
A Appendix368

A.1 Additional theoretical results and proofs369

We first prove an auxiliary Lemma.370

Lemma 2. For any τ, τ ′ ∈ [0, 1] with τ < τ ′ and cumulative distribution function F with inverse371

F−1, let t ≡ F−1(τ) and t′ ≡ F−1(τ ′) and consider the scaled and vertically shifted Heaviside step372

function Hτ,τ ′

θ (z) ≡ τ + (τ ′ − τ)1z≥θ. Then, for any p ∈ R, p > 1, the set of θ ∈ [t, t′] minimizing373 ∫ t′

t

|F (z)−Hτ,τ ′

θ |pdz (15)

is given by374 {
θ ∈ [t, t′]|F (θ) =

(
τ + τ ′

2

)}
. (16)

In particular, if F−1 is the inverse CDF, then F−1((τ + τ ′)/2) is always a valid minimizer, and if375

F−1 is continuous at (τ + τ ′)/2, then F−1((τ + τ ′)/2) is the unique minimizer.376

Proof. We decompose the integral as follows377 ∫ t′

t

|F (z)−Hτ,τ ′

θ (z)|pdz =

∫ θ

t

(F (z)− τ)pdz +

∫ t′

θ

(τ ′ − F (z))pdz (17)

= lim
a→t
∫(F (z)− τ)pdz|θa + lim

b→t′
∫(τ ′ − F (z))pdz|bθ (18)

where the limits are taken to cover the particular cases of t = −∞ and t′ = ∞. Since we are378

minimizing with respect to θ we can drop the constant terms and consider379

d

dθ
∫(F (z)− τ)pdz|θ − ∫(τ

′ − F (z))pdz|θ = (F (θ)− τ)p − (τ ′ − F (θ))p. (19)

First note that for θ ∈ [t, t′], we have F (θ)− τ > 0 and τ ′−F (θ) > 0. Then, equating the derivative380

to zero yields381

(F (θ)− τ)p − (τ ′ − F (θ))p = 0 (20)

⇔ F (θ)− τ = τ ′ − F (θ) (21)

⇔ F (θ) =
τ + τ ′

2
. (22)

By replacing = by < in the previous equations, we see that the sign of the derivative is negative for382

θ < F−1( τ+τ ′

2 ) (since F is increasing) and positive otherwise, which proves the claim.383

Theorem 1. Given pi ≥ 0, i = 1..N such that
∑
i pi = 1, the `p distance between F and a mixture384

of Heaviside step functions FN (z) =
∑N
i=1 pi1z≥θi is minimized with θi = F−1((τi + τi−1)/2)385

where τi are the quantile levels τi =
∑i
j=1 pj .386

Proof. Let ti ≡ F−1(τi). We first prove that an optimal θ? satisfies ti−1 ≤ θ?i ≤ ti. See Fig. 8 for387

an intuition.388

Without loss of generality, we assume that θ?1 ≤ . . . ≤ θ?N . Let us suppose that there is an optimal389

FN with θ1 ≥ t1. We can write the p-th power of the `p distance as390

`pp(F, FN ) =

∫ t1

−∞
|F (z)−FN (z)|pdz+

∫ θ2

t1

|F (z)−FN (z)|pdz+

∫ ∞
θ2

|F (z)−FN (z)|pdz (23)

The value of the middle term strictly decreases when θ1 decreases toward t1 (while the other terms391

are unaffected) since392 ∫ θ2

t1

|F (z)− FN (z)|pdz =

∫ θ2

t1

|F (z)−H0,τ1
θ1

(z)|pdz (24)

=

∫ θ1

t1

F (z)pdz +

∫ θ2

θ1

(F (z)− τ1)pdz (25)
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Figure 8: Intuition for proving ti−1 ≤ θ?i ≤ ti. The `p distance can be decreased by moving θnin
the first situation and θn+1 to tn in the second one. The shaded area represents the improvement for
p = 1.

and F (z)p > (F (z)− τ1)p. In consequence θ1 = t1 ; It proves that no optimal exist for θ1 > t1, and393

thus that we have θ1 ≤ t1.394

By induction, we assume that θ?n−1 ≤ tn−1. As before, we suppose, that there is an optimal FN with395

θn ≥ tn and we observe that the value of the term396 ∫ θn+1

tn

|F (z)− FN (z)|pdz =

∫ θn+1

tn

|F (z)−Hτn−1,τn
θn

(z)|pdz (26)

=

∫ θn

tn

(F (z)− τn−1)pdz +

∫ θn+1

θn

(F (z)− τn)pdz (27)

strictly decreases when θn decreases toward tn since (F (z)−τn−1)p > (F (z)−τn)p. In consequence397

θn = tn ; It proves that no optimal exist for θn > tn, and thus that we have θn ≤ tn∀n ∈ {1..N}.398

(starting by θN and going backwards). This allows us to show that the optimization problem has an399

optimal substructure and thus it amounts to solving independent minimization problems of the form400

(15) i.e.401

min
θ1,...,θN

`pp(F, FN ) = min
θ1,...,θN

N∑
i=1

∫ ti

ti−1

|F (z)− FN (z)|pdz (28)

=

N∑
i=1

min
θi

∫ ti

ti−1

|F (z)−Hτi−1,τi
θi

(z)|pdz (29)

with t0 ≡ −∞.402

Lemma 1. Given two staircase distributions F (z) = 1
N

∑N
i=1 1z≥θi and F̄ (z) = 1

N

∑N
i=1 1z≥θ̄i403

such that θ1 < · · · < θN and θ̄1 < · · · < θ̄N . Let uij ≡ θ̄j − θi and δij ≡ 1uij<0. The squared404

Cramér distance between the distributions can be expressed as405 ∫ ∞
−∞

(F (z)− F̄ (z))2dz =
1

N2

N∑
i=1

|uii|+ 2

 N∑
j=i+1

δij |uij |+
i−1∑
j=1

(1− δij)|uij |

 . (11)
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a) b)

Figure 9: Computing the Cramér distance between F̄ (red) and F (blue) with a tiling operator.
a) starting point represents ρ1 = 1

N2

∑
r∈R1

ur. b) ending point represents the squared Cramér
distance 1

N2

(
u112 + u222 + u332

)
, where ui is the width of each rectangles in b). Notice that only

the leftmost part of the leftmost rectangle of a) remains in b), the rest has been replaced by taller
rectangles occupying the whole height. The middle diagram illustrates the effect of the tiling operator
ρ2 yielding the final rectangle in the middle and, on the right, two overlapping rectangles—that need
to be replaced by a taller one—and an oversubstracted rectangle in pink. The result of ρ1 + ρ2 + ρ3

is shown in b), a rectangle of height 3 has been added, the two overlapping rectangles have been
removed and the pink rectangle has been added back.

Proof. In order to compute the squared Cramér distance on a uniform grid, we proceed in a construc-406

tive way as follows. The idea is to cover the area between the two curves with rectangular tiles as in407

Fig. 9 to compute the integral by pieces. A tile of height i/N and width u corresponds to the term408

u(i/N)2. We start from Fig. 9 a) and replace parts of tiles to arrive to b).409

Our demonstration unfold through these steps; First, we prove formally that our operator is well built:410

the sum of the tiling measured with the operator ρ is equal to the Cramér distance between the two411

curves. Secondly, we derive Eq. (11) by using that tiling operator.412

First consider an interval u+ ≡ [t1, t2] such that F̄ (t1) = F (t1), F̄ (t2) = F (t2) and F̄ (z) >413

F (z) ∀z ∈ (t1, t2). Let us define the tiling operator ρh for h ≥ 1414

ρh(F, F̄ , u+) ≡
∑
r∈Rh

ur

(
h

N

)2

− 2ur

(
h− 1

N

)2

+ 1h>1ur

(
h− 2

N

)2

(30)

=

{ ∑
r∈Rh

ur
N2 , for h = 1∑

r∈Rh
2ur
N2 , otherwise (31)

where ur is the width of a rectangle r in the set Rh of rectangles of height h whose upper left and415

lower right angles are aligned with quantiles of, respectively, F̄ and F lying in u+. Note that these416

rectangles lie completely within the difference area since F and F̄ are monotonically increasing.417

Note that ρ1 corresponds to the initial step depicted in Fig. 9 a). Intuitively, for h > 1, the operator418

replaces parts of width ur of two tiles of height h− 1 by a tile of height h and width ur and fixes419

oversubstracted tiles of the step h− 2.420

More formally, let us define ρh(F, F̄ , u+) ≡
∑h
d=1 ρd(F, F̄ , u

+). We prove by induction the421

following property. Given a partition of u+ in a set of intervals U+ such that for any u ∈ U+,422

F̄ (z)− F (z) =
du
N

> 0 ∀z ∈ u, (32)

where du depends on u only, then423

ρh(F, F̄ , u+) =
1

N2

∑
u∈U+

|u|
[
1du≤hd

2
u + 1du>h

[
(du − h+ 1)h2 − (du − h)(h− 1)2

]]
. (33)

For h = 1, in any interval u, there are du tiles of height 1 that have a non-empty projection on u424

therefore425

ρh(F, F̄ , u+) =
1

N2

∑
u∈U+

|u|du (34)
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since 1du≤hd
2
u + 1du>h(du − h+ 1)h2 = du, which validates the base case.426

For h > 1, for each r ∈ Rh, ρh adds three terms that can be decomposed in terms that match the427

segments of U+. By noting that for each interval u ∈ U+ there will be 1du≥h(du−h+ 1) rectangles428

in Rh with non-empty projection on u, we have429

ρh(F, F̄ , u+) =
1

N2

∑
u∈U+

|u|1du≥h(du − h+ 1)
[
h2 − 2(h− 1)2 + (h− 2)2

]
(35)

Assuming the property holds for h− 1, we have430

ρh(F, F̄ , u+) (36)

=ρh−1(F, F̄ , u+) + ρh(F, F̄ , u+) (37)

=
1

N2

∑
u∈U+

|u|
(
1du≤h−1d

2
u + 1du>h−1

[
(du − h+ 2)(h− 1)2 − (du − h+ 1)(h− 2)2

]
+

1du≥h(du − h+ 1)
[
h2 − 2(h− 1)2 + (h− 2)2

])
(38)

=
1

N2

∑
u∈U+

|u|
(
1du≤h−1d

2
u + 1du≥h

[
(du − h+ 1)h2 − (du − h)(h− 1)2

])
(39)

=
1

N2

∑
u∈U+

|u|
(
1du≤hd

2
u + 1du>h

[
(du − h+ 1)h2 − (du − h)(h− 1)2

])
(40)

since 1du>h−1 = 1du≥h and 1du=h

[
(du − h+ 1)h2 − (du − h)(h− 1)2

]
= 1du=hd

2
u.431

Since 1du≤N = 1− 1du>N = 1, the final tiling ρN (F, F̄ , u+) corresponds to the Cramér distance432

on the interval u+, i.e.433

ρN (F, F̄ , u+) =
1

N2

∑
u∈U+

|u|d2
u. (41)

Now, we are going to use (31) to get to the claimed expression. First note that for a rectangle r ∈ Rh434

with upper leftmost and lower rightmost angles corresponding, respectively, to θ̄j and θi, its width435

is ur = |uij |. Since θ1 < · · · < θN and θ̄1 < · · · < θ̄N , the condition that F̄ (z) > F (z) for436

such rectangles is equivalent to δij = 1 ∧ i ≤ j. By symmetry, F̄ (z) < F (z) is equivalent to437

δij = 0 ∧ j ≤ i. We consider the case i = j separately to avoid double counting and also because it438

corresponds to h = 1. Therefore, from (31), we have439

ρN (F, F̄ ,R) =
∑
r∈R1

ur
N2

+

N∑
h=2

∑
r∈Rh

2ur
N2

(42)

=

N∑
i=1

|uii|
N2

+

N−1∑
i=1

N∑
j=i+1

δij
2|uij |
N2

+

N−1∑
j=1

N∑
i=j+1

(1− δij)
2|uij |
N2

. (43)

By taking out common factors and swapping the indices of the two rightmost sums, we get the440

expression (11).441

Corollary 2. For F (z) ≡ 1
N

∑N
i=1 1z≥θi and F̄ (z) ≡ 1

N

∑N
i=1 1z≥θ̄i we have442

∂ LQR(F, F̄ )

∂θi
=

1

N

1− 2i

2
+

N∑
j=1

δij

 and
∂`22(F, F̄ )

∂θi
=

1

N2

1− 2i+ 2

N∑
j=1

δij

 (12)

where δij ≡ 1uij<0. Therefore, their gradients are collinear, i.e.443

∇θ LQR =
N

2
∇θ`

2
2. (13)
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Proof. For a target distribution F̄ (z) = 1
N

∑N
i=1 1z≥θ̄i , the quantile regression loss can be expressed444

as445

LQR(F, F̄ ) =

N∑
i=1

1

N

N∑
j=1

ρτ̂i(θ̄j − θi) (44)

=
1

N

N∑
i=1

N∑
j=1

(θ̄j − θi)(τ̂i − δij) (45)

and thus446

∂ LQR(F, F̄ )

∂θi
=

1

N

N∑
j=1

(δij − τ̂i) (46)

=
1

N

1− 2i

2
+

N∑
j=1

δij

 . (47)

In order to obtain the partial derivative of the squared Cramér distance, first note that δij |uij | =447

δij(θi − θ̄j), (1 − δij)|uij | = (1 − δij)(θ̄j − θi) and |uii| = δii(θi − θ̄i) + (1 − δii)(θ̄i − θi). By448

replacing these quantities in (11) and taking the derivative with respect to θi we obtain449

∂`22(F, F̄ )

∂θi
=

1

N2

2δii − 1 + 2

 N∑
j=i+1

δij +

i−1∑
j=1

(δij − 1)

 (48)

=
1

N2

2

N∑
j=1

δij − 1 + 2

i−1∑
j=1

(−1)

 (49)

=
1

N2

1− 2i+ 2

N∑
j=1

δij

 . (50)

450

A.2 Correctness of Algorithm 1451

Proposition 1. Given two distributions F (z) = 1
N

∑N
i=1 1z≥θi , and F̄ (z) = 1

N

∑N
i=1 1z≥θ̄i , Algo-452

rithm 1 computes453 ∫ ∞
−∞

(F (z)− F̄ (z))2dz =

2N−1∑
i=1

(
θ′i+1 − θ′i

) ∑
j s.t. θj≤θ′i

1

N
−

∑
j s.t. θ̄j≤θ′i

1

N

2

. (51)

Proof. Consider the sorted sequence of merged quantiles454

θ′ ≡ θ′1, . . . , θ′2N ≡ sort
(
{θi}i=1..N

⋃
{θ̄i}i=1..N

)
. (52)

We have that F (z)− F̄ (z) ≡ ∆i is constant in [θ′i, θ
′
i+1),∀i ∈ 1..2N . Therefore,455 ∫ ∞

−∞
(F (z)− F̄ (z))2dz =

2N−1∑
i=1

∫ θ′i+1

θ′i

(F (z)− F̄ (z))2dz =

2N−1∑
i=1

(θ′i+1 − θ′i)∆i (53)

If θ′i ≤ z < θ′i+1, then456

F (z) =
1

N

N∑
j=1

1z≥θj =
1

N

∑
j s.t. θj≤θ′i

1 (54)

F̄ (z) =
1

N

N∑
j=1

1z≥θ̄j =
1

N

∑
j s.t. θ̄j≤θ′i

1 (55)
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and thus457

∆i =
∑

j s.t. θj≤θ′i

1

N
−

∑
j s.t. θ̄j≤θ′i

1

N
, (56)

which proves (51).458

The algorithm computes the differences (θ′i+1 − θ′i) and stores them in ∆z . After the steps459

∆τ ← concat

(
− 1

N
1N ,

1

N
1N

)
(57)

∆τ ← ∆τ [i1, . . . , iN ], (58)

in words, the i-th element of the vector ∆τ is −1 if θ′i comes from θ̄ and 1 otherwise, i.e.460

∆τ [i] = (−1)
1∃jθ′

i
≡θ̄j (59)

where ≡ denotes symbol equality. After the final step461

∆τ ← cumsum (∆τ ) [: -1], (60)

the i-th element of the vector ∆τ can be expressed as462

∆τ [i] =
1

N

i∑
k=1

(−1)
1∃jθ′

k
≡θ̄j . (61)

If θ′i 6= θ′i+1, then ∆τ [i] = ∆i. Otherwise, ∆τ [i] 6= ∆i, but, since θ′i+1 − θ′i = 0, the corresponding463

term in (51) is zero too. Therefore, the algorithm produces the claimed output.464

A.3 Hyperparameters465

All the experimental results for CNC-CR-DQN, NC-CR-DQN and CR-DQN were obtained with466

the hyperparameters’ values shown in Table 1, which are the same that those used to generate the467

QR-DQN results provided by DQN_ZOO. The last two hyperparameters are specific to CNC-QR-DQN468

and NC-CR-DQN.469

A.4 Additional experimental results470

Fig. 10 shows the online training performance of CNC-CR-DQN in comparison to the pure distribu-471

tional contenders C51, QR-DQN and IQN, on the full Atari-57 benchmark.472
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Figure 10: Training performance on the Atari-57 benchmark. Curves are averages over a number
of seeds, smoothed over a sliding window of 5 iterations, and error bands give standard deviations.
For C51, QR-DQN and IQN, 5 seeds were used (provided by DQN_ZOO [24]). For CNC-CR-DQN, 3
seeds were used for all the games except those indicated by ∗, for which only 2 seeds were used.
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Table 1: Hyperparameters used in our DQN_ZOO implementation of CNC-CR-DQN.
Hyperparameter Value Comment

replay_capacity 1e6
min_replay_capacity_fraction 0.05 Min replay set size for learning
batch_size 32
max_frames_per_episode 108000 = 30 min
num_action_repeats 4 In frames
num_stacked_frames 4
exploration_epsilon_begin_value 1
exploration_epsilon_end_value 0.01
exploration_epsilon_decay_frame_fraction 0.02
eval_exploration_epsilon 0.001
target_network_update_period 4e4
learning_rate 5e-5
optimizer_epsilon 0.01 / 32 ADAM’s parameter
additional_discount 0.99 Discount_rate multiplier
max_abs_reward 1
max_global_grad_norm 10
num_iterations 200
num_train_frames 1e6 Per iteration
num_eval_frames 5e5 Per iteration
learn_period 16 One learning step each 16 frames
num_quantiles 201 N

Convolutional layer 1 32, (8, 8), (4, 4) num_features, kernel_shape, stride
Convolutional layer 2 64, (4, 4), (2, 2)
Convolutional layer 3 64, (3, 3), (1, 1)

n_layers 1 Number of hidden layers λ
n_nodes 512 Number of nodes η per hidden layer
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