+3.4
GRAND-nl 82.3+1.6 70.9£1.0 77.5£1.8 924403 82.442.1 924408 914413 71.240.2 |90.94+1.6 81.0+6.7
F-GRAND-1 84.8+1.1 74.0£1.5 79.4+1.5 93.0+£0.3 84.4+1.5 92.8+£0.6 94.5+04 72.6+0.1 |98.1+0.2 92.443.9

3 for F-GRAND-1 0.9 0.9 0.9 0.7 0.98 0.9 0.6 0.7 0.5 0.6
F-GRAND-nl  |83.2%1.1 74.7+1.9 79.240.7 92.9+0.4 84.1+0.9 93.1+0.9 93.9+0.5 71.440.3 |96.1+0.7 85.5+2.5

f3 for F-GRAND-nl| 0.9 0.9 0.4 0.6 0.85 0.8 0.4 0.7 0.1 0.7

4.2 GRAPH CLASSIFICATION OF F-GRAND

We employ the Fake-NewsNet datasets (Dou et al., 2021), constructed from Politifact and Gossipcop
fact-checking data. More details can be found in the Appendix D.2. This dataset features three types of
node features: 768-dimensional BERT features, and 300-dimensional spaCy features, both extracted
using pre-trained models, and 10-dimensional profile features from Twitter accounts. The graphs in
the dataset exhibit a hierarchical tree structure. From Table 2, we observe that FF-GRAND consistently
outperforms GRAND with a notable edge on the POL dataset.
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100 Table 2: Graph classification results.
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Figure 1: Over-smoothing mitigation.

4.3  OVER-SMOOTHING OF F-GRAND

To validate that F-GRAND mitigates the over-smoothing issue and performs well with numerous
layers, we conducted an experiment using the basic predictor in the Adams Bashforth Moulton method
as defined in (33). This allows us to generate architectures of varying depths. In this context, we
utilize the fixed data splitting as described in (Chami et al., 2019). As illustrated in Fig. 1, optimal
performance on the Cora dataset is attained with a network depth of 64 layers. When compared to
GRAND-1, F-GRAND-I maintains a consistent performance level across all datasets as the number
of layers increases, with virtually no performance drop observed up to 128 layers. This observation
is consistent with our expectations, given that Theorem 2 predicts a slow algebraic convergence. In
contrast, GRAND exhibits a faster rate of performance degradation particularly on the Airport dataset.
Additional insights and specifics regarding the mitigation of over-smoothing can be explored in
Appendix D.7.

4.4  ABLATION STUDY: SELECTION OF /3

In Table 3, we investigate the influence of 3 across various graph datasets. Notably, for the Cora
dataset, a larger (3 is optimal, whereas, for tree-structured data, a smaller (3 is preferable. This suggests
that the quantity of memorized dynamics should be tailored to the dataset’s topology, and a default
setting of memoryless graph diffusion with 5 = 1 may not be optimal. More comprehensive details
concerning the variations in /3 can be found in the appendix, specifically in Table 15.

4.5 MORE GRAPH NEURAL ODE MODELS IN FROND FRAMEWORK

Our FROND framework can be seamlessly applied to various other graph neural ODE models, as
elaborated in Appendix E. Specifically, we outline the node classification results of FROND based
on the CDE model in Table 4. It is evident from the results that F-CDE enhances the performance
of the CDE model across almost all large heterophilic datasets. The optimal /3 is determined
through hyperparameter tuning. When 3 = 1, F-CDE seamlessly reverts to CDE, and the results
from the original paper are reported. Additionally, we conduct comprehensive experiments detailed
in Appendix E. The results for F-GRAND++, F-GREAD, and F-GraphCON are available in Table 19,
Table 21, and Table 22, respectively. Collectively, these results compellingly demonstrate that our
FROND framework can significantly bolster the performance of graph neural ODE models, without
introducing any additional training parameters to the backbone graph neural ODE models.

Table 4: Node classification accuracy(%) of large heterophilic datasets

Model Roman-empire ~ Wiki-cooc ~ Minesweeper  Questions Workers Amazon-ratings
CDE 91.64+0.28 97.99+£0.38  95.50+5.23  75.17£0.99  80.70£1.04 47.63+0.43
F-CDE 93.06:0.55 98.73+£0.68  96.04+£0.25  75.17+0.99 82.6810.86 49.01+£0.56
f3 for F-CDE 0.9 0.6 0.6 1.0 0.4 0.1

5 CONCLUSIONS

We introduced FROND, a novel graph learning framework that incorporates time-fractional Caputo
derivatives to capture long-term memory in the graph feature updating dynamics. This approach
has demonstrated improved performance over various traditional graph neural ODE models. The
resulting framework paves the way for a new class of GNNs capable of addressing key challenges in
the field, such as over-smoothing. Our results signify a promising step towards more effective graph
representation learning by capitalizing on the power of fractional calculus.
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This appendix complements the main body of our paper, providing additional details and supporting
evidence for the assertions made therein. The structure of this document is as follows:

1. We discuss related work in Appendix A.

2. We offer a concise review of fractional calculus in Appendix B.
3. We include more solver details and variants in Appendix C.
4

. We present dataset statistics, experimental settings, and additional experimental results in
Appendix D.

9]

. We introduce more dynamics within the FROND framework in Appendix E.
6. We provide proofs for all theoretical assertions made in the main paper in Appendix F.

7. We discuss the limitations of our work and its broader impact in the final section of this
supplementary material.

A RELATED WORK

Fractional Calculus and Its Applications

The field of fractional calculus has seen a notable surge in interest recently due to its wide-ranging
applications across various domains. These include, but are not limited to, numerical analysis
(Yuste & Acedo, 2005), viscoelastic materials (Coleman & Noll, 1961), population growth models
(Almeida et al., 2016), control theory (Podlubny, 1994), signal processing (Machado et al., 2011),
financial mathematics (Scalas et al., 2000), and particularly in the representation of porous and fractal
phenomena (Nigmatullin, 1986; Mandelbrot & Mandelbrot, 1982; Ionescu et al., 2017). Within these
contexts, fractional-order differential equations have been developed as a powerful extension to the
conventional integer-ordered differential equations, offering a resilient mathematical framework for
system analysis (Diethelm & Ford, 2002). To illustrate, in studies related to diffusion processes,
researchers have utilized fractional calculus for delineating various natural and synthetic systems,
from protein diffusion in cellular membranes (Krapf, 2015), to animal migration patterns (Brockmann
et al., 2006), human mobility networks (Gustafson et al., 2017), and even biological phenomena
pertinent to respiratory tissues and neuroscience (Ionescu et al., 2017). Interestingly, the occurrence
of subdiffusion, as modelled by time-fractional differential equations, has been observed in scenarios
where diffusing entities encounter intermittent obstructions due to the complex geometrical structure
or interaction dynamics of the environment (Diaz-Diaz & Estrada, 2022; Sornette, 2006).

Within the realm of deep learning, (Liu et al., 2022) proposes a novel approach to GNN parameter
optimization using the fractional derivative. This marks a significant shift from the conventional
integer-order derivative employed in optimization algorithms like SGD or Adam (Kingma & Ba,
2014) with respect to the weights. The essence of their work fundamentally differs from ours, which
focuses on the fractional-derivative evolution of node embeddings, not gradient optimization. A
detailed examination of the study by (Liu et al., 2022) is pivotal as it adopts fractional derivatives
instead of the standard first-order derivatives during the weight updating phase of a GNN in the
gradient descent. Specifically, attention is drawn to equation (16) in (Liu et al., 2022), elucidating that
the fractional derivative is operational on the loss function. This stands in stark contrast to the FROND
framework proposed in this work. As delineated in equation (6) of our paper, the fractional derivative
is applied to the evolving node feature, representing an implementation of a fractional-order feature
updating process, thereby showcasing a clear distinction in the application of fractional derivatives.

Additionally, (Antil et al., 2020) incorporates insights from fractional calculus and its L1 approxima-
tion of the fractional derivative to craft a densely connected neural network. Their aim is to adeptly
handle non-smooth data and counteract the vanishing gradient problem. While our research operates
within a similar sphere, we have introduced fractional calculus into graph ODE models. Our work
examines the potential of fractional derivatives in node embedding evolution to address the over-
smoothing issue and establishes a connection to non-Markovian dynamic processes. Our framework
paves the way for a new class of GNNs, enabling a wide spectrum of learnable feature-updating
processes influenced by memory effects.

From the perspective of physics-informed machine learning, another line of research is dedicated
to crafting neural networks rooted in physical laws to solve fractional PDEs. A pioneering work
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in this domain is the Fractional Physics Informed Neural Networks (fPINNs) (Pang et al., 2019).
Subsequent research, such as (Guo et al., 2022; Javadi et al., 2023; Wang et al., 2022a), has evolved
in this direction. It is worth noting that this line of research is starkly different from our problem
formulation.

Graph Neural ODE Models Recent research has illuminated a fascinating intersection between
ODE:s and neural networks. The concept of continuous dynamical systems as a framework for deep
learning has been initially explored by (Weinan, 2017). The seminal work of (Chen et al., 2018b)
introduces neural ODEs with open-source solvers to model continuous residual layers, which has
subsequently been applied to the field of GNNs. By utilizing neural ODEs, we can align the inputs
and outputs of a neural network with specific physical laws, enhancing the network’s explainability
(Weinan, 2017; Chamberlain et al., 2021c). Additionally, separate advancements in this domain have
led to improvements in neural network performance (Dupont et al., 2019), robustness(Yan et al.,
2018), and gradient stability (Haber & Ruthotto, 2017; Gravina et al., 2022). In a similar vein, (Avelar
et al., 2019) models continuous residual layers in GCN, leveraging neural ODE solvers to produce
output. Further, the work of (Poli et al., 2019) proposes a model that considers a continuum of GNN
layers, merging discrete topological structures and differential equations in a manner compatible with
various static and autoregressive GNN models. The study (Zhuang et al., 2019) introduces GODE,
which enables the modeling of continuous diffusion processes on graphs. It also suggests that the
over-smoothing issue in GNNs may be associated with the asymptotic stability of ODEs. Recently,
GraphCON (Rusch et al., 2022) adopts the coupled oscillator model that preserves the graph’s
Dirichlet energy over time and mitigates the over-smoothing problem. In (Chamberlain et al., 2021a),
the authors modeled information propagation as a diffusion process of a substance from regions
of higher to lower concentration. The Beltrami diffusion model is utilized in (Chamberlain et al.,
2021b; Song et al., 2022) to enhance rewiring and improve the robustness of the graph. The study by
(Bodnar et al., 2022) introduces general sheaf diffusion operators to regulate the diffusion process and
maintain non-smoothness in heterophilic graphs, leading to improved node classification performance.
Meanwhile, ACMP (Wang et al., 2022b) is inspired by particle reaction-diffusion processes, taking
into account repulsive and attractive force interactions between particles. Concurrently, the graph
CDE model (Zhao et al., 2023) is crafted to handle heterophilic graphs and is inspired by the
convection-diffusion process. GRAND++ (Thorpe et al., 2022) leverages heat diffusion with sources
to train models effectively with a limited amount of labeled training data. Concurrently, GREAD
(Choi et al., 2023) articulates a GNN approach, which is premised on reaction-diffusion equations,
aiming to negotiate heterophilic datasets effectively. In another development, the graph ODE model
(Maskey et al., 2023) encapsulates a graph spatial domain rewiring, leveraging the fractional order of
the graph Laplacian matrix, presenting a substantial advancement in understanding graph structures.

Our FROND extends the above graph ODE models by incorporating the time-fractional Caputo
derivative. The models mentioned can be reduced from our unified mathematical framework, with
variations manifesting from the choice of the dynamic equation F (W ,X(t)) in (6) and as 3 equals

1 in the fractional derivative operator Df .
Skip Connections in GNNs

The incorporation of skip or dense connections within network layers has been a transformative
approach within deep learning literature. Initially popularized through the ResNet architecture (He
et al., 2016), this strategy introduces shortcut pathways for gradient flow during backpropagation,
thereby simplifying the training of more profound networks. While this architectural design has
been instrumental in improving Convolutional Neural Networks (CNNs), it has also been employed
in GNNs to bolster their representational capacity and mitigate the vanishing gradient problem.
For example, the Graph U-Net (Gao & Ji, 2019) employs skip connections to enable efficient
information propagation across layers. Similarly, the Jump Knowledge Network (Xu et al., 2018)
implements a layer-aggregation mechanism that amalgamates outputs from all preceding layers, a
strategy reminiscent of the dense connections found in DenseNet (Huang et al., 2017). Furthermore,
the work (Chen et al., 2020) introduces GCNII, an extension of the standard GCN model that
incorporates two simple techniques, initial residual and identity mapping, to tackle the over-smoothing
problem. Expanding on the idea of depth in GNNs, (Li et al., 2019; 2020a) propose DeepGCNss,
an innovative architecture that employs residual/dense connections along with dilated convolutions.
By incorporating fractional-order dynamics and memory effects, we pave the way for a profound
understanding of those GNN architectures and the development of more adaptable and potent graph
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representation learning. The work (Di Giovanni et al., 2023) suggests that gradient-flow message
passing neural networks may be able to deal with heterophilic graphs provided that a residual
connection is available. The paper (Gutteridge et al., 2023) proposes a spatial domain rewiring and
focuses on long-range interactions. DRew in (Gutteridge et al., 2023) does not adhere to any ODE
evolutionary structure. Its numerical experiments are also done on the long-range graph benchmark,
instead of the usual GNN benchmark datasets we have used in our paper. Additionally, the skip
connection in the vDRew from (Gutteridge et al., 2023) specifically links an n — k-th layer to the n-th
layer. This design is fundamentally different from our FDE approach. By incorporating fractional-
order dynamics and memory effects into our framework, we not only provide a fresh perspective on
understanding the structural design of skip connections in GNNs as a continuous dynamical process
but also lay a foundation for the development of more versatile and powerful mechanisms for graph
representation learning.

B REVIEW OF CAPUTO TIME-FRACTIONAL DERIVATIVE

We appreciate the need for a more accessible explanation of the Caputo time-fractional derivative
and its derivation, as the mathematical intricacies may be challenging for some readers in the GNN
community. To address this, we are providing a more comprehensive background in this section. In
the main paper, we briefly touched upon fractional calculus, with a particular focus on the Caputo
fractional derivative that has been employed in our work. In this appendix, we aim to provide a more
detailed overview of it and explain why it is widely employed in applications. We have based our
FROND framework on the assumption that the solution to the fractional differential equation exists
and is unique. The appendix provides explicit conditions for this, which are automatically satisfied
in most neural network designs exhibiting local Lipschitz continuity. To simplify, these conditions
are akin to those for ordinary differential equations, a common assumption implicitly made in graph
neural ODE works such as GRAND (Chamberlain et al., 2021c), GraphCON (Rusch et al., 2022),
GRAND-++ (Thorpe et al., 2022), GREAD (Choi et al., 2023) and CDE (Zhao et al., 2023).

B.1 CAPUTO FRACTIONAL DERIVATIVE AND ITS COMPATIBILITY OF INTEGER-ORDER
DERIVATIVE

In the main paper, our focus is predominantly on the order 3 € (0, 1] for the sake of simplification.
The Caputo fractional derivative of a function f(t) over an interval [0, b], of a general positive order
B € (0,00), is defined as follows:

1 t
D f(t 27/ t —r)IP1==1 8D (1)dr, 18
Here, [(] is the smallest integer greater than or equal to 3, I'(:) symbolizes the gamma function,
and f(IP1) (1) signifies the [3]-order derivative of f. Within this definition, it is presumed that
fUPD € LY0,b], ie., fTPD is Lebesgue integrable, to ensure the well-defined nature of fo(t) as
per (18) (Diethelm, 2010). When addressing a vector-valued function, the Caputo fractional derivative
is defined on a component-by-component basis for each dimension, similar to the integer-order
derivative. For ease of exposition, we explicitly handle the scalar case here, although all following
results can be generalized to vector-valued functions. The Laplace transform for a general order
B € (0,00) is presented in Theorem 7.1 (Diethelm, 2010) as:

(61
LD} f(s)=s"Lf(s) =D " 7FfF1(0). (19)
k=1

where we assume that £f exists on [sg, 00) for some sy € R. In contrast, for the integer-order
derivative f(®) when $ is a positive integer, we also have the formulation (19), with the only
difference being the range of 8. Therefore, as 8 approaches some integer, the Laplace transform of
the Caputo fractional derivative converges to the Laplace transform of the traditional integer-order
derivative. As a result, we can conclude that the Caputo fractional derivative operator generalizes the
traditional integer-order derivative since their Laplace transforms coincide when 3 takes an integer
value. The inverse Laplace transform specifies the uniquely determined Df = f® when § is an
integer (in the sense of almost everywhere (Cohen, 2007)).
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Under specific reasonable conditions, we can directly present this generalization as follows. We
suppose fUP1(t) (18) is continuously differentiable. In this context, integration by parts can be
utilized to demonstrate that

Gp) = —— [~ 1D (t—T )Ie1-o (#1407 t_T)Uﬂ s
[B1=B £([81)

When 8 — [(], we get the following

im D? (181 t (I81+1)
Jim DEf0) = £ ) + [ 010 myar

= fUBD(0) 4 fUBD @) — £UI5D(0)
— f(fﬂ])(t)

In parallel to the integer-order derivative, given certain conditions ((Diethelm, 2010)[Lemma 3.13]),
the Caputo fractional derivative possesses the semigroup property as illustrated in (Diethelm,
2010)[Lemma 3.13]:

2

DiD}f = Dp*f. (22)

The Caputo fractional derivative also exhibits linearity, but does not adhere to the same Leibniz
and chain rules as its integer counterpart. As such properties are not utilized in our work, we
refer interested readers to (Diethelm, 2010)[Theorem 3.17 and Remark 3.5.]. We believe the above
explanation facilitates understanding the relation between the Caputo derivative and its generalization
of the integer-order derivative.

B.2 COMPARISON BETWEEN RIEMANN—-LIOUVILLE AND CAPUTO DERIVATIVE

Another well-known fractional derivative is the Riemann—Liouville derivative, which, however, sees
less use in practical applications (see the section ‘“Reasons for Choosing Caputo Derivative” for more
insights). In this section, we offer a succinct introduction to the Riemann-Liouville derivative and
compare it with Caputo’s definition. The Riemann-Liouville fractional derivative is given as

IO pup——— /t< )P f(r)d (23)
t) = t—1T P f(m)dr
' r([B] —B) dtl?l J

Here again, we make the assumption that sufficient conditions are satisfied to ensure well-definiteness
(refer to (Diethelm, 2010)[section 2.2] for details).

Next, we compare the Taylor expansion for the two definitions of fractional derivatives and the
conventional integer-order derivative. This comparison clearly highlights the differences in the
differential equations under the three definitions.

o Classical Integer-order Taylor Expansion: (Diethelm, 2010)[Theorem 2.C] Assume f has
absolutely continuous (m — 1)-st derivative, we have that for ¢ € [0, b],

"tk dk am
f(t):ZE@f()‘Fdetimf() (24)
k=0

where J" f(z) := F(n) fo (t — 7)™~ f(7)d7 and note that here k is a integer.

e Riemann-Liouville Fractional Taylor Expansion: (Diethelm, 2010)[Theorem 2.24] Letn > 0
and m = [n]. Assume that f is s.t. J”~" f has absolutely continuous (m — 1)-st derivative. Then,

tnfm

m— tk+n7m
t: mn
J®) F(n—m+1) 10 +;I‘k+n—m+1)

DfFm=m F(0) + JUDYf(1). (25)
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Note that in the case n € Nwe havem = n + 1l and I'(n — m + 1) = I'(0) = oo, the first term
outside the sum vanishes. Hence, we can retrieve the classical result. For general n, the order in

DFF=™ is not a integer.

e Caputo Fractional Taylor Expansion: (Diethelm, 2010)[Theorem 3.8.] Assume that n > 0, m =
[n], and f has absolutely continuous (m — 1)-st derivative. Then

m—1 :
fy=>" Mt’“ + JDIf(1). (26)

k!
k=0

Note the order in Df is still an integer. If we compare (24) to (26), it becomes evident that the Caputo
derivative closely resembles the classical integer-order derivative in terms of Taylor expansion. This
fact will influence the initial conditions for differential equations, as introduced in the following
section.

B.3 (CAPUTO) FRACTIONAL DIFFERENTIAL EQUATION

In this section, we first loosely compare the initial conditions for fractional differential equations
under the Riemann-Liouville and Caputo definitions. Following this, we present the precise conditions
for the existence and uniqueness of the solution to the fractional differential equation. As we will
see, these conditions closely align with those of ordinary differential equations, conditions which
are widely assumed by all graph neural ODE works such as the recent contributions like GRAND
(Chamberlain et al., 2021c), GraphCON (Rusch et al., 2022), GRAND++ (Thorpe et al., 2022),
GREAD (Choi et al., 2023) and CDE (Zhao et al., 2023). In short, all these graph neural ODE works
can be seamlessly extended into our FROND framework with fractional dynamics!

B.3.1 RIEMANN-LIOUVILLE CASE

Drawing from Riemann-Liouville fractional Taylor expansion, let’s assume that e is a given function

with the property that there exists some function g such that g = ﬁtﬁ e. The solution of the Riemann-
Liouville differential equation is the form

Dif=g 27)
is given by

(1 ‘
fz) = e(z) + Z cj(x —a)" (28)

where c; are arbitrary constants. In other words, to uniquely determine the solution from (25), we
should know the value of D¥"~™ £(0). This is akin to the & order ordinary differential equation

. . . .. k . . . . . N n—
where the initial conditions are assumed as % £(0), with the distinction that the order in DFF"=™
is not an integer.

B.3.2 CApuTO CASE

Similarly, if e is a given function with the property that e = Dtﬁ g and if we intend to solve
D/f=g (29)
then we find

[61
f)=e(@)+ > cilw—a)lll™ (30)
j=1

once more, with c;'f as arbitrary constants. Thus, to obtain a unique solution, it is most logical

to prescribe the values of integer order derivatives f(0), D} f(0),. .., Dtm -1 £(0) in the Caputo
setting, irroring the traditional ordinary differential equation. Whereas in the Riemann-Liouville
case, one would more likely prescribe the fractional derivatives of f at 0.
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B.3.3 EXISTENCE AND UNIQUENESS OF THE (CAPUTO) SOLUTION

Next, we delve into a general Caputo fractional differential equation, presented as follows:

DJy(t) = g(t,y(t)) 31)

conjoined with suitable initial conditions. As hinted in (29) and (30), the initial conditions take the
form:

Diy(0) =y, k=0,1,....[8] - 1. (32)

e Caputo existence and uniqueness theorem: (Diethelm, 2010)[Theorem 6.8] Let

y(()o), . ,yémfl) € R and h* > 0. Define the set G := [0,h*] x R and let the func-
tion g : G — R be continuous and fulfill a Lipschitz condition with respect to the second
variable, i.e.

lg (z,91) — g (2,92)| < Lly1 — vl

with some constant L > 0 independent of x, y;, and ys. Then there uniquely exists function
y € C'[0, h*] solving the initial value problem (31) and (32).

For a point of reference, we also provide the well-known Picard-Lindel6f uniqueness
theorem for ordinary differential equations.

* Picard-Lindelof theorem (Hartman, 2002)[Page 8] Let D C R x R” be a closed rectangle
with (o, yo) € int D, the interior of D. Let g : D — R™ be a function that is continuous in
t and Lipschitz continuous in y. Then, there exists some € > 0 such that the initial value
problem

y/(t) = g(tv y(t))v Y (tO) = Yo-

has a unique solution y(t) on the interval [to, to + €].

This allows us to draw parallels between the existence and uniqueness theorem of the Caputo
fractional differential equation and its integer-order ordinary differential equation equivalent. We
also remind readers that standard neural networks, as compositions of linear maps and pointwise
non-linear activation functions with bounded derivatives (such as fully-connected and convolutional
networks), satisfy global Lipschitz continuity with respect to the input. For attention neural networks,
which are compositions of softmax and matrix multiplication, we observe local Lipschitz continuity.
To see this, suppose v = softmax(u) € R™*!. Then

vy (1 —vq) zvlvg ) e —V1Vn,
dv X% V2 1-— V2 e —UVaUn
— —di —vv! =
5u iag(v) — vv . : . :
— U, V1 — VU9 v v (1 —wp)

For bounded input, we always have a bounded Jacobian. All the graph neural ODE works, such
as recent contributions like GRAND (Chamberlain et al., 2021c), GraphCON (Rusch et al., 2022),
GRAND++ (Thorpe et al., 2022), GREAD (Choi et al., 2023) and CDE (Zhao et al., 2023) safely
assume the uniqueness of the solution to ODEs. This means that all the graph neural ODE works can
be securely extended into our FROND framework with fractional dynamics!

B.4 REASONS FOR CHOOSING CAPUTO DERIVATIVE

We now explain the reasons behind our preference for the Caputo fractional derivative:

1. As previously discussed, Caputo fractional differential equations align with ordinary differ-
ential equations concerning initial conditions.

2. The Caputo fractional derivative maintains a more intuitive resemblance to the integer-
order derivative and satisfies the significant property of equating to zero when applied to a
constant. This property is not satisfied by the Riemann-Liouville fractional derivative. Refer
to (Diethelm, 2010)[Example 2.4. and Example 3.1.] for further clarification.
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3. Given its widespread application in academic literature for practical use cases, numeri-
cal methods for solving Caputo fractional differential equations have been meticulously
developed and exhaustively analyzed (Diethelm, 2010; Diethelm et al., 2004; Deng, 2007).

We remind readers that numerous methods for training neural ODEs, and consequently updating the
weights € in the neural network have been proposed. These include the autodifferentiation technique in
PyTorch (Yan et al., 2018; Paszke et al., 2017), the adjoint sensitivity method (Chen et al., 2018b), and
Snode (Quaglino et al., 2019). In our work, we employ the most straightforward autodifferentiation
technique for training FROND with fractional neural differential equations, leveraging the numerical
solvers outlined in (Diethelm, 2010; Diethelm et al., 2004; Deng, 2007). While we plan to investigate
more sophisticated techniques for training FROND in future work, we have open-sourced our current
solver implementations. We believe these will serve as valuable tools for the GNN community,
encouraging the advancement of a unique class of GNNs that incorporate memory effects (fractional
dynamics).

C NUMERICAL SOLVERS FOR FROND

In the traditional graph ODE models outlined in (Chamberlain et al., 2021c; Thorpe et al., 2022;
Rusch et al., 2022; Song et al., 2022; Choi et al., 2023; Zhao et al., 2023), the time parameter ¢ is a
continuous counterpart to GNN layers, mirroring the concept of neural ODEs (Chen et al., 2018b)
as continuous residual networks. In many numerical solvers for neural ODEs, time discretization is
crucial. For instance, in the explicit Euler scheme, neural ODEs reduce to residual networks (with
shared hidden layers) (Chen et al., 2018b). With more sophisticated discretization, like adaptive step
size solvers (Atkinson et al., 2011), neural ODE solutions are accurate but demand more computational
resources. Unlike prior studies, our work involves fractional-order differential equations, which are
more complex than ODEs when 3 takes non-integer values in FROND. We present the fractional
Adams—Bashforth—Moulton method with three variants utilized in this work, demonstrating how time
continues to serve as a continuous analog to the layer index and how the non-local nature of fractional
derivatives leads to nontrivial dense or skip connections between layers. Additionally, we also present
one implicit L1 solver for solving FROND when g is not an integer. It is worth noting that various
neural ODE solvers remain applicable for FROND when £ is an integer.

‘We first recall the FROND framework
DJX(t) = F(W,X(t)), >0,

where § denotes the fractional order of the derivative, and F is a dynamic operator on the graph like
the models presented in Section 2.2. The initial condition is set as X([#1=1(0) = ... = X(0) = X
consisting of the preliminary node features, where [3] denotes the smallest integer greater than or
equal to /3, akin to the initial conditions seen in ODEs.

C.1 BASIC PREDICTOR

Referencing (Diethelm et al., 2004), we first employ a preliminary numerical solver called “predictor”
through time discretisation ¢; = jh, where the discretisation parameter h is a small positive value:

[B1-1 . n—1
t 1
X (tn) = Z;) R ORE o ZO 1inF (W, X(t5)), (33)
]: J:

where 11, = % (n—j)P = (n—1-4)") and h = t, — t,_ represents the temporal step size.
When 8 = 1, this method simplifies to the Euler solver in (Chen et al., 2018b; Chamberlain et al.,
2021c) as p1;,, = h, yielding X¥ (¢,,) = XF (t,,_1) + hF(W,X(t,—1)). Thus, our basic predictor
can be considered as the fractional Euler method or fractional Adams—Bashforth method, which is a
generalization of the Euler method used in (Chen et al., 2018b; Chamberlain et al., 2021c). However,
when 8 < 1, we need to utilize the full memory {F (W, X(¢;)) ?:_01.

The block diagram of this basic predictor, shown in Fig. 2, reveals that our framework introduces
nontrivial dense or skip connections between layers. A more refined visualization is conveyed in
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Fig. 3, elucidating the manner in which information propagates through layers and the graph’s spatial
domain.

C.2 PREDICTOR-CORRECTOR
The corrector formula from (Diethelm et al., 2004), a fractional variant of the one-step Adams-
Moulton method, refines the initial approximation using the predictor X (t,,)¥ as follows:

[61-1 j n—1

X(tn) = Z tﬁxw) (0) + ﬁ Z:O njnF (W, X(t;)) + NG

Here we show the coefficients 7); ,, in the predictor-corrector variant (34) from (Diethelm et al., 2004):

(n -1 —(n—1-p)n? ifj=0
1 ifj=n

N F(W,XF(t,)), (34
j=0

hB

Nin(B) = m X

(35)

C.3 SHORT MEMORY PRINCIPLE

When T is large, computational time complexity becomes a challenge due to the non-local nature
of fractional derivatives. To mitigate this, (Deng, 2007; Podlubny, 1999) suggest leveraging the

short memory principle to modify the summation in (33) and (34) to Z?;L k- This corresponds to

employing a shifting memory window with a fixed width K. The block diagram is depicted in Fig. 2.

memory window|width K

X(0)  X(t1)  X(t) X(tn-1) X(tn) X(0) X(t)  X(ta) X(tn-1) X(tn)

Figure 2: Diagrams of fractional Adams—Bashforth—Moulton method with full (left) and short (right) memory.

time discretization

X(tn)

Figure 3: Model discretization in FROND with the basic predictor solver. Unlike the Euler discretization in
ODEs, FDEs incorporate connections to historical times, introducing memory effects. Specifically, the dark blue
connections observed in FDEs are absent in ODEs. The weight of these skip connections correlates with 7;,,(3)
as detailed in (35).

C.4 L1 SOLVER
The L1 scheme is one of the most popular methods to approximate the Caputo fractional derivative in

time. It utilizes a backward differencing method for effective approximation of derivatives. Refer-
encing to (Gao & Sun, 2011; Sun & Wu, 2006), we have the L1 approximation of Caputo fractional
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derivative as follows:
k—

DBX tk Z J+1 X(tj))

where h is the temporal step size,

1

= —_— B: 7-1757 s 1-p < i< 1
H= TR —p) Tk (k—7) (k—j—-17  0<j<k-1

Applying L1 solver for our problem, we obtain

uZR,” (tj+1) — X(t;)) = (A(X(tr)) — DX (tx)

Manipulating the above equation, we obtain

k—

x<tk>—%<A<x<tk>>—I>x<t> X(tin) 3" B (X(tyon) - X(t)
7=0

The above formula is an implicit nonlinear scheme. To solve it without calculating the inversion of a
matrix, we propose the following iteration method:

(1) we can get a basic approximation of X () with the following formula:
1
X (tr) — ;(A(X(tk—l)) — DX(tr-1) = X(tr-1) Z R} (X (tj41) — X(t5))

(2) After that, we can substitute the above XF () into the implicit scheme to update X (#):

k—

X(tk)*%(A(Xp(tk))*I)XP(t) X(tr-1) Z (tj1) = X(t;))  (36)
7=0

The step (2) can be repeated multiple times to get an accurate approximation of X (ty).

D DATASETS, SETTINGS AND MORE EXPERIMENTS FOR F-GRAND MODEL

D.1 DATASETS

The statistics for the datasets used in Table 1 are reported in Table 5. Adhering to the experimental
framework in (Chamberlain et al., 2021c), we applied the largest connected component from each
dataset, with the exclusive exception of tree-like graph datasets, specifically, Airport and Disease.
Note however, in the study of over-smoothness, we utilize the fixed data splitting over the full datasets
as described in (Chami et al., 2019).

D.2 GRAPH CLASSIFICATION DETAILS

We use the Fake-NewsNet datasets from (Dou et al., 2021), constructed based on fact-checking
information obtained from Politifact and Gossipcop. The dataset incorporates four distinct node
feature categories, including 768-dimensional BERT features and 300-dimensional spaCy features,
which are derived using pre-trained BERT and spaCy word2vec models, respectively. Additionally, a
10-dimensional profile feature is extracted from individual Twitter accounts’ profiles. Each graph
within the dataset is characterized by a hierarchical tree structure, with the root node representing
the news item and the leaf nodes representing Twitter users who have retweeted said news. An edge
exists between a user node and the news node if the user retweeted the original news tweet, while an
edge between two user nodes is established when one user retweets the news tweet from another user.
This hierarchical organization facilitates the analysis of the spread and influence of both genuine and
fabricated news within the Twitter ecosystem. The datasets statistics are summarized in Table 6.
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Table 5: Dataset Statistics used in Table 1

Dataset Type Classes Features  Nodes Edges
Cora citation 7 1433 2485 5069
Citeseer citation 6 3703 2120 3679
PubMed citation 3 500 19717 44324
Coauthor CS co-author 15 6805 18333 81894
Computers  co-purchase 10 767 13381 245778
Photos co-purchase 8 745 7487 119043
CoauthorPhy  co-author 5 8415 34493 247962
OGB-Arxiv citation 40 128 169343 1166243
Airport tree-like 4 4 3188 3188
Disease tree-like 2 1000 1044 1043

Table 6: Dataset and graph statistics used in Table 2

Dataset Graphs (Fake) | Total Nodes | Total Edges | Avg. Nodes per Graph
Politifact (POL) 314 (157) 41,054 40,740 131
Gossipcop (GOS) | 5464 (2732) 314,262 308,798 58

D.3 IMPLEMENTATION DETAILS

Our FROND framework adheres to the experimental settings of the foundational graph neural ODE
models, diverging only in the introduction of fractional derivatives in place of integer derivatives.
In implementing GRAND, we employ one fully-connected (FC) layer on the raw input features
to obtain the initial node representations, X (0), for the FDE. Subsequently, we utilize another FC
layer as the decoder function to process the FDE output, X(T'), for executing downstream tasks. For
more detailed information regarding the hyperparameter settings, we kindly direct the readers to the
accompanying supplementary material, which includes the provided code for reproducibility. Our
experiments were conducted using NVIDIA RTX A5000 graphics cards.

D.4 LARGE SCALE OGBN-PRODUCTS DATASET

In this section, we extend our evaluation to include another large-scale dataset, Ogbn-products,
adhering to the experimental settings outlined in (Hu et al., 2021). For effective handling of this large
dataset, we employ a mini-batch training approach, which involves sampling nodes and constructing
subgraphs, as proposed by GraphSAINT (Zeng et al., 2020). Upon examination, we observe that
F-GRAND-I demonstrates superior performance compared to both GRAND-1 and the GCN model,
although it falls slightly short of the performance exhibited by GraphSAGE. This outcome could
potentially be attributed to the insufficient dynamic setting in (9). As such, the more advanced
dynamic (W, X(?)) in (6) may require additional refinement.

Table 7: Node classification accuracy(%) on Ogbn-products dataset
Model \ MLP Node2vec  Full-batch GCN GraphSAGE  GRAND-I F-GRAND-1
Acc ‘ 61.06+0.08 72.4940.10 75.641+0.21 78.29+0.16  75.56+0.67 77.25+0.62

D.5 PERFORMANCE OF DIFFERENT SOLVER VARIANTS

In this work, we introduce two types of solvers with distinct variants. We evaluate the performance
of these variants in Table 8. Specifically, we run F-GRAND on the Cora and Airport datasets with
h = 1 and T = 64. The solver variants perform comparably. For the Cora dataset, the fractional
Adams—Bashforth-Moulton method with a short memory parameter of K = 10 performs slightly
worse than the other variants. However, it demonstrates comparable performance to other solver
variants on the Airport dataset.
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Table 8: Node classification accuracy(%) under different solver when time T' = 64
\ Predictor(33)  Predictor-Corrector (34)  Short Memory  Implicit L1

Cora(8 = 0.6) 83.44+0.91 83.45+1.09 81.51+1.07 82.85+1.08
Airport(6 = 0.1) | 97.414+0.42 96.85+0.36 97.23+0.59  96.06+1.59

Table 9: Node classification accuracy based on memory K on the Cora dataset when time 1" = 40.

memory K 1 5 10 15 20 25 30 35 40
Accuracy (%) | 74.9+0.8 | 80.8+0.8 | 83.3+1.1 | 83.9+1.2 | 84.2+1.1 | 84.1+1.2 | 845+1.1 | 84.1+1.1 | 84.8%1.1
Inference (ms) 9.81 17.53 24.97 32.03 38.79 42.99 45.27 48.70 48.35

D.5.1 FURTHER CLARIFICATION ON TWO ACCURACIES

This section aims to clarify potential ambiguities surrounding the term “accuracy” by distinguishing
between “task accuracy” and “numerical accuracy.” Task accuracy pertains to the performance of
GNN:ss on tasks such as node classification. In contrast, numerical accuracy relates to the precision of
numerical solutions to FDEs, a critical concern in mathematics.

For example, generally, a larger K value in the Short Memory solver might enhance both numerical
and GNN task accuracy. However, it comes with the trade-off of demanding more computational
resources. Furthermore, the two accuracies are related, but not equivalent to each other. For added
clarity, we conducted an ablation study on the Cora dataset, keeping all parameters constant except
for the memory parameter K. The outcomes of this study are detailed in Table 9. Our observations
indicate that while increasing the value of K can improve numerical accuracy and potentially GNN
task accuracy, the computational cost also rises. Notably, the gains in task accuracy plateau beyond a
K value of 15.

We also remind the readers that in the literature, to solve FDEs, there exist other more numerically
accurate solvers like (Jin et al., 2017; Tian et al., 2015; Lv & Xu, 2016) that use higher convergence
order. In general, these kinds of solvers can theoretically reduce computation cost and memory storage,
as we can obtain the same numerical accuracy using larger step sizes compared to lower-order solvers.
It does not aim to improve GNN task accuracy as we can take smaller step sizes to achieve this, but
it may be helpful for other performances like computation cost and memory storage reduction. In
our paper, we focus on task accuracy. Therefore, classical solvers are used in our work. Nonetheless,
more numerically accurate solvers could potentially benefit other applications of fractional dynamics,
particularly when GNNs are utilized to simulate and forecast real physical systems.

D.6 COMPUTATION TIME

It should be emphasized that our FROND framework does not introduce any additional training
parameters to the backbone graph neural ODE models. Instead, we simply modify the integration
method from standard integration to fractional integration.

In this section, we report the inference time of the different solver variants in Tables 10 to 13. For
comparison, we consider the neural ODE solver for 5 = 1, which includes Euler, RK4, Implicit
Adams, and dopri5 methods as per in the paper (Chen et al., 2018b). We observe that when 7" = 4,
the inference time required by the FROND solver variants is similar to that of the ODE Euler solver.
However, for larger T' = 64, the basic Predictor (33) solver requires more inference time than Euler
and is comparable to RK4. For more accurate approximation solver variants (34) and (36) incorporat-
ing the corrector formula, Tables 12 and 13 show that these methods require more computational time
as the number of iterations increases. While the advantages of these solvers might not be pronounced
for GNN node classification tasks, they could provide benefits for other applications of fractional
dynamics, such as when GNNs are used to simulate and forecast real physical systems.
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Table 10: Average time under different solvers when time 7" = 4 and hidden dimension is 64 on Cora
dataset

‘Predictor(33) Predictor-Corrector(34)  Short Memory Implicit L1 ~ Euler RK4 Implicit Adams dopriS
Inference time (ms) | 0.98 1.67 0.98 0.62 096  2.06 3.20 11.91

Table 11: Average time under different solvers when time 7" = 64 and hidden dimension is 64 on
Cora dataset

‘ Predictor(33) Predictor-Corrector(34) Short Memory Implicit L1 Euler RK4 Implicit Adams dopri5

Inference time (ms) ‘ 44.46 160.92 30.26 221.74 12.16 42.66 103.46 66.15

Table 12: Average time of (34) and (36) with correctors, used to refine the approximation, when time
T = 4 and hidden dimension is 64 on the Cora dataset.
Predictor-Corrector (34) | 1 3 5 10

Inference time (ms) | 1.67 3.31 474 834
Implicit-L1 (36) | 1 3 5 10
Inference time (ms) | 0.62 1.04 148 2.55

Table 13: Average time of (34) and (36) with correctors, used to refine the approximation, when time
T = 64 and hidden dimension is 64 on the Cora dataset.

Predictor-Corrector (34) | 1 3
Inference time (ms) | 160.92  442.88
Implicit-L1 (36) | 1 3

Inference time (ms) \ 221.74 441.60
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D.7 CONTINUED STUDY OF OVER-SMOOTHNESS

D.7.1 NODE CLASSIFICATION ACCURACY

To corroborate that FROND mitigates the issue of over-smoothing and performs well with an
increasing number of layers, we conducted an experiment employing the basic predictor with up to
128 layers in the main paper. The results are presented in Fig. 1. For this experiment, we utilized the
fixed data splitting approach for the Cora and Citeseer dataset without using the Largest Connected
Component (LCC) as described in (Chami et al., 2019).

In the supplementary material, we further probe over-smoothing by conducting experiments with
an increased number of layers, reaching up to 256. The results of these experiments are illustrated
in Table 14. From our observations, F-GRAND-I maintains a consistent performance level even as
the number of layers escalates. This contrasts with GRAND-I, where there is a notable performance
decrease with the increase in layers. For instance, on the Cora datasets, the accuracy of GRAND-1
drops from 81.29% with 4 layers to 73.37% with 256 layers. In stark contrast, our F-GRAND-1 model
exhibits minimal performance decrease on this dataset. On the Airport dataset, F-GRAND-1 registers
a slight decrease to 94.91% with 256 layers from 97.0% with 4 layers. However, the performance of
GRAND-I significantly drops to 53.0%. These observations align with our expectations, as Theorem 2
predicts a slow algebraic convergence rate, while GRAND exhibits a more rapid performance
degradation.

Additionally, we note that the optimal number of layers for F-GRAND is 64 on the Cora and Airport
datasets, whereas on the Cirtesser dataset, the best performance is achieved with 16 layers.

Table 14: Over-smoothing mitigation under fixed data splitting without LCC

Dataset Model 4 8 16 32 64 80 128 256

GCN 81.35+£1.27 15.343.63 19.7047.06 21.86£6.09 13.040.0 13.04+0.0 13.04+0.0 13.040.0

Cor GAT 80.95+£2.28 31.9040.0 31.90£0.0 31.9040.0 31.90£0.0 31.9040.0 31.9040.0 31.90£0.0
ora GRAND-1 81.29+0.43 82.95+0.52 82.48+0.46 81.7240.35 81.33+0.22 81.0740.44 80.09+£0.43 73.3740.59
F-GRAND-1 81.17£0.75 82.68+0.64 83.05+0.81 82.90+0.81 83.44£0.91 82.8540.89 82.34+0.83 81.74+0.53

GCN 68.8412.46 61.58+2.09 10.6441.79 7.740.0 7.7£0.0 7.74£0.0 7.740.0 7.7£0.0

Cit . GAT 65.204-0.57 18.10+£0.0 18.1040.0 18.10+£0.0 18.1040.0 18.10£0.0 18.10£0.0 18.1040.0
esee GRAND-1 70.6841.23 70.3940.68 70.1840.56 68.90+1.50 68.014+1.47 67.4441.25 63.4542.86 56.984+1.26
F-GRAND-1 70.6841.23 71.04£0.68 71.08+1.12 70.834+0.90 70.2740.86 70.5040.76 70.324+1.67 71.0+0.45

GCN 84.7741.45 74.4348.19 62.561+2.16 15.27+0.0 15.2740.0 15.2740.0 15.27+0.0 15.2740.0

Airport GAT 83.59+1.51 67.02+4.70 46.5610.0 46.5610.0 46.561+0.0 46.561+0.0 46.5610.0 46.561+0.0
PO GRAND-1 80.53+9.59 79.88+9.67 76.2443.80 68.67+£4.02 62.28410.83 50.3842.98 57.96+11.63 53.0+14.85

F-GRAND-1 97.0+£0.79 97.09+0.87 96.9740.84 96.504-0.60 97.414+0.42 96.5340.74 97.0340.55 94.9143.72

D.7.2 DIRICHLET ENERGY

The Dirichlet Energy defined on the graph is represented as:
2

E(X(t)) = Hx“)(t) — xU)(p) H (37)
Dirichlet Energy provides quantitative insights into the variability of features across nodes and their
neighbors. Higher Dirichlet Energy implies greater diversity in node features, suggesting lower over-
smoothing levels, while lower energy points to the contrary, indicating a possible risk of information
loss through excessive smoothing.

We visualize the Dirichlet Energy of both Cora and Airport datasets across different models in
Figures Fig. 4 and Fig. 5, respectively. The term “number of layers” for both the GRAND and
F-GRAND models refers to the time 7" of integration, calculated using the Euler solver and the
basic predictor solver, respectively. This interpretation of layers is pivotal as it extends the discrete
layer concept in traditional models to a continuous-time framework. Observations indicate that our
F-GRAND model exhibits slower convergence compared to GRAND on the Cora dataset, while
maintaining nearly consistent Dirichlet Energy values on the Airport dataset up to 120 layers. This
consistency underscores its competence in mitigating the over-smoothing problem. As we have
proven in Corollary 1, the Dirichlet Energy will asymptotically approach O at a slow algebraic
rate. The sustained plot on the Airport dataset could arise from inadequacies in the layer count
and the numerical precision of the solvers. Nonetheless, the depiction of Dirichlet Energy provides
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Table 15: Node classification accuracy(%) under different value of 5 when time 7" = 8.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

B |
Cora ‘ 74.801+0.42 76.10+£0.34 77.04+0.98 77.80+0.75 79.60+£0.91 80.794+0.58 81.5610.30 82.4440.51 82.68+0.64 82.374+0.59

Airport ‘ 97.09+0.87 96.67+£0.91 95.80£2.03 94.04£3.62 91.66+£6.34 89.24+7.87 84.361+8.04 79.29+6.01 78.73£6.33 78.88+9.67

substantial evidence of FROND’s potential in alleviating over-smoothness. It is worth highlighting
that, particularly on tree-structured datasets, F-GRAND stands out as the sole model capable of
alleviating over-smoothness. This observation is consistent with the findings presented in Fig. 1 of

the main paper.

—— F-GRAND ﬂ/—/\/\/\’v\
—— GAT
—— GRAND
2 5
5 5 —— F-GRAND
&5 (=]
o = —— GAT
) o —— GRAND
Q <)
— —

0 50 100 150 200 250 0 2 0 60 30 100 120
Num of layers Num of layers

Figure 4: Dirichlet Energy of Cora dataset Figure 5: Dirichlet Energy of Airport dataset.

D.8 ABLATION STUDY: SELECTION OF 3 CONTINUED

In the main paper, we explore the impact of the fractional order parameter (3 across a variety of graph
datasets, with the results of these investigations presented in Table 3. More comprehensive details
concerning the variations in 3 can be found in Table 15.

D.9 ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

Despite the significant advancements GNNs have made in inference tasks on graph-structured data,
they are recognized as being susceptible to adversarial attacks (Ziigner et al., 2018). Adversaries,
aiming to deceive a trained GNN, can either introduce new nodes into the graph during the inference
phase, known as an injection attack (Wang et al., 2020; Zheng et al., 2022; Zou et al., 2021;
Hussain et al., 2022), or manipulate the graph’s topology by adding or removing edges, termed as
a modification attack (Chen et al., 2018a; Waniek et al., 2018; Du et al., 2017). In this section, we
present preliminary experiments assessing the robustness of our model against adversarial attacks.
Specifically, we carry out graph modification adversarial attacks using the Metattack method (Ziigner
& Giinnemann, 2019). Our approach adheres to the attack setting described in Pro-GNN (Jin et al.,
2020), and we utilize the perturbed graph provided by the DeepRobust library (Li et al., 2020b)
to ensure a fair comparison. The perturbation rate, indicating the proportion of altered edges, is
incrementally adjusted in 5% steps from 0% to 25%.

The results of these experiments are presented in Table 16. It should be noted that the impact of
Meta-attacks with higher strengths detrimentally affects the performance of all models under test.
However, our FROND-nl model consistently demonstrates enhanced resilience against adversarial
attacks compared to the baselines, including GRAND-nl. For instance, at a perturbation rate of 25%,
F-GRAND-nl outshines the baselines by an estimated margin of 10 to 15% on the Cora dataset.

Comprehensive testing against a variety of adversarial attack methods constitutes an important
direction for our future work.
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Table 16: Node classification accuracy (%) under modification, poisoning, non-targeted attack
(Metattack) in transductive learning.

Dataset  Ptb Rate(%) GGN GAT GRAND-nl F-GRAND-nl
0 83.50+0.44 83.974+0.65 83.14+1.06 83.48+1.08
5 76.55+0.79 80.444+0.74 80.54+1.17 80.254+0.90
Cora 10 70.39+1.28 75.61+£0.59 76.59+1.21 77.9440.48
15 65.10+0.71 69.78+1.28 71.62+1.39  75.14+1.16
20 59.56+2.72 59.944+0.92 57.524+1.20  69.04+1.13
25 47.53+1.96 54.78+0.74 53.70+1.91 63.40+1.44
0 71.96+0.55 73.264+0.83 71.40+1.08  70.1440.83
Citeseer 5 70.88+0.62  72.894+0.83  70.99+1.12 70.0£1.72
10 67.55+0.89 70.63+0.48 68.83+1.31 68.64+1.11
15 64.52+1.11 69.02+1.09 66.78+0.92  67.90+0.41
20 62.03+3.49 61.04+1.52 58.95+1.33 65.84+0.75
25 56.944+2.09 61.85+1.12 60.52+1.29  66.50+1.16

D.10 COMPARISON BETWEEN RIEMANN-LIOUVILLE (RL) DERIVATIVE AND CAPUTO
DERIVATIVE

The underlying rationale for opting for the Caputo derivative over the Riemann-Liouville (RL)
derivative is extensively delineated in Appendix B.4. However, a supplementary experiment was
conducted utilizing the RL derivative in lieu of the Caputo derivative, the results of which are
documented in Table 17. It can be observed that the task accuracies for both approaches are very
similar. Further investigations on the use of different fractional derivatives and how to optimize the
whole model architecture to adapt to a particular choice will be explored in future work.

Table 17: Comparison between RL-GRAND-I (using Riemann-Liouville derivative) and the original
F-GRAND-I (using Caputo derivative).
Method \ Cora Citeseer ~ Pubmed  CoauthorCS Computer Photo CoauthorPhy  Airport Disease

GRAND-1 83.6+1.0 734405 78.8%+1.7 92.94+0.4 83.7+1.2  92.3+0.9 93.54+0.9 80.5+9.6 74.5+3.4
RL-GRAND-1 | 84.6+£12 74.2+1.0 80.1£1.2 92.840.3 87.4+1.1 93.3+0.7 94.14+0.3 96.2+0.2  90.7+1.3
F-GRAND-1 | 84.8+1.1 74.0£15 79.4%1.5 93.0+0.3 84.4+15 92.840.6 94.5+0.4 98.1+£0.2 924439

D.11 TREE-LIKE DATA FRACTAL DIMENSION

Table 18: Comparison between the estimated fractal dimension, the best order 5 and the 4-
hyperbolicity

Dataset Disease Airport Pubmed Citeseer Cora

fractal dimension 2.47 2.17 2.25 0.62 1.22
best 3 (F-GRAND-1) 0.6 0.5 0.9 0.9 0.9
best 8 (F-GRAND-nl) 0.7 0.1 04 0.9 0.9
d-hyperbolicity 0.0 1.0 3.5 4.5 11.0

In Fig. 6, using the Compact-Box-Burning algorithm from (Song et al., 2007), we compute the fractal
dimension for some datasets that have moderate sizes. As noted in Table 1, there is a clear trend
between d-hyperbolicity (as referenced in (Chami et al., 2019) for assessing tree-like structures—with
lower values suggesting more tree-like graphs) and the fractal dimension of datasets. Specifically, a
lower §-hyperbolicity corresponds to a larger fractal dimension. As discussed in Sections 1 and 4,
we believe that our fractional derivative Df effectively captures the fractal geometry in the datasets.
Notably, we discerned a trend: a larger fractal dimension typically corresponds to a smaller optimal

B.
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A —e— Airport Slope: 2.17
s --u-- Disease Slope: 2.47
S —4- Pubmed Slope: 2.25
o Cora Slope: 1.22
S —— Citeseer Slope: 0.62

Number of Boxes

Size of Box

Figure 6: The fractal dim of datasets. We use the Compact-Box-Burning algorithm in (Song et al., 2007) to
compute the log-log slope (fractal dim) of the box size and the minimum number of boxes needed to cover the
graph.

E MORE DYNAMICS IN FROND FRAMEWORK

E.1 REVIEW OF GRAPH ODE MODELS

GRAND++: The work by (Thorpe et al., 2022) introduces graph neural diffusion with a source term,
aimed at graph learning in scenarios with a limited quantity of labeled nodes. This approach leverages
a subset of feature vectors, those associated with labeled nodes, indexed by Z, and considered
“trustworthy” to act as a source term. It adheres to (4) and (5), incorporating an additional source
term, facilitating the propagation of information from nodes in Z to node <.

ax (1)
de¢

Here, 7 denotes the set of source nodes, s(-) represents a source function, and F'(-) embodies the
function depicting the right-hand side of (4) and (5). The model is manifested in two variations,
respectively denoted as GRAND++-nl and GRAND++-1.

GraphCON: Inspired by oscillator dynamical systems, GraphCON (Rusch et al., 2022) is defined
through the employment of second-order ODEs. It is crucial to highlight that, for computational
efficiency, the second-order ODE is decomposed into two first-order ODEs:

DU — o rox).0) X0 —av(e), 0 —y), 39)
where o (+) is the activation function, Fy(X(t), t) is the neural network function with parameters 6, v
and & are learnable coefficients, and Y (¢) is the velocity term converting the second-order ODE to
two first-order ODE:s.
Analogous to the GRAND model, the GraphCON model is also available in both linear (GraphCON-1)
and non-linear (GraphCON-nl) versions concerning time. The differentiation between these versions
is determined by whether the function F'y undergoes updates based on time .

= F(X(t)) + s({x }iez) (38)

CDE: With the objective of addressing heterophilic graphs, the paper (Zhao et al., 2023) integrates
the concept of convection-diffusion equations (CDE) into GNNs, leading to the proposition of the
neural CDE model: This innovative model incorporates a convection term and introduces a unique
velocity for each node, aiming to preserve diversity in heterophilic graphs. The corresponding formula
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is illustrated in (40).

dX(¢t)

dt

In this equation, V (t) represents the velocity field of the graph at time ¢, div(-) denotes the divergence
operator as defined in the paper (Chamberlain et al., 2021c; Song et al., 2022), and o symbolizes the
element-wise (Hadamard) product.
GREAD: To address the challenges posed by heterophilic graphs, the authors in (Choi et al., 2023)
present the GREAD model. This model enhances the GRAND model by incorporating a reaction
term, thereby formulating a diffusion-reaction equation within GNNs. The respective formula is
depicted in (41), and the paper offers various alternatives for the reaction term.

dX (1)
dt

In this equation, 7(X(t)) represents the reaction term, and « is a trainable parameter used to balance
the impact of each term.

— (A(X(t)) — D)X (t) + div(V(t) 0 X (1)) (40)

= —aL(X(t)) + ar(X(¢)) (41)

E.2 F-GRAND++

Building upon the GRAND++ model (Thorpe et al., 2022), we define F-GRAND++ as follows:
DX (t) = F(X(1)) + s({x"}iez) (42)

We follow the same experimental settings as delineated in the GRAND++ paper. Given that the
primary focus of GRAND++ is the model’s performance under limited-label scenarios, our experi-
ments also align with this setting. The sole distinction lies in the incorporation of fractional dynamics.

Within this framework, we substitute the ordinary differential equation d’;gt) used in GRAND++

with our FROND fractional derivative Df X(t). The optimal 3 is determined through hyperparameter
tuning. When 3 = 1, F-GRAND++ seamlessly reverts to GRAND++, and the results from the original
paper are reported. Our observations distinctly indicate that the Fractional-GRAND++ consistently
surpasses the performance of the original GRAND++ in nearly all scenarios.

Table 19: Node classification results (%) under limited-label scenarios
Model | pre class Cora Citeseer Pubmed CoauthorCS Computer Photo

GRAND++ 1 54.944+16.09 58.95+9.59 65.94+4.87 60.30£1.50 67.65+0.37 83.12+0.78
F-GRAND++ 1 57.31+8.89  59.11+6.73 65.98+2.72 67.71+1.91 67.65+0.37 83.12+0.78
B8 0.95 0.95 0.85 0.7 1.0 1.0
GRAND++ 2 66.92+10.04 64.98+8.31 69.31+4.87 76.53£1.85 74.47+1.48 83.71+0.90
F-GRAND++ 2 70.09+8.36  64.98+8.31 69.37+5.36 77.97+2.35 78.85+0.96 83.71+0.90
B8 0.9 1.0 0.95 0.5 0.8 1.0
GRAND++ 5 77.80+4.46  70.03£3.63 71.99+1.91 84.83+0.84 82.64+0.56 88.33+1.21
F-GRAND++ 5 78.79+1.66  70.26:+2.36  73.38+5.67 86.09+2.09 82.64+0.56 88.56+0.67
B8 0.9 0.8 0.9 0.8 1.0 0.75
GRAND++ 10 80.86+2.99 72344242 75.13£3.88 86.94+0.46 82.99+0.81 90.65%1.19
F-GRAND++ 10 82.73+0.81 73.52+1.44 77.15+2.87 87.85+1.44 83.26+0.41 91.15+0.52
B8 0.95 0.9 0.95 0.6 0.7 0.95
GRAND++ 20 82.95+1.37  73.53+3.31 79.16£1.37 90.80+0.34  85.73£0.50 93.55+0.38
F-GRAND++ 20 84.57+1.07 74.81+£1.78 79.96+1.68 91.03+0.72 85.78+0.43 93.55+0.38
B8 0.9 0.85 0.95 0.9 0.9 1.0
E.3 F-CDE

Drawing inspiration from the graph neural CDE model (Zhao et al., 2023), we further define the
F-CDE model as follows:

DPX(t) = (A(X(t)) = DX(t) + div(V(t) o X (1)) (43)
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In this expression, V (¢) represents the velocity field of the graph at time ¢. The divergence operator,
div(-), is defined as per the formulation given in (Song et al., 2022), and o symbolizes the element-
wise (Hadamard) product.

We follow the same experimental setting as in the CDE paper(Zhao et al., 2023). Given that the
primary focus of CDE is on evaluating model performance on large heterophilic datasets, our
experiments are also conducted under similar conditions. The statistics for the dataset are available in
Table 20. The sole distinction in our approach lies in incorporating fractional dynamics; we achieve
this by replacing the ODE used in CDE with our FROND fractional derivative. The results in Table 4
conspicuously reveal that Fractional CDE exhibits superior performance compared to the conventional
CDE across various datasets.

Table 20: Dataset statistics used in Table 4

Dataset Nodes  Edges  Classes Node Features
Roman-empire 22662 32927 18 300
Wiki-cooc 10000 2243042 5 100

Minesweeper 10000 39402 2 7
Questions 48921 153540 2 301
Workers 11758 519000 2 10
Amaon-ratings 24492 93050 5 300

E.4 F-GREAD

Our FROND framework is also extendable to the GREAD model (Choi et al., 2023), as defined in
(44).

DPX(t) = —aL(X(t)) + ar(X(t)) (44)

where 7(X(t)) represents a reaction term, and « is a trainable parameter used to emphasize each
term.

We adhere to the same experimental setting outlined in the GREAD paper (Choi et al., 2023),
concentrating exclusively on heterophilic datasets. We choose the Blurring-Sharpening (BS) as the
reaction term to formulate both GREAD-BS and F-GREAD-BS, as GREAD-BS exhibits strong
performance according to Table 4 in the GREAD paper (Choi et al., 2023). The results presented in
Table 21 demonstrate that our FROND framework enhances the performance of GREAD across all
examined datasets.

Table 21: Node classification accuracy(%) of heterophilic datasets

Model Chameleon Squirrel Film Texas Wisconsin

GREAD-BS 71.38+£1.31 59.22+1.44 3790£1.17 88.92+3.72 89.41+£3.30
F-GREAD-BS  71.45+1.98 60.86+1.05 38.284+0.74 92.97+4.39 90.59+3.80
B 0.9 0.9 0.8 0.9 0.9

E.5 F-GRAPHCON

We also incorporate the following fractional-order oscillators dynamics, inspired by (Radwan et al.,

2008; Rusch et al., 2022):

DY = o (Fo(X,1)) =X — @Y
(45)
DX =Y

which represent the fractional dynamics version of GraphCON (Rusch et al., 2022). We denote this
as F-GraphCON, with two variants, F-GraphCON-GCN and F-GraphCON-GAT. Here, F is set as
GCN and GAT, as in the setting described in (Rusch et al., 2022). We refer readers to (Rusch et al.,
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2022) for further details. Notably, when 5 = 1, F-GraphCON simplifies to GraphCON, devoid of
memory functionality.

Table 22: Node classification accuracy(%) based on GraphCON model

Cora Citeseer ~ Pubmed Airport Disease
GraphCON-GCN | 81.9+1.7 72.942.1 78.8+£2.6 68.6+£2.1 87.5+4.1
GraphCON-GAT | 83.2+1.4 73.2+1.8 79.4+1.3 74.1£27 65.7£59

F-GraphCON-GCN | 84.6+1.4 75.3+1.1 80.3£1.3 97.3+0.5 92.1+2.8

A 0.9 0.8 0.9 0.1 0.1
F-GraphCON-GAT | 83.9+12 734£1.5 794413 973408 86.944.0
38 0.7 0.9 1.0 0.1 0.1

E.6 F-FLODE

In the work of (Maskey et al., 2023), the authors introduce the FLODE model, which incorporates
fractional graph shift operators within graph neural ODE models. Specifically, instead of utilizing a
Laplacian matrix L, they employ the fractional power of L, denoted as L (see (46)). Our research
diverges from this approach, focusing on the incorporation of time-fractional derivative Dtﬂ for
updating graph node features in a memory-inclusive dynamical process. It is pivotal to differentiate the
term “fractional” as used in our work from that in (Maskey et al., 2023), as they signify fundamentally
distinct concepts in the literature. Fundamentally, FLODE differs from our work in key aspects:

* FLODE employs the fractional (real-valued) power of L, namely L. The feature evolution
model used by FLODE, specifically in its first heat diffusion-type variant, is given by:
dX(t)
dt

This is a graph spatial domain rewiring technique, as L® introduces dense connections
compared to L. As a result, FLODE introduces space-based long-range interactions during
the feature updating process.

= —L*X(t)®. (FLODE)

* In contrast, our FROND model incorporates the time-fractional derivative Df to update
graph node features in a memory-inclusive dynamical process. In this context, time acts as
a continuous counterpart to the layer index, leading to significant dense skip connections
between layers due to memory dependence. Thus, FROND induces time/layer-based long-
range interactions in the feature update process. Note that FLODE does not utilize time-
fractional derivatives. Our method is not only compatible with various graph ODE modes,
including FLODE (see (F-FLODE)), but also extends them to graph fractional differential
equation (FDE) models.

We next introduce the F-FLODE model, which utilizes time-fractional derivatives for updating graph
node features in FLODE:
DPX(t) = —-LoX(t)®, (F-FLODE)

where L denotes the symmetrically normalized adjacency matrix. The a-fractional power of the
graph Laplacian, L, is given by:

LY :=Ux*vH (46)

In this formulation, U, X, and V are obtained from the SVD decomposition of L = UXVH and
a € R represents the order. The channel mixing matrix ®, a symmetric matrix, follows the setting in
(Maskey et al., 2023).

Following the experimental setup outlined in (Maskey et al., 2023), we present our results in Tables 23
and 24, demonstrating that our FROND framework enhances the performance of FLODE across all
evaluated datasets. Note the difference in the equations in (FLODE) and (F-FLODE), where the two
are equivalent only when 8 = 1. This example illustrates that the FROND framework encompasses
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the FLODE model as a special case when /3 = 1. Our experimental results indicate that F-FLODE
outperforms FLODE with the optimal 5 # 1 in general.

Table 23: Node classification accuracy(%) of undirected graphs based on F-FLODE model

Film Squirrel Chameleon
FLODE | 37.164+1.42 64.23+1.84 73.60£1.55

F-FLODE ‘ 37.95+1.27 65.53+1.83 74.17+1.59

B 0.8 0.9 0.9

Table 24: Node classification accuracy(%) of directed graphs based on F-FLODE model

Film Squirrel Chameleon
FLODE | 37.41£1.06 74.03£1.58 77.98£1.05

F-FLODE | 37.97+1.15 75.03+1.42 78.51+1.09
3 0.9 0.9 0.9

F PROOFS OF RESULTS

In this section, we provide detailed proofs of the results stated in the main paper.

F.1 PROOF OF THEOREM 1

Proof. We observe that for 0 < 8 < 1 they possess the properties, the coefficients cg, b,, defined in
(10) satisfying the following properties.

o0
chzl, 1>B=c>ca>c3>...—0,
k=1

m o0
bp =1, bm:1—ZCk= Z Cce, 1 =0byg > by >by>bg>...—0.
k=1 k=m+1

From the definition of the transition probability (11), we have
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P(R(th) = x® (0))

- an(R(to) - x<h>(o)) n cnIP’(R(tl) - x(h)(O)) T CQP(R( . x(h)(O))+
+ (1 — aﬂ)IP’(R(tn =xM(0 ) i ﬁW]h ( n) = x(j)(O))
- anP’(R(tO) - x(h)(O)) + cnIP’(R(tl) - x(h)(O)) T CQP(R(tn,l) - X(}L)(O))—l—

+eP(R(tn) = x"(0)) = P (R{ta) =xM(0)) + XN: o” %P(R(t") —x(0))

By rearranging, we have that

P(R(tn+1 ) ch]P( (tns1—1) x<h)(0))—b ]P(R(to) “”(0))
—<1>0<§>P(R<tn+l> ") Z( 1)“1(5)P(R<tn+l 0 =x"0) :0<1)’“<£>P(R(O>—x<m<o>)
G )P(R(tn+1 0 =x"(0) Z(nk(ﬁ)P(R(m—x‘h)(O))

k=0 k=0

_ —UB]P’(R(tn) - x“’)(o)) + i o° ngh P(R(tn) = X“’(O))

J

Dividing both sides of the final equality by ¢, it follows that

k B

k=0
:_]p(R( ) =xM(0 )_~_Z Winp ( :X(J‘)(Q)) (48)

From the Griinwald-Letnikov fractional derivatives formulation (Podlubny, 1999)[eq. (2.54)], the
limit of LHS of (48) is

= B\ P(R(tni1-1) = x"(0)) — P(R(0) =x™(0)) B
r%g)t kzo(il)k </€> : of N DEP<R(t) N x(h)(()))
(49)
On the other hand, the RHS of (48) is
N
—P(R(t:) =x"(0)) + Z P(R(t) = x(0) = [FLPR(E)) (50

where P(R(t,,)) is the probability (column) vector with j-th element being P(R(t,,) = x () (0)),
and [—-LP(R(¢,))]s denotes the h-th element of the vector —LP(R.(¢,,)).

Putting them together, we have

DJP(R(t)) = —LP(R(t)) (51)
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since we assume t,, = t in the limit. Finally, from the linearity of the operator Df and L, we have
D/P(R(t))X(0) = ~LP(R(t))X(0), (52)

which states that DPER/(t) = —LER(t) for any probability distribution P(R/(0)). For each i, if

R(ty) = x (") with probability one, the initial condition of (9) is satisfied. The proof of Theorem 1 is
now complete. O

F.2 PROOF OF THEOREM 2

Before presenting the formal proof, we aim to provide additional insights and intuition regarding the
algebraic convergence from two perspectives.

* Fractional Random Walk Perspective: In a standard random walk, a walker moves to a
new position at each time step without delay. However, in a fractional random walk, which
is more reflective of our model’s behavior, the walker has a probability of revisiting past
positions. This revisitation is not arbitrary; it’s governed by a waiting time that follows
a power-law distribution with a long tail. This characteristic fundamentally changes the
walk’s dynamics, introducing a memory component and leading to a slower, algebraic rate
of convergence. This behavior is intrinsically different from normal random walks, where
the absence of waiting times facilitates a quicker, often exponential, convergence.

* Analytic Perspective: From an analytic perspective, the essential slow algebraic rate pri-
marily stems from the slow convergence of the Mittag-Leffler function towards zero. To
elucidate this, let’s consider the scalar scenario. Recall that the Mittag-Leffler function Eg
is defined as:

o0

o) = 2 T )

for values of z where the series converges. Speciﬁcally, when =1,
E = =
1(’2) p 1‘\ ] 4 1 ZO EXp

corresponds to the well-known exponential function. According to [Al, Theorem 4.3.], the
eigenfunctions of the Caputo derivative are expressed through the Mittag-Leffler function.
In more precise terms, if we define y(¢) as

y(t) == Eg(=At"), t>0,
it follows that
Dly(t) = —My(t)

Notably, when 3 = 1, this reduces to de%(t_m = —Xexp(—At).

Further, we examine the behavior of Ez (—At™). As per [Al, Theorem 7.3.], it is noted that:
(a) The function y(t) is completely monotonic on (0, o).

(b) As z — oo,

=8

=g W)

y(t) =

Thus, the function Eg (—At”) converges to zero at a rate of © (¢t~7). Our paper extends
this to the general high-dimensional case by replacing the scalar A with the Laplacian matrix
L, wherein the eigenvalues of L play a critical role analogous to A in the scalar case.

For a diagonalizable Laplacian matrix L, the proof essentially reverts to the scalar case
as outlined above (refer to (55) in our paper). However, in scenarios where L is non-
diagonalizable and has a general Jordan normal form, it becomes necessary to employ the
Laplace transform technique to demonstrate that the algebraic rate remains valid (refer to
the context between (55) and (56) in our paper).
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d1 dN
Siady T o dy
that for i = 1,.. ., n, the probability distribution P(R(t,,)) always equals w'. For i = n + 1, from
(47), it follows that

B(R(tns1)n = B (Ritas1) =xM(0))

- anP’(R(tO) - x(i)(O)) +3 ckIP’(R(th,k) - x(h)(o))

Proof. We first prove the stationary probability 7w = by induction. Assume

k
W .
- aﬁP(R(tn) - x(h)(0)> +3 ¢ %P(R(tn) - x<ﬂ>(0))
j=1 J
n N %
_ _ B Bk
= mrbn, +Z7Thck ot + 4 Z w0 4,
k=1 j=1,5%#h
n N d: W‘h
_ _ B J B3
_wh(bn—i—ch) ThO +, . ZN d.a 1
k=1 j=1,g#h £~j=1"J !
N
:7'l'h—7l'h0’8+0'6 71;‘\[/]
j=1,j#h Z_j:l d;
dp,
=Ty — TI’hO'B + of N}
j=14;

= TTh.

This proves the the existence of stationary probability. The uniqueness follows from if P(R(¢;)) =
7’ # m, we do not have P(R(t2)) = P(R(¢1)) since otherwise it indicate that the Markov chain
defined by

P (R(tie) = X0 (0) | R(ts) = x5 (0)) = B (R{tsr) = xU2)(0) | R{t) = x(0))
g —oP +b if staying at current location with 7,11 = j,
= 8 Winint1 p. . . . . . . (53)
of —5Antl if jumping to neighboring nodes with j,,+1 # jn,
In
has stationary distribution other than 7r which contradicts the assumption of a strongly connected and
aperiodic graph.

We now establish the algebraic convergence. Consider L = SIS~ as the Jordan canonical form of
L. It is evident that for the matrix WD !, since WD ™! is left stochastic and the graph is strongly
connected and aperiodic, the Perron-Frobenius theorem (Horn & Johnson, 2012)[Lemma 8.4.3.,
Theorem 8.4.4] confirms that the value 1 is the sole eigenvalue of it that equals the spectral radius 1.
Hence, we have that L = I — WD ™! possesses an eigenvalue of 0, and all the remaining eigenvalues
have positive real parts. Consequently, J contains a block that consists of only a single 0. We can
rewrite (51) as

DPY (t) = -JY(t) (54)
where STIP(R(t)) = Y (¢) € R and the inital condition is S™'P(R(0)) = Y (0).

If L is diagonalizable, then J is a diagonal matrix with the diagonal elements being the eigenvalues.

We have an uncoupled set of equations in the form DY (t) = =\, Y1 (t), where Y}, is the k-th
component of Y. According to (Podlubny, 1999), the solution is given by

Y (t) = Yk(O)EB(—)\ktﬁ) (55)

where Eg(-) is the Mittag-Leffler function define as Eg(z) = Z;io Wlﬂ) and I'(+) is the gamma

function. For the index w s.t. the eigenvalue \,, = 0, we have the solution Y (¢) = Y (0) which
corresponds to the stationary probability vector if we transform it back to P(R.(¢)). From (Mainardi,
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2014), we have that for k # w, the convergence to 0 is in the following order
Y. (t) =0 P).

If J is not diagonal, the entries of Y (¢) that correspond to distinct Jordan blocks in J are not
coupled. W.L.O.G, we assume the first Jordan block is associated to eigenvalue A\; = 0, while all
eigenvalues A\, > 0, for kK = 2,..., N. A consideration of the Jordan block corresponding to one A,
k=2,...,N,is adequate. We assume the Jordan block J(\;) corresponding to Ay has size m. It
follows that for this Jordan block we have

DPY 1 (t) = MY 1 (t) + Ya(t)

DY 1(t) = MY o1 (8) + Yo (2)
DPY (1) = e Yo (1)
which can be solved from the bottom up. Starting with the last equation, we have that
Yo (t) = Y (0)Es(—\t?) = (7).
Furthermore, we have
DY 1 (t) = MY 1(8) + Yo (0) Es(=M\it?)
Take the Laplace transform, we have

c {Dme,l(t)} = %Y 1(s) — $P71Y 1 (0)

where Y;,,_1(s) is the Laplace transform of Y ,,_1 (¢) according to (3). Now, for the right hand side,

we have L {\Y,,_1(¢)} = AYy—1(s) and we know that the Laplace transform of Eg (—At?) is
p—1 L .
: . Therefore, the equation in the Laplace domain becomes:

8 -1 77
S Ym_l(S) — S Ym—l (O) = AkYm_l(S) + Ym(o)m
Rearranging this equation to solve for Y;,,_1(s) gives:
— Sﬂ—l
m—1{S) = P+ Ar

It follows that Y,,,_1(s) ~ Cs?~! when s — 0. We can repeat the above process to show Y;(s) ~
CsP~!whens — Oforalli = 1,...,m — 2. According to the Hardy-Littlewood Tauberian theorem
(theorem, 2023), we have that, forall: = 1,...,m,

Yi(t) =01 "). (56)
The proof is now complete. O

F.3 PROOF OF COROLLARY 1

We are unable to directly invoke (15) to infer E(X(¢)) = ©(t~2#) in (17) since it only yields an
upper bound, as presented below:

Hx(i)(t) _ X(j)(t)Hz < (||x<i>(t) — X2 + X9 (t) — st2>2 (57)

Consequently, we directly refer to (54) for resolution. We use notation e; to denote the one-hot vector
where the i-th component stands at 1. Recall that we have solution P;(R(¢)) with initial condition
e; for each 4. The set {e;} Y, is linearly independent and span the full R"Y space. It is equivalent to
getting the transformed solution Y (;) (¢) with the initial condition S~'e; in (54). The entries of Y (t)
that correspond to distinct Jordan blocks in J are not coupled. We denote the solution to (54) with
initial condition e, as Y(k) (t). Note, according to the proof of theorem 2, we have that the solution
corresponds to the unique eigenvalue 0 to matrix J keep a constant. If we assume eigenvalue 0 is
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the first Jodan block, we have Y (1)(t) = Y (1)(0) for all time ¢ > 0. While all the other solutions
Y'(k) (t), k = 2,..., N, corresponding to the other Jordan blocks, converge to 0 in © (t*ﬁ) rate.
From the linearity, we then have Y ;)(¢) are the linear combination of the N independent solutions
{Y ()(t)} . More specifically, we have that

N
Y(z) (t) = [S 0Y1 Z S eZ k@ )

where [S’lei]k is the k-component of matrix S~'e;. We can prove that the first row of S lisall
with a being a scalar and 1 is an all-ones vector (it is based on Horn & Johnson (2012)[Theorem
3.2.5.2.], see Lemma 1). It follows that [S‘lei}o is the same for all 7. We therefore have that for some
¢ and j

qu-)(t) B Xu)(t)Hz — SY (1) = SY (1) = © (t72)

The proof is now complete.
Lemma 1. The first row of S™" is al” with a being a scalar and 1 is an all-ones vector.

Proof. The Jordan canonical form of WD~ is represented as SJS™! where J = J + I with the first
Jordan block being 1 and the rest having eigenvalues strictly less than 1. Based on (Horn & Johnson,
2012)[Theorem 3.2.5.2.], we observe that limy_,oo (WD™!)¥ = lim;_,,, SJ*S™! = SAS™!,
where A is a diagonal matrix with the first element as 1 and all the others as 0:

1
0
A =
0
Since limkﬁoo(WD_l)k maintains its column stochasticity and the rank of SAS~1is 1, we deduce
that the first row of S~! is @17 with a being a scalar and 1 an all-ones vector. [
LIMITATIONS

Our research proposes an advanced graph diffusion framework that integrates time-fractional deriva-
tives, effectively encompassing many GNNs. Nonetheless, it presents certain limitations. A crucial
element we have overlooked is the application of the fractional derivative in the spatial domain. In
fractional diffusion equations, this implies substituting the standard second-order spatial derivative
with a Riesz-Feller derivative (Gorenflo & Mainardi, 2003), thus modeling a random walk with
space-based long-range jumps. Incorporating such a space-fractional diffusion equation within GNN's
could potentially alleviate issues like the bottleneck and over-squashing highlighted in (Alon & Yahav,
2021). This represents a current limitation of our work and suggests a compelling future research
trajectory that merges both time and space fractional derivatives in GNNGs.

BROADER IMPACT

The introduction of FROND holds significant potential for applications such as sensor networks,
transportation, and manufacturing. FROND’s ability to encapsulate long-term memory in neural dy-
namical processes can enhance the representation of complex interconnections, improving predictive
modeling and efficiency. This could lead to more responsive sensor networks, optimized routing in
transportation, and improved visibility into manufacturing process networks. However, the advent
of FROND and similar models may also have mixed labor implications. While these technologies
might render certain repetitive tasks obsolete, potentially displacing jobs, they may also generate new
opportunities focused on developing and maintaining such advanced systems. Moreover, the shift
from mundane tasks could enable workers to focus more on strategic and creative roles, enhancing job
satisfaction and productivity. It’s paramount that the deployment of FROND is done ethically, with
ample support for reskilling those whose roles may be affected. This helps ensure that the broader
impact of this technology is beneficial to society as a whole.
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