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A Proofs

In the following sections, we give the proofs of the theoretical guarantees given in the main of the paper.

A.1 Proof of Theorem 3.1: GσSDp is a proper metric on Pp(Rd) × Pp(Rd)

Before starting the proof, we add this notation: the characteristic function of a probability distribution
µ ∈ P(Rd) is ϕµ(t) = Eµ[eiX>t]. Given this definition, similarly to the Fourier transform, the characteristic
function of the convolution of two probability distributions readsas ϕν∗µ(t) = ϕν(t) · ϕµ(t).
• Non-negativity (or symmetry). The non-negativity (or symmetry) follows directly from the non-negativity
(or symmetry) of Dp, see Definition 2.3.
• Identity property. If the base divergence Dp satisfies the identity property in one dimensional measures,
then for any µ ∈ Pp(Rd) and u ∈ Sd−1, one has that Dp(Ruµ ∗ Nσ, Ruµ ∗ Nσ) = 0, hence, by Definition
2.3, GσSDp(µ, µ) = 0. Let us now prove the fact that for any µ, ν ∈ Pp(Rd), GσSDp(µ, ν) = 0 entails µ = ν
a.s. On one hand, GσSDp(µ, ν) = 0 gives the fact that Dp(Ruµ ∗ Nσ, Ruν ∗ Nσ) = 0 for ud-almost every
u ∈ Sd−1, hence Ruµ ∗ Nσ = Ruν ∗ Nσ for ud-almost every u ∈ Sd−1. Following the techniques in proof
of Proposition 5.1.2 in Bonnotte (2013), for any measure η ∈ P(Rm) (with m ≥ 1), F [η](·) stands for the
Fourier transform of η and is given as F [η](v) =

∫
Rm e−is>vdη(s) for any v ∈ Rm. Then

F [Ruµ ∗ Nσ](v) =
∫
R

e−ivtd(Ruµ ∗ Nσ)(t)

=
∫
R

∫
R

e−i(r+t)vdRuµ(r)dNσ(t) (by the definition of the convolution operator)

=
∫
Rd

∫
R

e−i(〈u,s〉+t)vdµ(s)dNσ(t) (by the definition of Radon Transform)

=
∫
R

e−itvdNσ(t)
∫
Rd

e−i(〈u,s〉)vdµ(s)

= F [Nσ](v)F [µ](vu).

Since for ud-almost every u ∈ Sd−1, Ruµ ∗ Nσ = Ruν ∗ Nσ, and hence F [Ruµ ∗ Nσ] = F [Ruν ∗ Nσ] ⇔
F [Nσ]F [µ] = F [Nσ]F [ν] (by the Fourier transform of the convolution) ⇔ F [µ] = F [ν]. Since the Fourier
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transform is injective, we conclude that µ = ν.
•Triangle inequality. Assume that D is a metric and let µ, ν, η ∈ Pp(Rd). We then have

GσSDp(µ, ν) =
( ∫

Sd−1
Dp(Ruµ ∗ Nσ, Ruν ∗ Nσ)ud(u)du

)1/p

≤
( ∫

Sd−1

(
D(Ruµ ∗ Nσ, Ruη ∗ Nσ) + D(Ruη ∗ Nσ, Ruν ∗ Nσ)

)p

ud(u)du
)1/p

≤︸︷︷︸
(?)

( ∫
Sd−1

(
Dp(Ruµ ∗ Nσ, Ruη ∗ Nσ)ud(u)du

)1/p

+
( ∫

Sd−1
Dp(Ruη ∗ Nσ, Ruν ∗ Nσ)

)p

ud(u)du
)1/p

= GσSDp(µ, η) + GσSDp(η, ν),

where inequality in (?) follows from the application of Minkowski inequality.

A.2 Proof of Theorem 3.2: GσSDp metrizes the weak topology

The proof is done by double implications and the technical material relies on the continuous mapping
theorem (Athreya & Lahiri, 2006) and bounded convergence theorem for the first direct implication “⇒”. The
second one, “⇐”, is based on the fact that weak convergence is equivalent to the convergence corresponding
to Lévy-Prokhorov distance (Huber, 2011)
“⇒” Assume that µk ⇒ µ. Fix u ∈ Sd−1, the mapping u 7→ Ru is continuous from Rd to R, then an application
of continuous mapping theorem (Athreya & Lahiri, 2006) entails that Ruµk ⇒ Ruµ. By Lévy’s continuity
theorem (Athreya & Lahiri, 2006) Ruµk ∗ Nσ ⇒ Ruµ ∗ Nσ. Therefore, limk→∞ D(Ruµk, Ruµ ∗ Nσ) =
0. Since we suppose that the divergence D is bounded, then there exists K ≥ 0 such that for any k,
Dp(Ruµk, Ruµ ∗ Nσ) ≤ K. An application of bounded convergence theorem yields

lim
k→∞

GσSDp(µk, µ) =
( ∫

Sd−1
lim

k→∞
Dp(Ruµk ∗ Nσ, Ruµ ∗ Nσ)ud(u)du

)1/p

= 0.

“⇐” (By contrapositive). Suppose that µk doesn’t converge weakly to µ and assume that
limk→∞ GσSDp(µk, µ) = 0. On one hand, since Rd is a complete separable space then the weak con-
vergence is equivalent to the convergence corresponding to Lévy-Prokhorov distance Λ defined as: The
Lévy-Prokhorov distance Λ(η, ζ) between η, ζ ∈ P((E, ρ), T ) (space of probability measures on a measurable
metric space) is given by:

Λ(η, ζ) = inf
ε>0

{η(A) < ζ(Aε) + ε, ζ(A) < η(Aε) + ε, for all A ∈ T }, where Aε = {x ∈ E : ρ(x, A) < ε}.

Hence there exists ε > 0 and a subsequence {µs(k)}k∈N such that Λ(µs(k), µ) > ε. One the other
hand, we have limk→∞ GσSDp(µs(k), µ) = 0, that is equivalent to {D(Ruµs(k) ∗ Nσ, Ruν ∗ Nσ)}k con-
verges to 0 in Lp(Sd−1) = {f : Sd−1 → R|

∫
Sd−1 f(u)ud(u)du < ∞}. Since the Lp-convergence en-

tails the point-wise convergence (Khoshnevisan, 2007), there exists a subsequence {µs(t(k))}k such that
lim

k→∞
D(Ruµs(t(k)) ∗ Nσ, Ruµ ∗ Nσ) = 0 almost everywhere for all u ∈ Sd−1. Recall that the divergence D

metrizes the weak convergence in P(R) then Ruµs(t(k)) ∗ Nσ ⇒ Ruµ ∗ Nσ almost everywhere for all u ∈ Sd−1.

Therefore, Ruµs(t(k)) ⇒ Ruµ almost everywhere for all u ∈ Sd−1. Using Cramér-Wold device (Huber, 2011),
we get µs(t(k)) ⇒ µ. Since the Lévy-Prokhorov distance metrizes the weak convergence, it entails that
lim

k→∞
Λ(µs(t(k)), µk) = 0, that contradicts the fact that Λ(µs(k), µ) > ε. We then conclude by contrapositive

that µk ⇒ µ.

A.3 Proof of Proposition 3.3: GσSDp is lower semi-continuous

Recall that the base divergence D is lower semi-continuous w.r.t. the weak topology in P(R), namely
for every sequence of measures {µ′

k}k∈N and {ν′
k}k∈N in P(R) such that µ′

k ⇒ µ′ and ν′
k ⇒ ν′, one has

D(µ′, ν′) ≤ lim inf
k→∞

D(µ′
k, ν′

k).
Now, let {µk}k∈N and {νk}k∈N are two sequences of measure in Pp(Rd) such that µk ⇒ µ and νk ⇒ ν.
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By continuous mapping theorem (Bowers & Kalton, 2014) and Levy’s continuity theorem, we obtain
Ruµk ∗ Nσ ⇒ Ruµ ∗ Nσ and Ruνk ∗ Nσ ⇒ Ruν ∗ Nσ for all u ∈ Sd−1. Since the base divergence D is a lower
semi-continuous with respect to weak topology in P(R), then

Dp(Ruµ ∗ Nσ, Ruν ∗ Nσ) ≤
(

lim inf
k→∞

D(Ruµk ∗ Nσ, Ruνk ∗ Nσ)
)p ≤ lim inf

k→∞
Dp(Ruµk ∗ Nσ, Ruνk ∗ Nσ).

It gives
GσSDp(µ, ν) ≤

( ∫
Sd−1

lim inf
k→∞

Dp(Ruµk ∗ Nσ, Ruνk ∗ Nσ)ud(u)du
)1/p

.

Furthermore, by application of Fatou’s lemma (Bowers & Kalton, 2014), we get

GσSDp(µ, ν) ≤ lim inf
k→∞

( ∫
Sd−1

Dp(Ruµk ∗ Nσ, Ruνk ∗ Nσ)ud(u)du
)1/p

= lim inf
k→∞

GσSDp(µk, νk),

which is the desired result.

A.4 Proofs of statistical properties

A.4.1 Proof of Lemma 3.5: Ruµ̂n ∗ Nσ is an average of Gaussian mixture

Straighforwardly, for every Borelian I ∈ B(R), we have

Ruµ̂n ∗ Nσ(I) =
∫

r

∫
s

1I(r + s)d{ 1
n

n∑
i=1

δu>Xi
}(r)dNσ(s)

= 1
n

n∑
i=1

∫
s

1I(u>Xi + s)fNσ (s)ds

= 1
n

n∑
i=1

∫
s′

1I(s′)fNσ
(s′ − u>Xi)ds′

= 1
n

n∑
i=1

∫
s′

1I(s′)fN (u>Xi,σ2)(s′)ds′ (since fNσ
(s′ − u>Xi) = fN (u>Xi,σ2)(s′))

= 1
n

n∑
i=1

N (u>Xi, σ2)(I).

Thanks to Theorem of Cramér and Wold (Cramér & Wold, 1936), we conclude the equality between the
measures Ruµ̂n ∗ Nσ = 1

n

∑n
i=1 N (u>Xi, σ2).

A.4.2 Proof of Proposition 3.8

Let us give first the overall structure of the proof. We we use frequently the triangle inequality for Wasserstein
distances between the quantities ˆ̂µn, 1

n Nσ(u>Xi, σ2) and Ruµ ∗ Nσ. We then obtain two quantities, I and
II (see below for explicit), bounding Eµ⊗n |N ⊗n

σ
[ĜσSWp(µ̂n, µ)]. To control I bound, we use a well known

converging bound in Fournier & Guillin (2015) of Wasserstein distance between empirical and true measure.
For II bound, we consider maximal TV-coupling in Villani (2009)] and use result of the 2p-moment of absolute
Gaussian random variable founded in Winkelbauer (2014).
On one hand, using triangle inequality of Wasserstein distance, we have

Eµ⊗n |N ⊗n
σ

[ĜσSWp(µ̂n, µ)] = Eµ⊗n |N ⊗n
σ

[( ∫
Sd−1

Wp
p(ˆ̂µn, Ruµ ∗ Nσ)ud(u)du

)1/p]
≤

(
Eµ⊗n |N ⊗n

σ

[ ∫
Sd−1

Wp
p(ˆ̂µn, Ruµ ∗ Nσ)ud(u)du

])1/p

≤
( ∫

Sd−1
Eµ⊗n |N ⊗n

σ
[Wp

p(ˆ̂µn, Ruµ ∗ Nσ)]ud(u)du
)1/p

≤ (I + II)1/p
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where

I , 2p−1
∫
Sd−1

Eµ⊗n |N ⊗n
σ

[
Wp

p

(
ˆ̂µn,

1
n

n∑
i=1

N (u>Xi, σ2)
)]

ud(u)du

and

II , 2p−1
∫
Sd−1

Eµ⊗n |N ⊗n
σ

[
Wp

p

( 1
n

n∑
i=1

N (u>Xi, σ2), Ruµ ∗ Nσ)
)]

ud(u)du

The proof is based on two steps to control the quantities I and II.
Step 1: Control of I.
Let us state the following lemma:
Lemma A.1 (See proof of Theorem 1 in Fournier & Guillin (2015)). Let η ∈ P(R) and let p ≥ 1. Assume
that Mq(η) < ∞ for some q > p. There exists a constant Cp,q depending only on p, q such that, for all n ≥ 1,

E[Wp
p(η̂n, η)] ≤ Cp,qMq(η)p/q∆n(p, q),

where

∆n(p, q) =


n−1/21q>2p,

n−1/2 log(n)1q=2p

n−(q−p)/q1p<q<2p.

.

We note that ˆ̂µn is an empirical version of the Gausian mixture 1
n

∑n
i=1 Nσ(u>Xi, σ2). Then, by application

of Lemma A.1, we get

Eµ⊗n |N ⊗n
σ

[
Wp

p

( ˆ̂µn,
1
n

n∑
i=1

N (u>Xi, σ2)
)]

≤ Cp,qEµ⊗n

[
Mp/q

q

( 1
n

n∑
i=1

N (u>Xi, σ2)
)]

∆n(p, q).

Let us first upper bound the q-th moment of Mq

(
1
n

∑n
i=1 N (u>Xi, σ2)

)
, for all q ≥ 1. For all u ∈ Sd−1, we

have

Mq

( 1
n

n∑
i=1

N (u>Xi, σ2)
)

=
∫
R

|t|qd( 1
n

n∑
i=1

N (u>Xi, σ2))(t) = 1
n

n∑
i=1

Mq(|Zi,u|q),

where Zi,u ∼ N (u>Xi, σ2)). By Equation (17) in Winkelbauer (2014) we have

Mq

( 1
n

n∑
i=1

N (u>Xi, σ2)
)

= 1
n

2q/2σq

√
π

Γ(q + 1
2 )

n∑
i=1

1F1
(

− q

2 ,
1
2 ; −(u>Xi)2

2σ2

)
.

Since X1, . . . , Xn are i.i.d samples from µ, it yields

Eµ⊗n

[
Mp/q

q

( 1
n

n∑
i=1

N (u>Xi, σ2)
)]

= 2q/2σq

√
π

Γ(q + 1
2 )Eµ

[
1F1

(
− q

2 ,
1
2 ; −(u>X)2

2σ2

)]
(X ∼ µ)

= 2q/2σq

√
π

Γ(q + 1
2 )

∞∑
k=0

(− q
2 )k

( 1
2 )k

(−1)k

(2σ2)kk!Eµ [(u>X)2k]

≤ 2q/2σq

√
π

Γ(q + 1
2 )

∞∑
k=0

(− q
2 )k

( 1
2 )k

(−1)k

(2σ2)kk!M2k(µ).

Setting q = 2p we have ∆n(p, q) = log n
n , then

I ≤ 22p−1Cp
σ2p

√
π

Γ(2p + 1
2 )

∞∑
k=0

(−p)k

( 1
2 )k

(−1)k

(2σ2)kk!M2k(µ) log(n)
n

.
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Step 2: Control of II.

We follow the lines of proofs of Proposition 1 in Goldfeld et al. (2020) and Theorem 2 in Nietert et al. (2021).
Using a coupling ˆ̂µn and Ruµ ∗ Nσ) via the maximal TV-coupling (see Theorem 6.15 in Villani (2009)]), the
control of the total variation of the Wasserstein distance, we get for any fixed u ∈ Sd−1

Wp
p

( 1
n

n∑
i=1

N (u>Xi, σ2), Ruµ ∗ Nσ)
)

≤ 2p−1
∫
R

|t|p|hn,u(t) − gu(t)|dt,

where hn,u and gu are the densities associated with µn and Ruµ ∗ Nσ, respectively. Let fσ,ϑ the probability

density function of Nσ,ϑ, i.e, fσ,ϑ(t) = 1√
2π(σϑ)2

e
− t2

2(σϑ)2 for ϑ > 0 to be specified later. An application of

Cauchy-Schwarz inequality gives

Eµ⊗n |N ⊗n
σ

[
Wp

p

( 1
n

n∑
i=1

N (u>Xi, σ2), Ruµ ∗ Nσ)
)]

≤ 2p−1Eµ⊗n |N ⊗n
σ

∫
R

|t|p
√

fσ,ϑ(t) |hn,u(t) − gu(t)|√
fσ,ϑ(t)

dt

≤ 2p−1Eµ⊗n |N ⊗n
σ

( ∫
R

|t|2pfσ,ϑ(t)dt
) 1

2
( ∫

R

(hn,u(t) − gu(t))2

fσ,ϑ(t) dt
) 1

2

≤ 2p−1
( ∫

R
|t|2pfσ,ϑ(t)dt

) 1
2
( ∫

R
Eµ⊗n |N ⊗n

σ

(hn,u(t) − gu(t))2

fσ,ϑ(t) dt
) 1

2
.

Note that
∫
R |t|2pfσ,ϑ(t)dt is the 2p-th moment of |Nσ,ϑ(t)| equals to (see Equation (18) in Winkelbauer

(2014)) ∫
R

|t|2pfσ,ϑ(t)dt = (σϑ)2p2p

√
π

Γ
(2p + 1

2
)
.

Moreover,

hn,u(t) = 1
n

n∑
i=1

dN (u>Xi, σ2)(t) = 1
n

n∑
i=1

fσ,ϑ(t − u>Xi),

It is clear to see that hn,u(t) is a sum of i.i.d. terms with expectation gu(t), which implies

Eµ⊗n |N ⊗n
σ

[
(hn,u(t) − gu(t))2]

= Vµ⊗n

[ 1
n

n∑
i=1

fσ,ϑ(t − u>Xi)
]

= 1
n

Vµ [fσ,ϑ(t − u>X]

≤ 1
n

Eµ [(fσ,ϑ(t − u>X)2]

≤ (2πσ2)−1

n
Eµ [e

−1
σ2 (t−u>X)2

].

Now

Eµ [e
−(t−u>X)2

σ2 ] =
∫

‖x‖≤ |t|
2

e
−1
σ2 (t−u>x)2

dµ(x) +
∫

‖x‖>
|t|
2

e
−1
σ2 (t−u>x)2

dµ(x).

Remark that when ‖x‖ ≤ |t|
2 , then (t − u>X)2 ≥ |t|2 − |u>x|2 ≥ |t|2 − ‖x‖2 (since ‖u‖2 = 1). We get

(t − u>X)2 ≥ |t|2

4 and hence∫
‖x‖≤ |t|

2

e
−1
σ2 (t−u>x)2

dµ(x) ≤ e
−t2

4σ2 and
∫

‖x‖>
|t|
2

e
−1
σ2 (t−u>x)2

dµ(x) ≤ P
[
‖X‖ >

|t|
2

]
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This gives,∫
R

Eµ⊗n |N ⊗n
σ

(hn,u(t) − gu(t))2

fσ,ϑ(t) dt ≤ (2πσ2)−1(
√

2πσϑ)
n

( ∫
R

e
t2

2(σϑ)2 e
−t2

4σ2 dt +
∫
R

e
t2

2(σϑ)2 P
[
‖X‖ >

|t|
2

]
dt

)
.

Note that the integral
∫
R e

t2
2(σϑ)2 e

−t2

4σ2 dt =
∫
R e−

(
1
2 − 1

ϑ2

)
t2

2σ2 dt is finite if and only if 1
2 − 1

ϑ2 > 0 namely ϑ >
√

2
and its value is given by ∫

R
e

t2
2(σϑ)2 e

−t2

4σ2 dt =
√

2πσ2

1
2 − 1

ϑ2

=
√

4πσ2ϑ2

ϑ2 − 2 .

For the second integral∫
R

e
t2

2(σϑ)2 P
[
‖X‖ >

|t|
2

]
dt = 2

∫ ∞

0
e

t2
2(σϑ)2 P

[
‖X‖ >

t

2
]
dt = 4

∫ ∞

0
e

2ξ2

σ2ϑ2 P
[
‖X‖ > ξ

]
dξ

Then,

II ≤ n−1/24p−1
{

(2πσ2)−1(
√

2πσϑ) (σϑ)2p2p

√
π

Γ
(2p + 1

2
)} 1

2
(√

4πσ2ϑ2

ϑ2 − 2 + 4
∫ ∞

0
e

2ξ2

σ2ϑ2 P
[
‖X‖ > ξ

]
dξ

) 1
2
.

this gives the desired result using the fact that (a + b)1/p ≤ a1/p + b1/p, for a, b ≥ 0.

A.4.3 Proof of Proposition 3.11

Using triangle inequality, we have

Wp(ˆ̂µn, ˆ̂νn) ≤ Wp(ˆ̂µn, Ruµ ∗ Nσ) + Wp(Ruµ ∗ Nσ, Ruν ∗ Nσ) + Wp(Ruν ∗ Nσ, ˆ̂νn).

and then

Wp
p(ˆ̂µn, ˆ̂νn) ≤ 3p−1{

Wp
p(ˆ̂µn, Ruµ ∗ Nσ) + Wp

p(Ruµ ∗ Nσ, Ruν ∗ Nσ) + Wp
p(Ruν ∗ Nσ, ˆ̂νn)

}
.

This implies that

Eµ⊗n |N ⊗n
σ

Eν⊗n |N ⊗n
σ

[ĜσSWp(µ̂n, ν̂n)]

≤ 31− 1
p GσSWp(µ, ν) + 31− 1

p Eµ⊗n |N ⊗n
σ

[ĜσSWp(µ̂n, µ)] + 31− 1
p Eν⊗n |N ⊗n

σ
[ĜσSWp(ν̂n, ν)].

By application of Proposition 3.8, it yields This gives that

Eµ⊗n |N ⊗n
σ

Eν⊗n |N ⊗n
σ

[ĜσSWp(µ̂n, ν̂n)] ≤ 31− 1
p GσSWp(µ, ν) + 3Ξp,σ,ϑ

1
n1/2p

+ 31− 1
p (Υp,σ,µ + Υp,σ,ν) (log n)1/p

n1/p

This ends the proof of the first statement in Proposition 3.11. For the second one, we also use a triangle
inequality

Wp
p(Ruµ ∗ Nσ, Ruν ∗ Nσ) ≤ 3p−1{

Wp
p(Ruµ ∗ Nσ, ˆ̂µn) + Wp

p(ˆ̂µn, ˆ̂νn) + Wp
p(ˆ̂νn), Ruν ∗ Nσ

}
.

Then we control each term as we did before.

A.5 Proof of Proposition 3.12: projection complexity

Using Holder’s inequality, we have

E
u

⊗L
d

[∣∣ĜσSDp

p
(µ, ν) − GσSDp

p(µ, ν)
∣∣] ≤

(
E

u
⊗L
d

[
[∣∣ĜσSDp

p
(µ, ν) − GσSDp

p(µ, ν)
∣∣2])1/2

=
(

V
u

⊗L
d

[
[
ĜσSDp

p
(µ, ν)

])1/2

= A(p, σ)
L1/2 .
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A.6 Proof of Corollary 3.13: overall complexity (p = 1)

By application of triangle inequality, one has

| ˆ̂GσSW(µ̂n, ν̂n) − GσSW(µ, ν)| ≤ | ̂̂GσSW(µ̂n, ν̂n) − ĜσSW(µ̂n, ν̂n)| + | ĜσSW(µ̂n, ν̂n) − GσSW(µ, ν)|

Using Proposition 3.12, we have

E
u

⊗L
d

[
| ̂̂GσSW(µ̂n, ν̂n) − ĜσSW(µ̂n, ν̂n)|

]
≤ Âσ√

L
:= {Vu∼ud

[W(ˆ̂µn, ˆ̂νn)]}1/2
√

L
.

Using Proposition 3.11 for p = 1 we get,

Eµ⊗n |N ⊗n
σ

Eν⊗n |N ⊗n
σ

[|ĜσSW(µ̂n, ν̂n) − GσSW(µ, ν)|] ≤ 3Ξ1,σ,ϑ
1√
n

+ (Υ1,σ,µ + Υ1,σ,ν) log n

n
.

Therefore, by applying the expectations with respect to the projection and sampling we obtain

E
u

⊗L
d

Eµ⊗n |N ⊗n
σ

Eν⊗n |N ⊗n
σ

[
| ̂̂GσSW(µ̂n, ν̂n) − GσSW(µ, ν)|

]
≤ 1√

L
Eµ⊗n |N ⊗n

σ
Eν⊗n |N ⊗n

σ
[Âσ] + 3Ξ1,σ,ϑ

1√
n

+ (Υ1,σ,µ + Υ1,σ,ν) log n

n
.

By Jensen inequality, we have

Eµ⊗n |N ⊗n
σ

Eν⊗n |N ⊗n
σ

[Âσ] ≤
{

Eµ⊗n |N ⊗n
σ

Eν⊗n |N ⊗n
σ

[Vu∼ud
[W(ˆ̂µn, ˆ̂νn)]]

}1/2
.

A.7 Proof of Proposition 3.14

For all u ∈ Sd−1 we have Ruµ, Ruν ∈ P(R). By application of the inequality of noise level satisfied by D in
one dimension we get

Dp(Ruµ ∗ Nσ2 , Ruν ∗ Nσ2) ≤ Dp(Ruµ ∗ Nσ1 , Ruν ∗ Nσ1).

Then, computing the expectation over the projections u since the divergence is non-negative concludes the
proof.

A.8 Proof of Proposition 3.16: relation between GσSWp(µ, ν) under two noise levels

First, using the contractive property of convolution (see Lemma 3 in Nietert et al. (2021)), stating that for any
probability measure α ∈ P(R), Wp(µ∗α, ν∗α) ≤ Wp(µ, ν). Hence Wp

p(µ∗Nσ2 , ν∗Nσ2) ≤ Wp
p(µ∗Nσ1 , ν∗Nσ1).

Now using Proposition 3.14 of the oreder relation satisfied by GσSWp yields

Gσ2SWp(µ, ν) ≤ Gσ1SWp(µ, ν).

In the other direction, we have that Nσ2 = Nσ1 ∗ N√
σ2

2−σ2
1

(similarly for Nσ1). Setting the following random

variables: Xu ∼ Ruµ, Yu ∼ Ruν, ZX ∼ Nσ1 , ZY ∼ Nσ1 , Z ′
X ∼ N√

σ2
2−σ2

1
, Z ′

Y ∼ N√
σ2

2−σ2
1
. The sliced

Wasserstein distance Wp
p(Ruµ ∗ Nσ2 , Ruν ∗ Nσ2) is given as a minimization over couplings (Xu, ZX , Z ′

X) and
(Yu, ZY , Z ′

Y ), namely

Wp
p(Ruµ ∗ Nσ2 , Ruν ∗ Nσ2) = inf

Xu,ZX ,Z′
X

Yu,ZY ,Z′
Y

E
[∣∣((Xu + ZX) − (Yu + ZY )

)
+ (Z ′

X − Z ′
Y )

∣∣p]
Using the inequality E[|U +V |p]−2p−1E[|W |p] ≤ 2p−1E[|U +V +W |p] for any random variables U, V, W ∈ Lp

integrable, we obtain,

2p−1E
[
|(Xu + ZX) − (Yu + ZY ) + (Z ′

X + Z ′
Y )|p

]
≥ E

[
|(Xu + ZX) − (Yu + ZY )|p

]
− 2p−1E

[
|(Z ′

X − Z ′
Y )|p

])
.

7
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Hence,

2p−1Wp
p(Ruµ ∗ Nσ2 , Ruν ∗ Nσ2) ≥ inf

(
E

[
|(Xu + ZX) − (Yu + ZY )|p

]
− 2p−1E

[
|(Z ′

X − Z ′
Y )|p

]))
≥ Wp

p(Ruµ ∗ Nσ1 , Ruν ∗ Nσ1) − 2p−1 sup E
[
|(Z ′

X − Z ′
Y )|p

]
≥ Wp

p(Ruµ ∗ Nσ1 , Ruν ∗ Nσ1) − 22p sup E
[
|(Z ′

X)|p
]
.

Hence,

Gσ1SWp(µ, ν) ≤ 21− 1
p Gσ2SWp(µ, ν) + 4

(
sup E

[
|(Z ′

X)|p
]
)
)1/p

.

Finally, for any p ≥ 1 the p-th moment of |Nσ| satisfies E[|Nσ|p] = 2pΓ((p+1)/2)
Γ(1/2) σ2p ≤ 2p/2σ2p, then

Gσ1SWp(µ, ν) ≤ 21− 1
p Gσ2SWp(µ, ν) + 2 5

2 (σ2
2 − σ2

1),

and concludes the proof.

A.9 Proof of Proposition 3.17: continuity of the smoothed Gaussian sliced Wasserstein w.r.t. σ

From Lemma 1 in (Nietert et al., 2021), we know that the Gaussian-smoothed Wasserstein is continuous with
respect to σ, for any distribution Ruν and Ruµ. In addition, for any u, we have Wp(Ruν ∗ Nσ, Ruµ ∗ Nσ) ≤
Wp(Ruν, Ruµ). Then by applying Lebesgue’s dominated convergence theorem (Bowers & Kalton, 2014) to
the above inequality with Wp(Ruν, Ruµ) as a dominating function, that is ud-almost everywhere integrable
because both measures are in Pp(Rd), we then conclude that the Gaussian-smoothed SWD is continuous
w.r.t. σ.

A.10 Proof of Proposition 3.18: continuity of the smoothed sliced squared-MMD w.r.t. σ

Let us first recall the definition of the MMD divergence. Let k : R × R → R be a measurable bounded
kernel on R and consider the reproducing kernel Hilbert space (RKHS) Hk associated with k and equipped
with inner product < ·, · >Hk

and norm ‖ · ‖Hk
. Let PHk

(R) be the set of probability measures η such
that

∫
R

√
k(t, t)dη(x) < ∞. The kernel mean embedding is defined as Φk(η) =

∫
R k(·, t)dη(t). The squared-

maximum mean discrepancy between η, ζ ∈ P(R) denoted as MMD : PHk
(R) × PHk

(R) → R+ is expressed
as the distance between two such kernel mean embeddings. It is defined as Gretton et al. (2012)

MMD2(η, ζ) = ‖Φk(η) − Φk(ζ)‖2
Hk

= ET,T ′∼η[k(T, T ′)] − 2ET ∼η,R∼ζ [k(T, R)] + ER,R′∼ζ [k(R, R′)]

where T and T ′ are independent random variables drawn according to η, R and R′ are independent random
variables drawn according to ζ, and T is independent of R. We define the Gaussian Smoothed Sliced
squared-MMD as follows:

GσMMD2(µ, ν) =
∫
Sd−1

‖Φk(Ruµ ∗ Nσ) − Φk(Ruν ∗ Nσ)‖2
Hk

ud(u)du

=
∫
Sd−1

(
ET,T ′∼Ruµ∗Nσ

[k(T, T ′)] − 2ET ∼Ruµ∗Nσ,R∼Ruν∗Nσ
[k(T, R)]

+ ER,R′∼Ruν∗Nσ
[k(R, R′)]

)
ud(u)du.

From the definition of the smoothed sliced squared-MMD, we have

ET,T ′∼Ruµ∗Nσ [k(T, T ′)] =
∫∫

R×R
k(t, t′)dRuµ ∗ Nσ(t)dRuµ ∗ Nσ(t′)

=
∫∫

R×R

( ∫
R

k(t + z, t′)dRuµ(z)Nσ(t)
)

dRuµ ∗ Nσ(t′)

=
∫∫

R×R

( ∫
Rd

k(t + u>x, t′)dµ(x)Nσ(t)
)

dRuµ ∗ Nσ(t′)

=
∫∫

R×R

∫∫
Rd×Rd

k(t + u>x, t′ + u>x′)dµ(x)dµ(x′)dNσ(t)dNσ(t′).
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Similarly,

ER,R′∼Ruν∗Nσ [k(R, R′)] =
∫∫

R×R

∫∫
Rd×Rd

k(r + u>y, r′ + u>y′)dν(y)dν(y′)dNσ(r)dNσ(r′)

and

ET ∼Ruµ∗Nσ,R∼Ruν∗Nσ
[k(T, R)] =

∫∫
R×R

∫∫
Rd×Rd

k(t + u>x, r + u>y)dµ(x)dν(y)dNσ(t)dNσ(r).

Together the assumption of boundness of the kernel function k and the continuity of integrals, the three
latter terms are continuous functions w.r.t. σ ∈ (0, ∞). Again by the boundness of the kernel function k,
there exists a positive finite constant Ck such that

∣∣ET,T ′∼Ruµ∗Nσ
[k(T, T ′)] − 2ET ∼Ruµ∗Nσ,R∼Ruν∗Nσ

[k(T, R)] + ER,R′∼Ruν∗Nσ
[k(R, R′)]

∣∣ ≤ 4Ck.

We conclude the continuity of σ 7→ GσMMD2(µ, ν) by an application of the continuity of integrals.

B Additional experiments

B.1 Sample complexity on CIFAR dataset

We have also evaluated the sample complexity for the CIFAR dataset by sampling sets of increasing size.
Results reported in Figure 1 confirms the findings obtained from the toy dataset.

Figure 1: Measuring the divergence between two sets of samples drawn iid from the CIFAR10 dataset. We
compare three sliced divergences and their Gaussian smoothed versions with a σ = 3.

B.2 Identity of indiscernibles

The second experiment aims at checking whether our divergences converge towards a small value when the
distributions to be compared are the same. For this, we consider samples from distributions µ and ν chosen
as normal distributions with respectively mean 2 × 1d and s1d with varying s (noted as the displacement).
Results are depicted in Figure 2. We can see that all methods are able to attain their minimum when s = 2.
Interestingly, the gap between the Gaussian smoothed and non-smoothed divergences for Wasserstein and
Sinkhorn is almost indiscernible as the distance between distribution increases.
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Figure 2: Measuring the divergence between two sets of samples in R50, one with mean 21d and the other
with mean s1d with increasing s. We compare three sliced divergences and their Gaussian smoothed version
with a σ = 3.
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