
A Details about extruder path planning
A.1 Methods
Ours. As we discussed before in Section 3, we train a decoder (surrogate) using Equation 2 and an
encoder using Equation 3, with the cost function defined in Equation 6. We take the trained encoder
φ∗(·) as our final model in use.
direct-learning. As we discussed in Section 4, we train direct-learning using Equation 4,
with a regularizer as defined in Equation 7. Note that this is equivalent to training to minimize the
cost function L·(·, ·) in Equation 6.
direct-optimization. As described in Section 4, we build direct-optimization as in Equa-
tion 5, with a trained surrogate of the physical realization process. Here, to enforce that points θi are
evenly distributed along the extruder path, we use a slightly different cost function Ldo,·(·, ·):

Ldo,g(θ,u) := ddo(g,u) + λdo · Rdo(θ), (12)
where we have a distance function ddo(·, ·) and a smooth regularizerRdo(·). The smooth regularizer
Rdo(·) is derived from Equation 7 by requiring ||θi+1 − θi||2 to be the same for all i:

Rdo(θ) :=
1

Sθ

n−1∑

i=2

(
θi+1 − θi

2
− θi − θi−1

2

)2

, (13)

where Sθ is the length of the extruder path θ; this intrinsically enforces points in θ to be evenly
spaced. To measure the distance between g and u, we first map them into two functions fg(·) and
fu(·), such that fg(s) ∈ R2 is the location if we walk a distance s along the path g (assuming the
path is piecewise linear), and similarly for fu(·). Then the distance function is defined as

ddo(g,u) :=

∫ 1

0

∥∥fg(x · Sg)− fu(x · Su)
∥∥2

dx, (14)

where Sg and Su denote the lengths of paths g and u, respectively.

A.2 Data generation
Random curve generation. To build the dataset, we first need to generate some random 2D curves,
which can be used as extruder paths later. The curves should be smooth and non-intersecting. For
each path, we take both the x and y to be Gaussian processes whose kernel function K(·, ·) is

K(x, x′) := exp

(
− sin2

(
(x− x′)/2

)

2 l2

)
, (15)

with the two axes independent and l = 0.1. We use elliptical slice sampling [63] (New BSD License):
for each path, we start from 1,000 points on a unit circle, and sample 1,000 times. To avoid
intersections, we use a log-likelihood of −∞ for a self-intersecting path, and a log-likelihood of 0 for
a non-intersecting path. We generate 10,000 paths using this approach.
Simulator. Since it is time-consuming to print every extruder path we generate in the last step
on a real printer, we build a simulation system by using Bullet [22] to help us generate fiber paths.
The simulator is also used in our evaluation. We calibrate the simulator on two materials—carbon
fiber and Kevlar, respectively. To calibrate, we print paths shaped as sine functions with amplitudes
ranging from 3.0 cm to 6.5 cm on the Markforged Mark Two printer (Figure 6). We then measure the
amplitudes of the printed fiber paths, which will be lower than the amplitudes of the extruder paths
because of smoothing, and fit lines to actual amplitude vs. extruder amplitude (Figure 7a). After
that, we perform a grid search on the parameters of the simulator (such as stiffness and friction),
run simulations with the sine functions as extruder paths, and collect data pairs of extruder path
amplitudes and simulated fiber path amplitudes. We end up with calibrated simulators for carbon fiber
(Figure 7b) and Kevlar (Figure 7c), by selecting the set of parameters for each having the minimum
sum of squared distances between the fitted line from Figure 7a) and the collected simulation data
points. Finally, we run the tuned simulators on the generated extruder paths. Though we have
conducted experiments with both materials, due to space constraints, the experiments in the paper
use data generated from the carbon fiber simulator. We visualize some extruder paths and simulated
carbon fiber paths in Figure 8.

A.3 Mapping from a path to another
We have to design a neural network that can take in an input path (Rn×2) and output another path
(Rn×2), which can be used for encoder, decoder, and direct-learning. Both paths are sequences
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Kevlar 
Print 1

Kevlar 
Print 2

Amplitudes from 3.0 cm to 4.7 cm Amplitudes from 4.8 cm to 6.5 cm

Figure 6: We print paths shaped as sine functions with amplitudes from 3.0 cm to 6.5 cm on the Markforged
Mark Two printer, using carbon fiber and Kevlar, respectively. We print everything twice.
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b) simulator tuned for carbon fiber c) simulator tuned for Kevlara) lines fitted on real data

Figure 7: (a) We print paths shaped as sine functions with different amplitudes, collect amplitudes of the printed
fiber paths, and fit lines through the data we collected. We experiment with two materials—carbon fiber and
Kevlar, and the identity line is also visualized. (b) and (c) We select two sets of simulator hyper-parameters with
their simulation results closest to the lines we get from the previous step for carbon fiber and Kevlar, respectively.

of n 2D coordinates. For the purpose of illustration, we use decoder as an example here. Now the
input is the extruder path θ, and the output is the resulting fiber path u. Remember θi ∈ R2 is the
i-th row of θ. Due to the intrinsic equivariant property of the problem, one natural idea is to have a
neural network that takes in a certain number of points near θi in θ and outputs the corresponding
point in u (i.e., ui), and we iterate over every i, as a window sliding over θ. Note that we used the
same neural network for all i’s.
We thus use a multilayer perceptron (MLP), which takes 2m+ 1 points (we set m = 30) and outputs
one point. We take θi as the starting point and resample m points both forward and backward along
the path θ. To be specific, as in § A.1, we first map θ into a function fθ(·) such that fθ(s) ∈ R2 is
the location if we start from θ1 and walk a length of s on the path. We further set fθ(s) := fθ(0) for
s < 0 and fθ(s) := fθ(Sθ) for s > Sθ, where Sθ is the length of extruder path θ. We denote the
distance of walking from θ1 to θi as si, i.e., fθ(si) = θi. The input to the MLP is:

[f−m,f−m+1, · · · ,f0, · · · ,fm]ᵀ, (16)
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Extruder path Simulated fiber path

Figure 8: Samples from our dataset. We plot both the extruder paths and the simulated carbon fiber paths.

Table 6: The architecture of the MLP used in extruder path planning

Type Configurations

Fully connected 4m+2 to 500
ReLU N/A

Fully connected 500 to 200
ReLU N/A

Fully connected 200 to 100
ReLU N/A

Fully connected 100 to 50
ReLU N/A

Fully connected 50 to 25
ReLU N/A

Fully connected 25 to 2

where
fi := fθ(si + i · s0)− fθ(si), (17)

and s0 = 0.03 is the step size. Since the problem is intrinsically translation-equivariant, we normalize
every fi by subtracting fθ(si), as shown in the above equation.

A.4 Hyper-parameters and neural network training
The architecture of the MLP is shown in Table 6, and we implement it in PyTorch [68]. We coarsely
tuned the architecture, including the number of hidden layers (from 1 to 6) and the size of each hidden
layer. We noticed that the accuracy is not largely affected by the architecture, as long as there is at
least one hidden layer. We split the dataset into 90% training (9,000 paths), 5% validation (500 paths),
and 5% testing (500 paths), and we use the Adam optimizer [54] with a learning rate of 1×10−3,
a learning rate exponential decay of 0.95 per epoch, and a batch size of 1 (path). We train every
model—the decoder, the encoder, and direct-learning—for 10 epochs. We use our internal cluster
with 7 servers with 14 Intel(R) Xeon(R) CPUs. For our method and direct-learning, we train them
with different regularizer weights λ = 0.1, 0.3, 0.6, 1.0, and 1.5. For direct-optimization, we use
the BFGS implementation in SciPy [92], with a gradient tolerance of 1×10−7. Since its running time
is extremely long, we tune its regularizer weight on the first 40 test samples (Table 7) and select the
one with the best performance. To train the needed neural networks, it takes approximately 10 minutes
for direct-optimization, approximately 1 hour for direct-learning, and approximately 5 days
for our method. Note that we only need to train once so that the training costs are amortized.

B Details about constrained soft robot inverse kinematics
B.1 Robot setting
We adopt the snake-like soft robot that was used in Xue et al. [97]. The robot has an original height
of 10 and an original width of 0.5, and its bottom is fixed. We can control the stretch ratio of 40
segments (20 on the left-hand side and 20 on the right-hand side), as visualized in colors in Figure 9.
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Table 7: Path-planning evaluation of direct-optimization of the average Chamfer distance on the first 40
samples in the test set evaluated in simulation

Regularizer weight 0.0001 0.0003 0.0006 0.001

direct-optimization 0.0171 0.0161 0.0153 0.0167

Uncontrollable segments 
of the soft robot

Region that the obstacle 
is sampled from

Controllable segments of 
the soft robot

Fixed bottom

Figure 9: We visualize the soft robot with controllable segments in color, uncontrollable segments in black. The
red region shows where we sample the center of the obstacle—a sector region with an angle of 60◦, inner and
outer radiuses of 4 and 5, respectively.

The stretch ratios are restricted to be between 0.8 and 1.2. The physical realization of the robot
consists of the locations of its 103 vertexes, as shown in Figure 9.

B.2 Methods
Ours. We follow Section 3 with the cost function defined as in Equation 9, and the obstacle location
is randomly sampled.
direct-learning. We follow Section 4 with Rdl(·) defined as in Equation 11. Note that since
we do not have access to the physical realization u, we cannot have a barrier function term for
the obstacle. Thus, for direct-learning, we still randomly sample the obstacle location, but we
guarantee during training, the obstacle does not collide with the robot in every specific training
sample.
direct-optimization. We follow Section 4 with the cost function defined as in Equation 9 and
the obstacle location randomly sampled. Note that this baseline is similar to the approach used
in Xue et al. [97]. The major difference is that we train the surrogate using supervised loss (as
shown in Equation 2), and Xue et al. [97] trained their surrogate using a physically informed loss that
minimizes the total potential energy.

B.3 Data generation
We first randomly sample the design vector θ with each dimension i.i.d. uniformly between 0.8 and
1.2. For each design vector θ, we solve the governing PDE with the finite element method [44]
to obtain the corresponding physical realization u of the robot. Note that the obstacle location is
randomly sampled during training and randomly sampled with a fixed random seed (we set to 0)
during testing. The center of the obstacle is uniformly sampled from a sector region, as shown
in Figure 9, with an angle of 60◦, an inner radius of 4, and an outer radius of 5. We altogether
generate 40,000 data samples.
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Table 8: The architecture of the MLP used in constrained soft robot inverse kinematics

direct-learning Decoder Encoder

Type Configurations Type Configurations Type Configurations

Fully connected 4 to 128 Fully connected 40 to 128 Fully connected 4 to 128
ReLU N/A ReLU N/A ReLU N/A

Fully connected 128 to 256 Fully connected 128 to 256 Fully connected 128 to 256
ReLU N/A ReLU N/A ReLU N/A

Fully connected 256 to 128 Fully connected 256 to 128 Fully connected 256 to 128
ReLU N/A ReLU N/A ReLU N/A

Fully connected 128 to 40 Fully connected 128 to 206 Fully connected 128 to 40
Sigmoid N/A / / Sigmoid N/A

Linear map 0.2(2x−1) / / Linear map 0.2(2x−1)

ObstacleTarget

Failure 
case 1

Failure 
case 2

Direct learning Ours Direct optimization

Figure 10: Failure cases of our method in test set on soft robot. In rare cases, our method might miss the target
by a short distance (Samples 1 and 2) or touch the obstacle (Sample 2).

B.4 Hyper-parameters and neural network training
We use MLP for all models (encoder, decoder, and direct-learning) with ReLU as the activation
function and 3 hidden layers of sizes 128, 256, 128, respectively (Table 8). We coarsely tuned the
architecture, including the number of hidden layers (from 1 to 4) and the size of each hidden layer.
Similarly, we noticed that the accuracy is not largely affected by the architecture, as long as there is
at least one hidden layer. Note that for the input and output of the neural network, we subtract 1 from
all stretch ratios such that they are always between -0.2 and 0.2, and we use displacement of each
vertex rather than its absolute location since displacement values are mostly centered around 0. In
addition, to ensure that the encoder and direct-learning always output stretch ratios (minus one)
between -0.2 and 0.2, we apply a sigmoid layer at the end of both the encoder and direct-learning,
and linearly map the sigmoid output to be between -0.2 and 0.2 (as in Table 8). We use the same trick
in direct-optimization to ensure the stretch ratios never fall out of range.
We implement all neural networks in PyTorch [68]. We split the dataset into 90% training (36,000
samples), 7.5% validation (3,000 samples), and 2.5% testing (1,000 samples), and we use the Adam
optimizer [54] with a learning rate of 1×10−3, a learning rate exponential decay of 0.98 per epoch,
and a batch size of 8. We train every model—the decoder, the encoder, and direct-learning—for
200 epochs. For our method and all baselines, we experiment with different regularizer weights
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Table 9: Ablation study: linear encoder vs. non-linear encoder for soft-robot evaluated on test set. All encoders
are trained on non-linear decoders with a regularizer weight of 0.05

#successful cases (over 1,000) Avg. distance to target on successful cases

Non-linear encoder 975.0±3.9 0.0464±0.0018
Linear encoder 710.7±24.8 0.1324±0.0276

ObstacleTarget

Sample 1

Sample 2

Linear encoder Non-linear encoder (Ours)

Figure 11: Soft-robot evaluation of linear encoder vs. non-linear encoder (ours) on examples from the test set.
Linear encoder both violates the constraints (Sample 2) and misses the target (Samples 1 and 2).

λ2 = 0.03, 0.05, 0.07, and 0.09. For direct-optimization, we use the BFGS implementation in
SciPy [92], with a gradient tolerance of 1×10−7. We use our internal cluster with 7 servers with 14
Intel(R) Xeon(R) CPUs. To train the needed neural networks, it takes approximately 2 hours for
direct-optimization, approximately 4 hours for direct-learning, and approximately 4.5 hours
for our method. Note that since we only need to train once, the training costs are amortized.

B.5 Failure cases
Since our encoder and decoder are both neural networks, there might be some generalization errors.
We show two failure cases of our method in test set in Figure 10. The design proposed by our method
misses the target by a short distance in the first example, and both touches the obstacle and misses
the target by a short distance in the second example.

B.6 Ablation study: linear encoder
To demonstrate the non-linearity in our encoder is necessary, we train a linear encoder on the pre-
trained non-linear decoder, following exactly the same training procedure mentioned in § B.4. We
show the number of cases the robot successfully avoids the obstacle and the average Euclidean
distance to the target for successful cases in Table 9. Linear encoder violates the obstacle constraints
approximately 11.6 times as much as the non-linear encoder, and the average Euclidean distance
for successful cases is approximately 2.9 times as much as the non-linear encoder. Two samples are
shown in Figure 11. In both samples, the linear encoder misses the target by a short distance, and in
the second sample, the linear encoder violates the obstacle constraint.
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