
Appendix to the Safe Pontryagin Differentiable Programming paper

A Second-order Sufficient Condition

Before presenting the second-order condition for the optimal control Problem B(θ), we present the
second-order condition for a general constrained nonlinear programming. The interested reader can
find the details in Theorem 4 in [48].

Lemma A.1 (Second-order sufficient condition [48]). If all functions defining a constrained opti-
mization

min
x

f(x)

subject to gi(x) ≤ 0 i = 1, 2, · · · ,m,
hj(x) = 0 j = 1, 2, · · · , p,

(S.1)

are twice-continuous differentiable, the second-order sufficient condition for x∗ to be a local isolated
minimizing solution to (S.1) is that there exist vectors v∗ and w∗ such that (x∗,v∗,w∗) satisfies

gi(x
∗) ≤ 0, i = 1, 2, · · · ,m,

hi(x
∗) = 0, j = 1, 2, · · · , p,

vigi(x
∗) = 0, i = 1, 2, · · · ,m,
ui ≥ 0, i = 1, 2, · · · ,m,

∇L(x∗,v∗,w∗) = 0,

(S.2)

with

L(x,v,w) = f(x) +

m∑
i=1

vigi(x) +

p∑
i=1

wihi(x), (S.3)

and ∇L being the derivative of L with respect to x; and further for any nonzero y 6= 0 satisfying
y′∇gi(x∗) = 0 for all i with v∗i > 0, y′∇gi(x∗) ≤ 0 for all i with v∗i ≥ 0, and y′∇hj(x∗) = 0 for
all j = 1, 2, · · · , p, it follows that

y′∇2L(x∗,v∗,w∗)y > 0. (S.4)

The above second-order sufficient condition for nonlinear programming is well-known. The proof
for Lemma A.1 can be found in Theorem 4 in [48]. Similarly, we can establish the second-order
sufficient condition for a general constrained optimal control system Σ(θ) in (1), as below.

Lemma A.2 (Second-order sufficient condition for Σ(θ) to have a local isolated minimizing trajectory
ξθ [73]). Given θ, if all functions defining the constrained optimal control system Σ(θ) are twice
continuously differentiable in a neighborhood (tube) of ξθ = {xθ0:T ,u

θ
0:T−1}, ξθ is a local isolated

minimizing trajectory to Problem B(θ) if there exist sequences λθ1:T , vθ0:T , and wθ0:T such that the
following Constrained Pontryagin Maximum/Minimum Principle (C-PMP) conditions hold,

xθt+1 = f(xθt ,u
θ
t ,θ) and xθ0 = x0(θ),

λθt = Lxt (xθt ,u
θ
t ,λ

θ
t+1,v

θ
t ,w

θ
t ,θ) and λθT = LxT (xθt ,v

θ
t ,w

θ
t ,θ),

0 = Lut (xθt ,u
θ
t ,λ

θ
t+1,v

θ
t ,w

θ
t ,θ),

ht,j(x
θ
t ,u

θ
t ,θ) = 0, j = 1, 2, · · · , st,

hT,j(x
θ
T ,θ) = 0, j = 1, 2, · · · , sT ,

gt,i(x
θ
t ,u

θ
t ,θ) ≤ 0, vt,igt,i(x

θ
t ,u

θ
t ,θ) = 0, vt,i ≥ 0, i = 1, 2, · · · , qt,

gT,i(x
θ
T ,θ) ≤ 0, vT,igT,i(x

θ
T ,θ) = 0, vT,i ≥ 0, i = 1, 2, · · · , qT ,

(S.5)

and further if
T−1∑
t=0

[
xt
ut

]′ [
Lxxt Lxut
Luxt Luut

] [
xt
ut

]
+ x′TL

xx
T xT > 0 (S.6)

18

for any non-zero trajectory {x0:T ,u0:T−1} 6= 0 satisfying

xt+1 = F xt xt + Fut ut x0 = 0,

Hx
t xt +Hu

t ut = 0 and Hx
TxT = 0,

Ǧxt xt + Ǧut ut = 0 and ǦxTxT = 0,

Ḡxt xt + Ḡut ut ≤ 0 and ḠxTxT ≤ 0.

(S.7)

Here, t = 0, 1, ..., T − 1; Lxt is the first-order derivative of the Hamiltonian Lt in (2) with respect to
x, and Lxxt is the second-derivative of Lt with respect to x, and similar notation convention applies
to LxT , Lut , Lxut = (Luxt)′, and Luut ; Hx

t is the first-order derivative of ht with respect to x and the
similar convention applies to Hx

T , Hu
t , F xt and Fut for f , Ǧxt and Ǧut for ǧt, Ǧ

x
T for ǧT , Ḡxt and Ḡut

for ḡt, Ḡ
x
T for ḡT , where

ǧt(xt,ut,θ) = col{gt,i(xt,ut,θ) | vθt,i > 0, i = 1, ..., qt},
ǧT (xT ,θ) = col{gT,i(xT ,θ) | vθt,i > 0, i = 1, ..., qT },

ḡt(xt,ut,θ) = col{gt,i(xt,ut,θ) | gt,i(xθt ,uθt ,θ) = 0, i = 1, ..., qt} ∈ Rq̄t ,
ḡT (xT ,θ) = col{gT,i(xT ,θ) | gT,i(xθT ,θ) = 0, i = 1, ..., qT } ∈ Rq̄T ,

(S.8)

i.e., ḡt and ḡT are the vector functions formed by stacking all active inequality constraints at ξθ . All
the above first- and second-order derivatives are evaluated at (ξθ,λ

θ
1:T ,v

θ
0:T ,w

θ
0:T).

The above second-order sufficient condition for the constrained optimal control system Σ(θ) is well-
known and has been well-established since [73]. The conditions in (S.5) is referred to as discrete-time
Constrained Pontryagin Maximum/Minimum Principle (C-PMP) [73]. Note that in the case of strict
complementarity, one has ǧt(xt,ut,θ) = ḡt(xt,ut,θ) and ǧT (xT ,θ) = ḡT (xT ,θ) in (S.8).

B Proof of Theorem 1

To prove Theorem 1, in the first part, we need to derive the Differential Constrained Pontryagin
Maximum/Minimum Principle (Differential C-PMP), which ∂ξθ

∂θ =
{
Xθ0:T , U

θ
0:T

}
must satisfy. Then,

in the second part, we formally present the proof for Theorem 1.

B.1 Differential Constrained Pontryagin Maximum/Minimum Principle

From Lemma 1, for the constrained optimal control system Σ(θ) with any θ in a neighborhood of θ̄,
(ξθ , λθ1:T , vθ0:T , wθ0:T) satisfies the C-PMP conditions in (S.5). Since (ξθ , λθ1:T , vθ0:T , wθ0:T) is also
once-continuously differentiable with respect to θ from Lemma 1, one can differentiate the C-PMP
conditions in (S.5) on both sides with respect to θ, as below.

Differentiating the first five lines in (S.5) is straightforward, yielding

∂xθt+1

∂θ
= F xt

∂xθt
∂θ

+ Fut
∂uθt
∂θ

+ F θt and Xθ0 =
∂xθ0
∂θ

=
∂x0(θ)

∂θ
,

∂λθt
∂θ

= Lxxt
∂xθt
∂θ

+ Lxut
∂uθt
∂θ

+ (F xt)′
∂λθt+1

∂θ
+ (Gxt)′

∂vθt
∂θ

+ (Hx
t)′

∂wθt
∂θ

+ Lxθt and

∂λθT
∂θ

= LxxT
∂xθT
∂θ

+ (GxT)′
∂vθT
∂θ

+ (Hx
T)′

∂wθT
∂θ

+ LxθT ,

0 = Luxt
∂xθt
∂θ

+ Luut
∂uθt
∂θ

+ (Fut)′
∂λθt+1

∂θ
+ (Gut)′

∂vθt
∂θ

+ (Hu
t)′

∂wθt
∂θ

+ Luθt ,

Hx
t

∂xθt
∂θ

+Hu
t

∂uθt
∂θ

+Hθ
t = 0 and Hx

T

∂xθt
∂θ

+Hθ
T = 0.

(S.9)

We now consider to differentiate the two last equations (i.e., complementarity conditions) in the last
two lines in (S.5). We start with

vθt,i gt,i(x
θ
t ,u

θ
t ,θ) = 0, i = 1, 2, · · · , qt. (S.10)

19

Differentiating the above (S.10) on both sides with respect to θ yields

∂vθt,i
∂θ

gt,i(x
θ
t ,u

θ
t ,θ) + µθt,i

∂gt,i(x
θ
t ,u

θ
t ,θ)

∂θ
= 0, i = 1, 2, · · · , qt. (S.11)

In the above, we consider two following cases. If gt,i(xθt ,u
θ
t ,θ) = 0, i.e., gt,i is an active inequality

constraint, then, µθt,i > 0 according to strict complementarity (condition (iii) in Lemma 1). From
(S.11), one thus has

∂gt,i(x
θ
t ,u

θ
t ,θ)

∂θ
= 0. (S.12)

If gt,i(xθt ,u
θ
t ,θ) < 0, i.e., gt,i is an inactive constraint, then vθt,i = 0 and one has

∂vθt,i
∂θ

= 0 for vθt,i = 0. (S.13)

Stacking (S.12) for all active inequality constraints defined in (S.8) will lead to

0 = Ḡxt
∂xθt
∂θ

+ Ḡut
∂uθt
∂θ

+ Ḡθt . (S.14)

Similarly, we can show that differentiating vT,igT,i(xθT ,θ) = 0, i = 1, 2, · · · , qT , will lead to

ḠxT
∂xθT
∂θ

+ ḠθT = 0. (S.15)

If we further define

v̄θt = col{vθt,i | vθt,i > 0, i = 1, ..., qt} ∈ Rq̄t , (S.16)

then, due to (S.13), the following terms in the second, third, and fourth lines in (S.9) can be written in
an equivalent way:

(Gxt)
′ ∂v

θ
t

∂θ
=
(
Ḡxt
)′ ∂v̄θt
∂θ

and (Gut)
′ ∂v

θ
t

∂θ
=
(
Ḡut
)′ ∂v̄θt
∂θ

. (S.17)

In sum, combining (S.9), (S.14), (S.15), and (S.17), one can finally write the Differential C-PMP:

∂xθt+1

∂θ
= F xt

∂xθt
∂θ

+ Fut
∂uθt
∂θ

+ F θt and Xθ0 =
∂xθ0
∂θ

,

∂λθt
∂θ

= Lxxt
∂xθt
∂θ

+ Lxut
∂uθt
∂θ

+ (F xt)′
∂λθt+1

∂θ
+ (Ḡxt)′

∂v̄θt
∂θ

+ (Hx
t)′

∂wθt
∂θ

+ Lxθt and

∂λθT
∂θ

= LxxT
∂xθT
∂θ

+ (ḠxT)′
∂v̄θT
∂θ

+ (Hx
T)′

∂wθT
∂θ

+ LxθT ,

0 = Luxt
∂xθt
∂θ

+ Luut
∂uθt
∂θ

+ (Fut)′
∂λθt+1

∂θ
+ (Ḡut)′

∂v̄θt
∂θ

+ (Hu
t)′

∂wθt
∂θ

+ Luθt ,

Hx
t

∂xθt
∂θ

+Hu
t

∂uθt
∂θ

+Hθ
t = 0 and Hx

T

∂xθt
∂θ

+Hθ
T = 0,

Ḡxt
∂xθt
∂θ

+ Ḡut
∂uθt
∂θ

+ Ḡθt = 0 and ḠxT
∂xθT
∂θ

+ ḠθT = 0.

(S.18)

With the above Differential C-PMP, we next prove the claims in Theorem 1.

B.2 Proof of Theorem 1

We prove Theorem 1 by two steps. We first prove that the trajectory in (4), rewritten below,{
Xθ0:T , U

θ
0:T−1

}
with Xθt =

∂xθt
∂θ

and Uθt =
∂uθt
∂θ

,

is the local isolated minimizing trajectory to the auxiliary control system Σ(ξθ) in (3); and second,
we prove that such a local minimizing trajectory is also a global minimizing trajectory.

20

First, we prove that
{
Xθ0:T , U

θ
0:T−1

}
is a local isolated minimizing trajectory to Σ(ξθ).

To show that
{
Xθ0:T , U

θ
0:T−1

}
is a local isolated minimizing trajectory to Σ(ξθ), we only need to

check whether it satisfies the second-order sufficient condition for the constrained optimal control
system Σ(ξθ), as stated in Lemma A.2. To that end, we define the following Hamiltonian for Σ(ξθ):

L̄t = Tr

(
1

2

[
Xt

Ut

]′ [
Lxxt Lxut

Luxt Luut

] [
Xt

Ut

]
+

[
Lxθt

Luet

]′ [
Xt

Ut

])
+ Tr

(
Λ′t+1(F xt Xt + Fut Ut + F θt)

)
+ Tr

(
V̄ ′t (ḠxtXt + Ḡut Ut + Ḡθt)

)
+ Tr

(
W ′t (H

x
t Xt +Hu

t Ut +Hθ
t)
)
, t = 0, .., T−1,

L̄T = Tr

(
1

2
X ′TL

xx
T XT + (LxθT)′XT

)
+ Tr

(
M̄ ′T (ḠxTXT + ḠθT)

)
+ Tr

(
N ′T (Hx

TXT +Hθ
T)
)
, t = T.

(S.19)

Here, Λt ∈ Rn×r, t = 1, 2, ..., T , denotes the costate (matrix) variables for Σ(ξθ); V̄t ∈ Rq̄t×r and
Wt ∈ Rst×r, t = 0, 1, ..., T , are the multipliers for the constraints in Σ(ξθ). Further define

Λθt =
∂λθt
∂θ

, W θ
t =

∂wθt
∂θ

, V̄ θt =
∂v̄θt
∂θ

, (S.20)

with v̄θt in (S.16). Then, the Differential C-PMP in (S.18) is exactly the Constrained Pontryagin
Minimal Principle (C-PMP) for the auxiliary control system Σ(ξθ) because

Xθt+1 =
∂L̄t
∂Λθt+1

= F xt X
θ
t + Fut U

θ
t + F θt and X0 = Xθ0 ,

Λθt =
∂L̄t
∂Xθt

= Lxxt Xθt + Lxut Uθt + Lxθt + (F xt)′Λθt+1 + (Ḡxt)′V̄ θt + (Hx
t)′W θ

t and

ΛθT =
∂L̄t
∂XθT

= Hxx
T XθT +Hxe

T + (ḠxT)′V̄ θT + (Hx
T)′W θ

T ,

0 =
∂L̄t
∂Uθt

= Luut Uθt + Luxt Xθt + Luθt + (Fut)′Λθt+1 + (Ḡut)′V̄ θt + (Hu
t)′W θ

t ,

Hx
t X

θ
t +Hu

t U
θ
t +Hθ

t = 0 and Hx
TX

θ
T +Hθ

T = 0,

ḠxtX
θ
t + Ḡut U

θ
t + Ḡθt = 0 and ḠxTX

θ
T + ḠθT = 0.

(S.21)

Note that in (S.21), we have used the following matrix calculus [86] and trace properties:

∂ Tr(AB)

∂A
= B′,

∂f(A)

∂A′
=

[
∂f(A)

∂A

]′
,

∂ Tr(X ′HX)

∂X
= HX +H ′X,

Tr(A) = Tr(A′), Tr(ABC) = Tr(BCA) = Tr(CAB), Tr(A+B) = Tr(A) + Tr(B).

Next, we need to show that the second-order condition

T−1∑
t=0

Tr



[
∆Xt

∆Ut

]′  ∂L̄2
t

∂Xθ
t ∂X

θ
t

∂L̄2
t

∂Xθ
t ∂U

θ
t

∂L̄2
t

∂Uθ
t ∂X

θ
t

∂L̄2
t

∂Uθ
t ∂U

θ
t


︸ ︷︷ ︸Lxxt Lxut

Luxt Luut



[
∆Xt

∆Ut

]


+ Tr

∆X ′T

[
∂L̄2

t

∂Xθ
T ∂X

θ
T

]
︸ ︷︷ ︸

LxxT

∆XT

 > 0,

(S.22)

21

hold for any trajectory {∆X0:T ,∆U0:T−1} 6= 0 satisfying

∆Xt+1 = F xt ∆Xt + Fut ∆U t and ∆X0 = 0,

Ḡxt∆Xt + Ḡut ∆Ut = 0 and ḠxT∆XT = 0,

Hx
t ∆Xt +Hu

t ∆Ut = 0 and Hx
T∆XT = 0,

(S.23)

In fact, this is true directly due to (S.6) and (S.7) in Lemma A.2 and the strict complementarity in
condition (iii) in Lemma 1 (note that ǧt(xt,ut,θ) = ḡt(xt,ut,θ) and ǧT (xT ,θ) = ḡT (xT ,θ)
because of the strict complementarity). Therefore, with the C-PMP (S.21) and (S.22)-(S.23) holding
for
{
Xθ0:T , U

θ
0:T−1

}
, we can conclude that

{
Xθ0:T , U

θ
0:T−1

}
is a local unique minimizing trajectory

to the auxiliary control system Σ̄(ξθ) according to Lemma A.2.

Second, we prove that the local unique minimizing trajectory
{
Xθ0:T , U

θ
0:T−1

}
is also a global one.

We note that any feasible trajectory {X0:T , U0:T−1} that satisfies all constraints (dynamics, path and
final constraints) in the auxiliary control system Σ(ξθ) can be written as

{X0:T , U0:T−1} =
{
Xθ0:T , U

θ
0:T−1

}
+ {∆X0:T ,∆U0:T−1} , (S.24)

with {∆X0:T ,∆U0:T−1} satisfying the conditions in (S.23). Let

J̄(X0:T , U0:T−1)− J̄(Xθ0:T , U
θ
0:T−1)

= Tr

T−1∑
t=0

(
1

2

[
∆Xt
∆Ut

]′ [
Lxxt Lxut
Luxt Luut

] [
∆Xt
∆Ut

]
+

[
Xθ
t

Uθ
t

]′ [
Lxxt Lxut
Luxt Luut

] [
∆Xt
∆Ut

]
+

[
Lxθt
Luθt

]′ [
∆Xt
∆Ut

])

+ Tr

(
1

2
∆X ′TL

xx
T ∆XT + (XθT)′LxxT ∆XT + (LxθT)′∆XT

)
.

(S.25)

Based on (S.21), the following term in (S.25) can be simplified to

[
∆Xt

∆Ut

]′([
Lxxt Lxut
Luxt Luut

] [
Xθt
Uθt

]
+

[
Lxθt
Luθt

])
=

[
∆Xt

∆Ut

]′ [−(F xt)′Λθt+1 − (Ḡxt)′V̄ θt − (Hx
t)′W θ

t + Λθt
−(Fut)′Λθt+1 − (Ḡut)′V̄ θt − (Hu

t)′W θ
t

]
=− (Λθt+1)′F xt ∆Xt −���

���(V̄ θt)′Ḡxt∆Xt −(((((
((

(W θ
t)′Hx

t ∆Xt + (Λθt)′∆Xt

− (Λθt+1)′Fut ∆Ut −���
���(V̄ θt)′Ḡut ∆Ut −(((((

((
(W θ

t)′Hu
t ∆Ut

=−(Λθt+1)′F xt ∆Xt − (Λθt+1)′Fut ∆Ut︸ ︷︷ ︸
−(Λθ

t+1)′∆Xt+1

+(Λθt)′∆Xt = −(Λθt+1)′∆Xt+1 + (Λθt)′∆Xt

(S.26)

where the cancellations in the last three lines are due to (S.23). Also based on (S.21), the following
term in (S.25) can be simplified to

(
(XθT)′LxxT + (LxθT)′

)
∆XT

=−(((((
((

(V̄ θT)′ḠT∆XT −(((((
((

(W θ
T)′Hx

T∆XT + (ΛθT)′∆XT

=(ΛθT)′∆XT

(S.27)

where the cancellation here is due to (S.23).

22

Then, based on (S.26) and (S.27), (S.25) is simplified to

J̄(X0:T , U0:T−1)− J̄(Xθ0:T , U
θ
0:T−1)

= Tr

T−1∑
t=0

(
1

2

[
∆Xt
∆Ut

]′ [
Lxxt Lxut
Luxt Luut

] [
∆Xt
∆Ut

]
+

[
Xθ
t

Uθ
t

]′ [
Lxxt Lxut
Luxt Luut

] [
∆Xt
∆Ut

]
+

[
Lxθt
Luθt

]′ [
∆Xt
∆Ut

])

+ Tr

(
1

2
∆X ′TL

xx
T ∆XT + (XθT)′LxxT ∆XT + (LxθT)′∆XT

)
= Tr

T−1∑
t=0

(
1

2

[
∆Xt

∆Ut

]′ [
Lxxt Lxut
Luxt Luut

] [
∆Xt

∆Ut

]
− (Λθt+1)′∆Xt+1 + (Λθt)′∆Xt

)

+ Tr

(
1

2
∆X ′TL

xx
T ∆XT + (ΛθT)′∆XT

)
= Tr

T−1∑
t=0

(
1

2

[
∆Xt

∆Ut

]′ [
Lxxt Lxut
Luxt Luut

] [
∆Xt

∆Ut

])
+ Tr

(
1

2
∆X ′TL

xx
T ∆XT

)
,

(S.28)
where the last line is because (note ∆X0 = 0 in (S.23))

Tr

T−1∑
t=0

(
−(Λθt+1)′∆Xt+1 + (Λθt)′∆Xt

)
+ Tr

(
(ΛθT)′∆XT

)
= Tr

(
(Λθ0)′∆X0

)
= 0.

Since

Tr

T−1∑
t=0

(
1

2

[
∆Xt

∆Ut

]′ [
Lxxt Lxut
Luxt Luut

] [
∆Xt

∆Ut

])
+ Tr

(
1

2
∆X ′TL

xx
T ∆XT

)
≥ 0 (S.29)

due to (S.22) for all {∆X0:T ,∆U0:T−1} satisfying (S.23), therefore

J̄(X0:T , U0:T−1)− J̄(Xθ0:T , U
θ
0:T−1) ≥ 0. (S.30)

for any feasible trajectory {X0:T , U0:T−1} in (S.24). This concludes that the local unique minimizing
trajectory

{
Xθ0:T , U

θ
0:T

}
is also a global one.

In sum of the two proof steps, the assertion that the trajectory in (4), i.e.,

∂ξθ
∂θ

=
{
Xθ0:T , U

θ
0:T−1

}
,

is a globally unique minimizing trajectory to the auxiliary control system Σ(ξθ) in (3) follows. This
completes the proof of Theorem 1.

C Proof of Theorem 2

For the unconstrained optimal control system Σ(θ, γ) in (5), we define its Hamiltonian below:

L̂t = ct(xt,ut,θ) + λ′t+1f(xt,ut,θ)− γ
qt∑
i=1

ln
(
−gt,i(xt,ut,θ)

)
+

1

2γ

st∑
i=1

(
ht,i(xt,ut,θ)

)2
L̂T = cT (xT ,θ)− γ

qT∑
i=1

ln
(
−gT,i(xT ,θ)

)
+

1

2γ

sT∑
i=1

(
hT,i(xT ,θ)

)2
.

(S.31)
with t = 0, 1, · · · , T − 1.

23

C.1 Proof of Claim (a)

We first modify the C-PMP condition (S.5) for the constrained optimal control system Σ(θ) into the
following set of equations:

xt+1 = f(xt,ut,θ) and x0 = x0(θ),

λt = Lxt (xt,ut,λt+1,vt,wt,θ) and λT = LxT (xt,vt,wt,θ),

0 = Lut (xt,ut,λt+1,vt,wt,θ),

ht,i(xt,ut,θ) = wt,iγ, i = 1, 2, · · · , st,
hT,i(xT ,θ) = wT,iγ, i = 1, 2, · · · , sT ,
vt,i gt,i(xt,ut,θ) = −γ, i = 1, 2, · · · , qt,
vT,i gT,i(xT ,θ) = −γ, i = 1, 2, · · · , qT ,

(S.32)

where the first three equations are the same with the those in (S.5) and only the last two lines of
equations are modified by adding some perturbation terms related to γ.

Now, one can view that the parameters (θ, γ) jointly determine ξ = {x0:T ,u0:T−1}, λ1:T , v0:T , and
w0:T through the implicit equations in (S.32). Also, one can note that by letting γ = 0 and θ = θ̄,
the above equations in (S.32) coincide with the C-PMP condition (S.5) for Σ(θ̄). Thus, given that the
conditions (i)-(iii) in Lemma 1 hold for Σ(θ̄), one can readily apply the implicit function theorem
[75] to (S.32) in a neighborhood of (θ̄, 0) and make the following assertion (its proof can directly
follow the proof for Lemma 1 (i.e., the first-order sensitivity result) with little change):

For any (θ, γ) within a neighborhood of (θ̄, 0), there exists a unique once-continuously differentiable

function
(
ξ(θ,γ),λ

(θ,γ)
0:T ,v

(θ,γ)
0:T ,w

(θ,γ)
0:T

)
, which satisfies (S.32) and(

ξ(θ,γ),λ
(θ,γ)
0:T ,v

(θ,γ)
0:T ,w

(θ,γ)
0:T

)
=
(
ξθ̄,λ

θ̄
1:T ,v

θ̄
0:T ,w

θ̄
0:T

)
when (θ, γ) = (θ̄, 0). (S.33)

With the above claim, in what follows, we will prove that for any (θ, γ) near (θ̄, 0) additionally with
γ > 0, ξ(θ,γ) is a local isolated minimizing trajectory to the unconstrained optimal control system
Σ(θ, γ) in (5). First, we need to show that such ξ(θ,γ) will make Σ(θ, γ) well-defined, which is the
second part of Claim (a), rewritten below

gt,i

(
x

(θ,γ)
t ,u

(θ,γ)
t ,θ

)
< 0, i = 1, 2, · · · , qt, and

gT,i

(
x

(θ,γ)
T ,θ

)
< 0, i = 1, 2, · · · , qT .

(S.34)

In fact, such an assertion always holds because the strict complementary for Σ(θ̄) from Lemma 1.
Specifically, for any i = 1, 2, · · · , qt, if gt,i(xθ̄t ,u

θ̄
t , θ̄) < 0, from continuity of gt,i and ξ(θ,γ)

gt,i(x
(θ,γ)
t ,u

(θ,γ)
t ,θ)→ gt,i(x

θ̄
t ,u

θ̄
t , θ̄) < 0 as (θ, γ)→ (θ̄, 0),

thus gt,i(x
(θ,γ)
t ,u

(θ,γ)
t ,θ) < 0 for any (θ, γ) near (θ̄, 0) with γ > 0; if gt,i(xθ̄t ,u

θ̄
t , θ̄) = 0 and

vθ̄t,i > 0 (due to strict complementarity), from continuity of v(θ,γ)
t ,

v
(θ,γ)
t,i → vθ̄t,i > 0 as (θ, γ)→ (θ̄, 0), (S.35)

thus v(θ,γ)
t,i > 0 for (θ, γ) near (θ̄, 0) with γ > 0, and also due to (S.32), gt,i(x

(θ,γ)
t ,u

(θ,γ)
t ,θ) =

− γ

v
(θ,γ)
t,i

< 0 for (θ, γ) near (θ̄, 0) with γ > 0. So, for either case, the first inequality in (S.34) always

holds. Similar proof procedure also applies to prove the second inequality in (S.34). In sum, we
conclude that ξ(θ,γ) satisfies (S.34) and thus makes the Σ(θ, γ) well-defined for any (θ, γ) near
(θ̄, 0) with γ > 0. This completes the second part of Claim (a).

24

From now on, we prove that for any (θ, γ) near (θ̄, 0) with γ > 0, ξ(θ,γ) is a local isolated minimizing
trajectory to the unconstrained optimal control system Σ(θ, γ) in (5). From the last four equations in
(S.32), we solve

w
(θ,γ)
t,i =

ht,i(x
(θ,γ)
t ,u

(θ,γ)
t ,θ)

γ
, w

(θ,γ)
T,i =

hT,i(x
(θ,γ)
T ,θ)

γ
,

v
(θ,γ)
t,i = − γ

gt,i(x
(θ,γ)
t ,u

(θ,γ)
t ,θ)

, v
(θ,γ)
T,i = − γ

gT,i(x
(θ,γ)
T ,θ)

,
(S.36)

and plug them into the first three equations in (S.32), then one will find that the obtained equations are
exactly the Pontryagin Maximum/Minimum Principle (PMP) for the unconstrained optimal control
system Σ(θ, γ) with its Hamiltonian already defined in (S.31), that is to say,

x
(θ,γ)
t+1 = f(x

(θ,γ)
t ,u

(θ,γ)
t ,θ) and x

(θ,γ)
0 = x0(θ),

λ
(θ,γ)
t = L̂xt (x

(θ,γ)
t ,u

(θ,γ)
t ,λ

(θ,γ)
t+1 , (θ, γ)),

λ
(θ,γ)
T = L̂xT (x

(θ,γ)
t , (θ, γ)),

0 = L̂ut (x
(θ,γ)
t ,u

(θ,γ)
t ,λ

(θ,γ)
t+1 , (θ, γ)),

(S.37)

indicating that ξ(θ,γ) =
{
x

(θ,γ)
0:T ,u

(θ,γ)
0:T−1

}
already satisfies the PMP condition for unconstrained

optimal control system Σ(θ, γ). To show ξ(θ,γ) =
{
x

(θ,γ)
0:T ,u

(θ,γ)
0:T−1

}
is a local isolated minimizing

trajectory to Σ(θ, γ) for any (θ, γ) near (θ̄, 0) with γ > 0, we only need to verify its second-order
condition as stated in (S.6)-(S.7) in Lemma A.2, which is presented next. In the remainder of proof,
for convenience of notation, all derivatives are evaluated at (θ, γ) (or ξ(θ,γ)) unless otherwise stated.

Before proceeding, we show two facts (easy to prove) about the second-order derivatives of Hamilto-
nian L̂t and L̂T in (S.31). First,[

L̂xxt L̂xut
L̂uxt L̂uut

]
=

[
Lxxt Lxut
Luxt Luut

]
+

qt∑
i=1

γ
g2t,i

∂g′t,i
∂xt

∂gt,i
∂xt

+
st∑
i=1

1
γ

∂h′t,i
∂xt

∂ht,i
∂xt

qt∑
i=1

γ
g2t,i

∂g′t,i
∂xt

∂gt,i
∂ut

+
st∑
i=1

1
γ

∂h′t,i
∂xt

∂ht,i
∂ut

qt∑
i=1

γ
g2t,i

∂g′t,i
∂ut

∂gt,i
∂xt

+
st∑
i=1

1
γ

∂h′t,i
∂ut

∂ht,i
∂xt

qt∑
i=1

γ
g2t,i

∂g′t,i
∂ut

∂gt,i
∂ut

+
st∑
i=1

1
γ

∂h′t,i
∂ut

∂ht,i
∂ut

 , (S.38)

and

L̂xxT = LxxT +

qT∑
i=1

γ

g2t,i

∂g′T,i
∂xT

∂gT,i
∂xT

+

sT∑
i=1

1

γ

∂h′T,i
∂xT

∂hT,i
∂xT

, (S.39)

respectively. Second, given any x and u with appropriate dimensions, one has[
x
u

]′ [
L̂xxt L̂xut
L̂uxt L̂uut

] [
x
u

]
=

[
x
u

]′ [
Lxxt Lxut
Luxt Luut

] [
x
u

]
+

[
x
u

]′ 
qt∑
i=1

γ
g2t,i

∂g′t,i
∂xt

∂gt,i
∂xt

+
st∑
i=1

1
γ

∂h′t,i
∂xt

∂ht,i
∂xt

qt∑
i=1

γ
g2t,i

∂g′t,i
∂xt

∂gt,i
∂ut

+
∑st
i=1

1
γ

∂h′t,i
∂xt

∂ht,i
∂ut

qt∑
i=1

γ
g2t,i

∂g′t,i
∂ut

∂gt,i
∂xt

+
st∑
i=1

1
γ

∂h′t,i
∂ut

∂ht,i
∂xt

qt∑
i=1

γ
g2t,i

∂g′t,i
∂ut

∂gt,i
∂ut

+
st∑
i=1

1
γ

∂h′t,i
∂ut

∂ht,i
∂ut

[xu
]

=

[
x
u

]′ [
Lxxt Lxut
Luxt Luut

] [
x
u

]
+

qt∑
i=1

γ

g2t,i

(∂gt,i
∂xt

x+
∂gt,i
∂u

u
)2

+

st∑
i=1

1

γ

(∂ht,i
∂xt

x+
∂ht,i
∂u

u
)2
, (S.40)

and

x′L̂xxT x = x′LxxT x+ x′
(qT∑
i=1

γ

g2t,i

∂g′T,i
∂xT

∂gT,i
∂xT

+

sT∑
i=1

1

γ

∂h′T,i
∂xT

∂hT,i
∂xT

)
x

= x′LxxT x+

qT∑
i=1

γ

g2T,i

(
∂gT,i
∂xT

x
)2

+

sT∑
i=1

1

γ

(∂hT,i
∂xT

x
)2
. (S.41)

25

For the second-order condition of the unconstrained optimal control system Σ(θ, γ) with any (θ, γ)
near (θ̄, 0) with γ > 0, we need to prove that

T−1∑
t=0

[
xt
ut

]′ [
L̂xxt (θ, γ) L̂xut (θ, γ)

L̂uxt (θ, γ) L̂uut (θ, γ)

] [
xt
ut

]
+ x′T L̂

xx
T (θ, γ)xT > 0, (S.42)

for any {x0:T ,u0:T−1} 6= 0 satisfying

xt+1 = F xt (θ, γ)xt + Fut (θ, γ)ut and x0 = 0. (S.43)

Here, for convenience, the dependence in F xt (θ, γ), Fut (θ, γ), Hxx
t (θ, γ), Hxu

t (θ, γ), Huu
t (θ, γ),

and Hxx
T (θ, γ) means that these first- and second-order derivatives are evaluated at trajectory ξ(θ,γ)

(the same notation convention applies below).

Proof by contradiction: suppose that the above second-order condition in (S.42)-(S.43) is false.
Then, there must exist a sequence of parameters (θk, γk) with γk > 0 and a sequence of trajectories
{xk0:T ,u

k
0:T−1} 6= 0 such that (θk, γk) → (θ̄, 0), xkt+1 = F xt (θk, γk)xkt + Fut (θk, γk)ukt with

xk0 = 0, and
T−1∑
t=0

[
xkt
ukt

]′ [
L̂xxt (θk, γk) L̂xut (θk, γk)

L̂uxt (θk, γk) L̂uut (θk, γk)

] [
xkt
ukt

]
+ xkT

′
L̂xxT (θk, γk)xkT ≤ 0, (S.44)

for k = 1, 2, 3, · · · . Here, the dependence (θk, γk) means that these first- and second-order deriva-
tives are evaluated at trajectory ξ(θk,γk) for notation convenience. Without loss of generality, assume
‖col{xk0:T ,u

k
0:T−1}‖ = 1 for all k. Select a convergent sub-sequence {xk0:T ,u

k
0:T−1}, relabel the se-

quence {xk0:T ,u
k
0:T−1} for convenience, and call its limit {x∗0:T ,u

∗
0:T−1}, that is, {xk0:T ,u

k
0:T−1} →

{x∗0:T ,u
∗
0:T−1} and (θk, γk) → (θ̄, 0) as k → +∞ and x∗t+1 = F xt (θ̄, 0)x∗t + Fut (θ̄, 0)u∗t with

x∗0 = 0. Then, the limit {x∗0:T ,u
∗
0:T−1} must fall into either of two cases discussed below.

Case 1: ‖col {x∗0:T ,u
∗
0:T−1}‖ = 1 and at least one of the following holds:

Ḡxt (θ̄, 0)x∗t + Ḡut (θ̄, 0)u∗t 6= 0 ∃t or Hx
t (θ̄, 0)x∗t +Hu

t (θ̄, 0)u∗t 6= 0 ∃t
or ḠxT (θ̄, 0)x∗T 6= 0 or Hx

T (θ̄, 0)x∗T 6= 0.
(S.45)

In this case, as k → 0, {xk0:T ,u
k
0:T−1} → {x∗0:T ,u

∗
0:T−1}, (θk, γk)→ (θ̄, 0), we will have

T−1∑
t=0

(
qt∑
i=1

γk

(gkt,i)
2

(∂gkt,i
∂xt

xkt +
∂gkt,i
∂ukt

ukt

)2

+

st∑
i=1

1

γk

(∂hkt,i
∂xkt

xkt +
∂hkt,i
∂ukt

ukt

)2
)

+

qT∑
i=1

γk

(gkT,i)
2

(∂gkT,i
∂xT

xkT

)2

+

sT∑
i=1

1

γk

(∂hkT,i
∂xT

xkT

)2

→ +∞, (S.46)

where
∂gkt,i
∂xt

,
∂gkT,i
∂xT

, gkt,i, g
k
T,i,

∂hkt,i
∂xt

,
∂hkT,i
∂xT

are with superscript k to denote their values are evaluated
at ξ(θk,γk) for notation convenience. (S.46) is because at least one of the terms in the summation is
+∞. Here, we have used the following facts from the last two equations in (S.32):

γ(
gt,i(x

(θ,γ)
t ,u

(θ,γ)
t ,θ)

)2 = −
v

(θ,γ)
t,i

gt,i(x
(θ,γ)
t ,u

(θ,γ)
t ,θ)

→ 0 or → +∞ as (θ, γ)→ (θ̄, 0),

where→ 0 corresponds to the inactive inequalities gt,i(xθ̄t ,u
θ̄
t , θ̄) < 0 and→ +∞ corresponds to

the active inequalities gt,i(xθ̄t ,u
θ̄
t , θ̄) = 0 (vθt,i > 0 due to strict complementarity); and also

γ(
gT,i(x

(θ,γ)
T ,θ)

)2 = −
v

(θ,γ)
T,i

gT,i(x
(θ,γ)
T ,θ)

→ 0 or → +∞ as (θ, γ)→ (θ̄, 0).

where→ 0 corresponds to the inactive inequalities gT,i(xθ̄T , θ̄) < 0 and→ +∞ corresponds to the
active inequalities gT,i(xθ̄T , θ̄) = 0 (vθT,i > 0 due to strict complementarity).

26

By extending the left side of (S.44) based on the facts (S.40) and (S.41), (S.46) immediately leads to

lim
k→+∞

(
T−1∑
t=0

[
xkt
ukt

]′ [
L̂xxt (θk, γk) L̂xut (θk, γk)

L̂uxt (θk, γk) L̂uut (θk, γk)

] [
xkt
ukt

]
+ xkT

′
L̂xxT (θk, γk)xkT

)
→ +∞, (S.47)

which obviously contradicts (S.44).

Case 2: ‖col {x∗0:T ,u
∗
0:T−1}‖ = 1 and all of the following holds:

Ḡxt (θ̄, 0)x∗t + Ḡut (θ̄, 0)u∗t = 0 ∀t and Hx
t (θ̄, 0)x∗t +Hu

t (θ̄, 0)u∗t = 0 ∀t
and ḠxT (θ̄, 0)x∗T = 0 and Hx

T (θ̄, 0)x∗T = 0.
(S.48)

In this case, we have

lim
k→+∞

(
T−1∑
t=0

[
xkt
ukt

]′ [
L̂xxt (θk, γk) L̂xut (θk, γk)

L̂uxt (θk, γk) L̂uut (θk, γk)

] [
xkt
ukt

]
+ xkT

′
L̂xxT (θk, γk)xkT

)

≥ lim
k→+∞

(
T−1∑
t=0

[
xkt
ukt

]′ [
Lxxt (θk, γk) Lxut (θk, γk)

Luxt (θk, γk) L̂uut (θk, γk)

] [
xkt
ukt

]
+ xkT

′
LxxT (θk, γk)xkT

)

=

T−1∑
t=0

[
x∗t
u∗t

]′ [
Lxxt (θ̄, 0) Lxut (θ̄, 0)

Luxt (θ̄, 0) L̂uut (θ̄, 0)

] [
x∗t
u∗t

]
+ x∗T

′LxxT (θ̄, 0)x∗T > 0. (S.49)

Here, the first inequality is based on the fact that the residual term is always non-negative, i.e.,

T−1∑
t=0

(
qt∑
i=1

γk

(gkt,i)
2

(∂gkt,i
∂xt

xkt +
∂gkt,i
∂ukt

ukt

)2

+

st∑
i=1

1

γk

(∂hkt,i
∂xkt

xkt +
∂hkt,i
∂ukt

ukt

)2
)

+

qT∑
i=1

γk

(gkT,i)
2

(∂gkT,i
∂xT

xkT

)2

+

sT∑
i=1

1

γk

(∂hkT,i
∂xT

xkT

)2

≥ 0, (S.50)

the last inequality is directly from the second-order condition in (S.6)-(S.7) in Lemma A.2. Obviously,
(S.49) also contracts (S.44).

Combining the above two cases, we can conclude that for any (θ, γ) near (θ̄, 0) with γ > 0, the
trajectory ξ(θ,γ) to the unconstrained optimal control system Σ(θ, γ) satisfies both its PMP condition
in (S.31) and the second-order condition in (S.42)-(S.43). Thus, one can assert that ξ(θ,γ) is a local
isolated minimizing trajectory to Σ(θ, γ). This completes the proof of Claim (a) in Theorem 2.

C.2 Proof of Claim (b)

Given that the conditions (i)-(iii) in Lemma 1 hold for Σ(θ̄), we have the following conclusions:

(1) From Claim (a) and its proof, we know that for any (θ, γ) in the neighborhood of (θ̄, 0), there
exists a unique once-continuously differentiable function

(
ξ(θ,γ),λ

(θ,γ)
0:T ,v

(θ,γ)
0:T ,w

(θ,γ)
0:T

)
, which

satisfies (S.32). Additionally provided γ > 0, such ξ(θ,γ) is also a local isolated minimizing
trajectory for the well-defined unconstrained optimal control system Σ(θ, γ).

(2) Additionally let γ = 0 in (S.32), and (S.32) becomes the C-PMP condition for the constrained
optimal control system Σ(θ). From Lemma 1, for any θ near θ̄, ξθ = ξ(θ,γ=0) is a differentiable local
isolated minimizing trajectory for Σ(θ), associated with the unique once-continuously differentiable
function

(
λ

(θ,γ=0)
1:T ,v

(θ,γ=0)
0:T ,w

(θ,γ=0)
0:T

)
.

Therefore, due to the uniqueness and once-continuous differentiability of ξ(θ,γ) with respect to (θ, γ)

near (θ̄, 0), one can obtain

ξ(θ,γ) → ξ(θ,0) = ξθ as γ → 0, (S.51)

27

and
∂ξ(θ,γ)

∂θ
→

∂ξ(θ,0)

∂θ
=
ξθ
∂θ

as γ → 0. (S.52)

Here (S.51) is due to that ξ(θ,γ) is unique and continuous at (θ, γ = 0), and (S.51) is because ξ(θ,γ)

is unique and once-continuously differentiable at (θ, γ = 0). This completes the proof of Claim (b)
in Theorem 2.

C.3 Proof of Claim (c)

For the unconstrained optimal control system Σ(θ, γ) with any (θ, γ) near (θ̄, 0), γ > 0, in order to
show that its trajectory derivative

∂ξ(θ,γ)
∂θ is a globally unique minimizing trajectory to its correspond-

ing auxiliary control system Σ(ξ(θ,γ)), similarly to the claim of Theorem 1, we need to verify if the
following three conditions hold for Σ(θ, γ) at (θ, γ).

(i) The second-order condition holds for ξ(θ,γ) to be a local isolated minimizing trajectory for
Σ(θ, γ). In fact, this has been proved in the proof of Claim (a).

(ii) The gradients of all binding constraints (i.e., all equality and active inequality constraints)
are linearly independent at ξ(θ,γ). Since we do not have inequality constraints in Σ(θ, γ),
we only need to show the gradients of the dynamics constraint are linearly independent at
ξ(θ,γ). Specifically, we need to show that the following linear equations are independent

xt+1 = F xt (θ, γ)xt + Fut (θ, γ)ut, and x0 = 0, t = 0, 1, · · · , T. (S.53)

where the dependence (θ, γ) means that the derivative matrices are evaluated at trajectory
ξ(θ,γ), x0:T and u0:T−1 here are variables. In fact, the above linear equations in (S.53) can
be equivalently written as

F xx1:T + F uu0:T−1 = 0, (S.54)

with

F u =


−Fu0 (θ, γ) 0 · · · 0

0 −Fu1 (θ, γ) · · · 0
...

...
. . .

...
0 0 · · · −F xT−1(θ, γ)

 , (S.55)

and

F x =


I 0 · · · 0 0

−F x1 (θ, γ) I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0
0 0 · · · −F xT−1(θ, γ) I

 . (S.56)

Obviously, all rows in the concatenation matrix [F u,F x] are linear-independent because
[F u,F x] is already in its the reduced echelon form and has full row rank. Thus, one can
conclude that the linear equations in (S.53) are linearly independent.

(iii) Strict complementarity does not apply because there are no inequality constraints in Σ(θ, γ)
at (θ, γ).

With the above three conditions satisfied, by applying Theorem 1, we can conclude that
∂ξ(θ,γ)
∂θ is a

globally unique minimizing trajectory to the auxiliary control system Σ(ξ(θ,γ)). This completes the
Claim (c) in Theorem 2.

With the Claims (a), (b), and (c) proved, we have completed the proof of Theorem 2.

28

D Proof of Theorem 3

We know from the proof of Claim (a) of Theorem 2 in Appendix C.1 that given the conditions in
Theorem 3,

• for any (θ, γ) in the neighborhood of (θ∗, 0), there exists a unique once-continuously
differentiable function

(
ξ(θ,γ),λ

(θ,γ)
0:T ,v

(θ,γ)
0:T ,w

(θ,γ)
0:T

)
, which satisfies (S.32), and(

ξ(θ,γ),λ
(θ,γ)
0:T ,v

(θ,γ)
0:T ,w

(θ,γ)
0:T

)
=
(
ξθ∗ ,λθ

∗

1:T ,v
θ∗

0:T ,w
θ∗

0:T

)
when (θ, γ) = (θ∗, 0);

• additionally, if all functions defining Σ(θ) are three-times continuously differentiable, it
immediately follows that ξ(θ,γ) is then twice continuously differentiable near (θ∗, 0). This
is a direct result by applying the Ck implicit function theorem [87], to the C-PMP condition
(S.32) in the neighborhood of (θ∗, 0).

• additionally provided γ > 0, such ξ(θ,γ) is also a local isolated minimizing trajectory for
the well-defined unconstrained optimal control system Σ(θ, γ) in Problem SB(θ, γ).

Thus, in the following, we will ignore the computation process for obtaining ξ(θ,γ) and simply
view that ξ(θ,γ)is the twice continuously differentiable function of (θ, γ) near (θ∗, 0) and ξθ∗ =
ξ(θ=θ∗,γ=0). The following proof of Theorem 3 follows the procedure of the general interior-point
minimization methods, which are systematically studied in [48] (see Theorem 14, p. 80).

Recall the optimization in Problem SP(ε, γ), re-write it below for easy reference,

θ∗(ε, γ) = arg min
θ

W
(
θ, ε, γ

)
(S.57)

with

W
(
θ, ε, γ

)
= `
(
ξ(θ,γ),θ

)
− ε

l∑
i=1

ln
(
−Ri

(
ξ(θ,γ),θ

))
(S.58)

Given in Theorem 3 that θ∗ satisfies the second-order sufficient condition for a local isolated
minimizer to Problem P (recall the general second-order sufficient condition in Lemma A.1), one can
say that there exists a multiplier u∗ ∈ Rl such that

∇L(θ∗,u∗) = ∇`(ξθ∗ ,θ
∗) +

∑l

i=1
u∗i∇Ri(ξθ∗ ,θ

∗) = 0,

u∗iRi(ξθ∗ ,θ
∗) = 0, i = 1, 2, ..., l,

Ri(ξθ∗ ,θ
∗) ≤ 0, u∗i ≥ 0, i = 1, 2, ..., l,

(S.59)

with the Lagrangian defined as

L(θ,u) = `(ξθ,θ) +
∑l

i=1
uiRi(ξθ,θ), (S.60)

and further for any θ 6= 0 satisfying θ′∇Ri(ξθ∗ ,θ
∗) = 0 with u∗i > 0 and θ′∇Ri(ξθ∗ ,θ

∗) ≤ 0
with u∗i ≥ 0, it follows

θ′∇2L(θ∗,u∗)θ > 0. (S.61)

Here,∇L and∇2L denote the first- and second-order derivatives of L with respect to θ, respectively;
and ξθ∗ = ξ(θ=θ∗,γ=0).

D.1 Proof of Claim (a)

We modify the first two equations in (S.59) into

∇`
(
ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)
)

+
∑l

i=1
u∗i (ε, γ)∇Ri

(
ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)
)

= 0,

u∗i (ε, γ)Ri

(
ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)
)

= −ε, i = 1, 2, ..., l,
(S.62)

29

respectively, and consider both θ∗(ε, γ) and u∗(ε, γ) are implicitly determined by ε and γ through
the above equations.

Look at (S.62) and note that when ε = 0 and γ = 0, (S.62) is identical to the first two equations
in (S.59). Given in Theorem 3 that all binding constraint gradients ∇Ri(ξθ∗ ,θ

∗) are linearly
independent at θ∗ and the strict complementary holds at θ∗, similar to the proof of Theorem 2, one can
apply the well-known implicit function theorem [75] to (S.62) in a neighborhood of (ε, γ) = (0, 0),
leading to the following claim (i.e., the first-order sensitivity result in Theorem 14 in [48]):

In a neighborhood of (ε, γ) = (0, 0), there exists a unique once continuously differentiable
function

(
θ∗(ε, γ),u∗(ε, γ)

)
, which satisfies (S.62) and

(
θ∗(ε, γ),u∗(ε, γ)

)
= (θ∗,u∗) when

(ε, γ) = (0, 0).

Next, we show that the above θ∗(ε, γ) always respects the constraints Ri
(
ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)
)
< 0,

i = 1, 2, ..., l, for any small ε > 0 and any small γ > 0, which is the second-part of Claim (a).

In fact, for any inactive constraint, Ri(ξθ∗ ,θ
∗) < 0, due to the continuity of

(
ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)
)

,
one has

Ri

(
ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)
)
→ Ri(ξθ∗ ,θ

∗) < 0 as (ε, γ)→ (0, 0), (S.63)

and thus Ri
(
ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)
)
< 0 for any small ε > 0 and γ > 0. For any active constraint,

Ri(ξθ∗ ,θ
∗) = 0, and since the corresponding u∗i > 0 (due to the strict complementarity given in

Theorem 3) and the continuity of u∗(ε, γ), one has

u∗i (ε, γ)→ u∗i > 0 as (ε, γ)→ (0, 0), (S.64)

and thus u∗i (ε, γ) > 0 for small ε > 0 and consequently

Ri

(
ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)
)

= − ε

u∗i (ε, γ)
< 0 (S.65)

because of (S.62). Therefore, we have proved that for any small ε > 0 and γ > 0, θ∗(ε, γ) always
respect the constraints Ri

(
ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)
)
< 0, i = 1, 2, ..., l. This prove the second part of

Claim (a).

From now on, we show that the above θ∗(ε, γ) with any small ε > 0 and γ > 0 also is a local isolated
minimizer to the unconstrained optimization (S.57). From the last equation in (S.62), we solve

u∗i (ε, γ) = − ε

Ri

(
ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)
) , i = 1, 2, ..., l, (S.66)

and substitute it to the first equation, yielding

∇`
(
ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)
)
−

l∑
i=1

ε

Ri

(
ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)
)∇Ri(ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)
)

= 0.

(S.67)
One can find that the obtained equation in (S.67) is exactly the first-order optimality condition (KKT
condition) for the unconstrained optimization in Problem SP(ε, γ) in (S.57), and this indicates that
θ∗(ε, γ) satisfies the KKT condition for Problem SP(ε, γ). To further show that θ∗(ε, γ) is a local
isolated minimizing solution to Problem SP(ε, γ) in (S.57), we only need to verify the second-order
condition, that is, for any nonzero θ 6= 0,

θ′
(
∇2W

(
θ∗(ε, γ), ε, γ

))
θ > 0, (S.68)

for any small ε > 0 and γ > 0, which will be proved next.

Proof by contradiction: suppose that the second-order condition (S.68) is false. Then, there must exist
a sequence of (εk, γk) > 0 and a sequence of θk for k = 1, 2, ... such that (εk, γk)→ (0, 0) and

θ′k
(
∇2W

(
θ∗(εk, γk), εk, γk

))
θk ≤ 0. (S.69)

30

as k → +∞. Without loss of generality, assume ‖θk‖ = 1 for all k. Select a convergent sub-sequence
of θk, relabel the sequence θk for convenience, and call the limit θ̄, that is, θk → θ̄ and (εk, γk)→ 0
as k → +∞. Then,

lim
k→+∞

θ′k
(
∇2W

(
θ∗(εk, γk), εk, γk

))
θk

= lim
k→+∞

(
θ′k

(
∇2L(θ∗(εk, γk),u∗(εk, γk)) +

l∑
i=1

εk
(Ri(εk, γk))2

(∇Ri(εk, γk)∇Ri(εk, γk)
′
)
)
θk

)

= lim
k→+∞

(
θ′k

(
∇2L(θ∗(εk, γk),u∗(εk, γk))

)
θk

)
+ lim
k→+∞

(
l∑
i=1

εk
(Ri(εk, γk))2

(∇Ri(εk, γk)
′
θk)2

)

= θ̄
′
(
∇2L(θ∗,u∗)

)
θ̄ + lim

k→+∞

(
l∑
i=1

εk
(Ri(εk, γk))2

(∇Ri(εk, γk)
′
θk)2

)
,

(S.70)
where we write Ri(εk, γk) = Ri(ξ(θ∗(εk,γk),γk),θ

∗(εk, γk)) and ∇Ri(εk) =

∇Ri(ξ(θ∗(εk,γk),γk),θ
∗(εk, γk)) for notation convenience, and the last line is because

L(θ,u) in (S.60) is twice-continuously differentiable with respect to (θ,u) near (θ∗,u∗),
and

(
θ∗(ε, γ),u∗(ε, γ)

)
is once-continuously differentiable with respect to (ε, γ) near (0, 0). In

(S.70), we consider two cases for θ̄:

Case 1: ‖θ̄‖ = 1 and there exists at least an active inequality constraint Ri(ξθ∗ ,θ
∗) = 0, such that

θ̄
′∇Ri(ξθ∗ ,θ

∗) 6= 0. Then,

lim
k→+∞

(
l∑
i=1

εk
(Ri(εk, γk))2

(∇Ri(εk, γk)
′
θk)2

)

= lim
k→+∞

(
l∑
i=1

−ui(εk, γk)

Ri(εk, γk)
(∇Ri(εk, γk)

′
θk)2

)
= +∞.

(S.71)

This is because the following term corresponding to such active constraint has

lim
k→+∞

−ui(εk, γk)

Ri(ξ(θ∗(εk,γk),γk),θ
∗(εk, γk))

= +∞. (S.72)

due to the strict complementarity given in Theorem 3. Therefore, (S.70) will have

lim
k→+∞

θ′k

(
∇2W

(
θ∗(εk, γk), εk, γk

))
θk = +∞, (S.73)

which contradicts the assumption in (S.69) in that

lim
k→+∞

θ′k

(
∇2W

(
θ∗(εk, γk), εk, γk

))
θk ≤ 0. (S.74)

Case 2: ‖θ̄‖ = 1 and for any active constraint Ri(ξθ∗ ,θ
∗) = 0 (and u∗i > 0 due to strict comple-

mentarity given in Theorem 3), θ̄′∇Ri(ξθ∗ ,θ
∗) = 0. Then, from (S.70),

lim
k→+∞

θ′k
(
∇2W

(
θ∗(εk, γk), εk, γk

))
θk ≥ θ̄

′
(
∇2L(θ∗,u∗)

)
θ̄ > 0, (S.75)

where the last inequality is because of the second-order condition in (S.61) satisfied for θ∗ given in
Theorem 3. The obtained (S.75) also contradicts the assumption in (S.69).

Combining the above two cases, we can conclude that given any small ε > 0 and γ > 0, θ∗(ε, γ)
satisfies both the KKT condition (S.67) and the second-order condition (S.68) for W (θ, ε, γ). Thus,
one can assert that θ∗(ε, γ) is a local isolated minimizer to the unconstrained optimization W (θ, ε, γ)
in (S.57), i.e., Problem SP(ε, γ). This completes the proof of the Claim (a) in Theorem 3.

31

D.2 Proof of Claim (b)

From the previous proof for Claim (a), we have the following conclusions: first, for any (ε, γ)
in a neighborhood of (0, 0), there exists a unique once-continuously differentiable function(
θ∗(ε, γ),u∗(ε, γ)

)
, satisfying (S.62); second, additionally provided small ε > 0 and γ > 0,

such θ∗(ε, γ) is also a local isolated minimizer to the well-defined unconstrained minimization
W (θ, ε, γ) in (S.57); and third, when (ε, γ) = (0, 0), (S.62) becomes the KKT condition for Problem
P, whose solution (θ∗,u∗) must satisfy. Therefore, due to the uniqueness and continuity of the
function (θ∗(ε, γ),u∗(ε, γ)) near (ε, γ) = (0, 0), one can obtain

θ∗(ε, γ)→ θ∗(0, 0) = θ∗, as (ε, γ)→ (0, 0). (S.76)

This completes the proof of Claim (b) in Theorem 3.

D.3 Proof of Claim (c)

To prove Claim (c) in Theorem 3, we use the following facts: first, as proved in Claim (a), for
any small ε > 0 and γ > 0, θ∗(ε, γ) always respects the constraints Ri(ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)) < 0,
i = 1, 2, ..., l; second, as also proved in Claim (a), θ∗(ε, γ) is differentiable with respect to (ε, γ)
near (0, 0) and θ∗(ε, γ) → θ∗ as (ε, γ) → (0, 0); and third, as proved in Theorem 2, ξ(θ,γ) is a
differentiable function of (θ, γ) near (θ∗, 0). All these facts lead to that for small γ > 0,Ri(ξ(θ,γ),θ),
i = 1, 2, ..., l, is also a continuous function of θ near θ∗(ε, γ), and

Ri(ξ(θ,γ),θ)→ Ri
(
ξ(θ∗(ε,γ),γ),θ

∗(ε, γ)
)
< 0, as θ → θ∗(ε, γ), ∀i = 1, 2, ..., l. (S.77)

Thus Ri(ξ(θ,γ),θ) < 0, i = 1, 2, ..., l, holds for any θ in a small neighborhood of θ∗(ε, γ) with
small ε > 0 and small γ > 0. This completes the proof of Claim (c) in Theorem 3.

With the above proofs for Claims (a), (b), and (c), we have completed the proof of Theorem 3.

32

E Algorithms for Safe PDP

We have implemented Safe PDP in Python and made it as a stand-alone package with friendly
interfaces. Please download at https://github.com/wanxinjin/Safe-PDP.

E.1 Algorithm for Theorem 1

Algorithm 1: Solving ∂ξθ
∂θ by establishing auxiliary control system Σ(ξθ)

Input: ξθ, with the costates λθ1:T and multiplies vθ0:T and wθ0:T from solving Problem B(θ)

def Identify_Active_Inequality_Constraints (a small threshold δ > 0):
ḡt(xt,ut,θ) = col{gt,i | gt,i(xθt ,uθt ,θ)≥−δ, i = 1, 2, ..., qt}, t = 0, 1, ..., T−1;

ḡT (xT ,θ) = col{gT,i | gT,i(xθT ,θ)≥−δ, i = 1, 2, ..., qT };
Return: ḡt(xt,ut,θ) and ḡT (xT ,θ)

Compute the derivative matrices Lxxt , Lxut , Luut , Lxθt , Luθt , LxxT , LxθT , F xt , Fut , F θt , Hx
t ,

Hu
t , Hθ

t , Hx
T , Hθ

T , Ḡxt , Ḡut , Ḡθt , ḠxT , ḠθT to establish Σ(ξθ) in (3);

def Equality_Constrained_LQR_ Solver (Σ(ξθ)):
Implementation of the equality constrained LQR algorithm in [80];

Return: {Xθ0:T , U
θ
0:T−1}

Return: ∂ξθ
∂θ = {Xθ0:T , U

θ
0:T−1}

Note that λθ1:T , vθ0:T , andwθ0:T are normally the by-product outputs of an optimal control solver [77],
and can also be obtained by solving a linear equation of C-PMP (S.5) given ξθ , as done in [71]. Also
note that the threshold δ to determine the active inequality constraints can be set according to the
accuracy of the solver; in our experiments, we use δ = 10−3.

E.2 Algorithm for Theorem 2

Algorithm 2: Safe unconstrained approximations for ξθ and ∂ξθ
∂θ

Input: The constrained optimal control system Σ(θ) and a choice of small γ > 0

Convert Σ(θ) to an unconstrained optimal control system Σ(θ, γ) in (5) by adding all
constraints in Σ(θ) to its control cost through barrier functions with barrier parameter γ;

/* Below is an implmentation of uncsontrained PDP [71] */
def Optimal_Control_Solver (Σ(θ, γ)):

Implementation of any trajectory optimization algorithms, such as iLQR [81] and
DDP [82], or use any optimal control solver [77];

Return: ξ(θ,γ)

Use ξ(θ,γ) to compute the derivative matrices L̂xut , L̂uut , L̂xθt , L̂uθt , L̂xxT , L̂xθT , F xt , Fut ,
F θt to establish the auxiliary control system Σ(ξ(θ,γ)) in (S.78) ;

def LQR_ Solver (Σ(ξ(θ,γ))):

Implementation of any LQR algorithm such as Lemma 2 in [71];

Return:
{
X

(θ,γ)
0:T , U

(θ,γ)
0:T−1

}
=

∂ξ(θ,γ)
∂θ

Return: ξ(θ,γ) and
∂ξ(θ,γ)
∂θ

33

https://github.com/wanxinjin/Safe-PDP

Note that the auxiliary control system Σ(ξ(θ,γ)) corresponding to Σ(θ, γ) is

Σ(ξ(θ,γ)) :

control cost W̄ = Tr

T−1∑
t=0

(
1

2

[
Xt
Ut

]′ [
L̂xxt L̂xut
L̂uxt L̂uut

] [
Xt
Ut

]
+

[
L̂xθt
L̂uθt

]′ [
Xt
Ut

])

+ Tr

(
1

2
X ′T L̂

xx
T XT + (L̂xθT)′XT

)
subject to

dynamics Xt+1 = F xt Xt + Fut Ut + F θt with X0 = Xθ0 .

(S.78)

Here, L̂t, t = 0, 1, ..., T−1, and L̂T are the Hamiltonian, defined in (S.31), for the unconstrained
optimal control system Σ(θ, γ). The derivative (coefficient) matrices L̂xut , L̂uut , L̂xθt , L̂uθt , L̂xxT , L̂xθT ,
F xt , Fut , F θt in (S.78) are defined in the similar notation convention as in (3).

E.3 Algorithm for Theorem 3

Algorithm 3: Safe PDP to solve Problem P

Input: Small barrier parameter ε > 0 for outer-level and γ > 0 for inner-level, initialization θ0

/* Convert inner-level into its safe unconstrained approximation */

1 Convert the inner-level constrained control system Σ(θ) in (1) into an unconstrained
system Σ(θ, γ) in (5) by adding all constraints to its control cost through barrier
functions with the inner-level barrier parameter γ > 0;

/* Convert outer-level into its safe unconstrained approximation */

2 Convert the constrained Problem P to an unconstrained Problem SP(ε, γ) by adding all
task constraints Ri to the task loss through barrier functions with the outer-level barrier
parameter ε > 0;

/* Gradient-based update for θ */

for k = 0, 1, 2, · · · do

3 Apply Algorithm 2 to the inner-level safe unconstrained approximation system

Σ(θk, γ) to compute ξ(θk,γ) and
∂ξ(θ,γ)
∂θ |θk ;

4 For the outer-level unconstrained Problem SP(ε, γ) with objective function
W
(
θ, ε, γ

)
= `
(
ξ(θ,γ),θ

)
− ε
∑l
i=1 ln

(
−Ri

(
ξ(θ,γ),θ

))
, compute the partial

gradients ∂W
∂θ |θk and ∂W

∂ξ(θ,γ)
|ξ(θk,γ) ;

5 Apply the chain rule to obtain the gradient of the outer-level unconstrained objective

W
(
θ, ε, γ

)
with respect to θ, i.e., dWdθ |θk = ∂W

∂θ |θk + ∂W
∂ξ(θ,γ)

|ξ(θk,γ)
∂ξ(θ,γ)
∂θ |θk ;

6 Gradient-based update: θk+1 = θk − η dWdθ |θk with η being the learning rate;

end

Return: θ∗(ε, γ) for the given barrier parameters ε > 0 and γ > 0

Note that after obtaining θ∗(ε, γ) from Algorithm 3, one can sequentially refine θ∗(ε, γ) by choosing
a sequence of {(ε, γ)} such that (ε, γ)→ (0, 0).

Also note that in the case where the original inner-level control system Σ(θ) is already unconstrained,
such as in the applications of safe policy optimization and safe motion planning in Section 7, please
modify lines 1 and 3 in Algorithm 3 and just compute exact ξθk and ∂ξθ

∂θ |θk by following PDP [71].

34

F Experiment Details

The proposed Safe PDP has been evaluated in different simulated systems in Table 1, where each
system has the immediate constraints g(θcstr) on both its state and input during the entire time horizon
(around T = 50). For the detailed description and physical models of each system in Table 1, we refer
the reader to [71] and its accompanying codes. We have developed the Python code of Safe PDP as a
stand-alone package, which can be accessed at https://github.com/wanxinjin/Safe-PDP.

F.1 Safe Policy Optimization

In this experiment, we apply Safe PDP to perform safe policy optimization for the systems in Table 1.
In Problem P, we set the details of Σ(θ) as (8), where the dynamics f is learned from demonstrations
in Section F.3, and the policy ut = π(xt,θ) is represented using a neural network (NN) with θ the
NN parameter. In our experiment, we have used a fully-connected feedforward NN to represent the
policy; the number of nodes in the NN is n−n−m (meaning that the input layer has n nodes, hidden
layer n nodes, and output layer m nodes, with n and m the dimensions of the system state and input,
respectively); and the activation function of the NN is tanh. In Problem P, set the task loss `(ξθ,θ)
as the control cost J(θobj), and set the task constraints Ri(ξθ,θ) as the system constraints g(θcstr),
both in Table 1, with both θobj and θcstr known.

Note that since the parameterized Σ(θ) in (8) does not include the control cost J anymore, solving
Problem B(θ) for ξθ becomes a simple integration of (8) from t = 0 to T−1, and the auxiliary
control system Σ(ξθ) in (3) to compute ∂ξθ

∂θ is simplified to a feedback control system [71] below:

Σ(ξθ) :
dynamics: Xθt+1 = F xt X

θ
t + Fut U

θ
t with X0 = 0,

control policy: Uθt = Uxt X
θ
t + Uet .

(S.79)

Here, Uxt = ∂πt
∂xθ

t
and Uet =∂πt

∂θ . Integrating (S.79) from t = 0 to T−1 leads to {Xθ0:T , U
θ
0:T−1}=

∂ξθ
∂θ .

In our experiments, in order to make sure the initial NN policy is feasible (safe), we initialize the NN
policy using supervised learning from a random demonstration trajectory (note that this demonstration
trajectory does not have to be optimal but only to be feasible/safe). For each system in Table 1,
we apply Safe PDP Algorithm 3 to optimize the NN policy, and the complete experiment results
are shown in Fig. S1-S3. More discussions about how to give a safe initialization are presented in
Appendix G.5

For each system, at a fixed barrier parameter ε, we have applied the vanilla gradient descent to solve
Problem SP(ε) with the step size (learning rate η in Algorithm 3) set around 10−3. We plot the task
loss (i.e., control cost) `(ξθ,θ) versus iteration of the gradient descent in the first panel in Fig. S1-S3,
where we only show the results for outer-level barrier parameter ε taking from 100 to 10−4 because
the NN policy has already achieved a good convergence when ε ≤ 10−2. As shown in the first panel
in Fig. S1-S3, for each system, the policy achieves a good convergence after a small number of
iterations for each ε, and obtains a good convergence after ε ≤ 10−2.

= 10 1

= 10 2

= 10 3

= 10 4

0 1000 2000 3000
Iteration

125

150

175

200

225

Lo
ss

 (c
on

tro
l c

os
t)

0 5 10 15 20
Time t

6
4
2
0
2
4
6

Ge
ne

ra
te

d
u t

Safe PDP, = 10 4

Iter #0 Iter #3000

0 5 10 15 20
Time t

umax

umin

Unconstrained
Iter #0 Iter #3000

Figure S1: Safe neural policy optimization for cartpole. The first panel plots the loss (control cost)
versus gradient-descent iteration under different outer-level barrier parameter ε; the second panel plots
all intermediate control trajectories generated by the NN policy during the entire gradient-descent
iteration (ε = 10−4); and the third panel plots all intermediate control trajectories generated by the
NN policy for the unconstrained policy optimization under the same experimental conditions. The
system constraints are also marked using black dashed lines in the second and third panels.

35

https://github.com/wanxinjin/Safe-PDP

= 10 1

= 10 2

= 10 3

= 10 4

0 500 1000 1500
Iteration

14.5

15.0

15.5

16.0

16.5

Lo
ss

 (c
on

tro
l c

os
t) Iter. #0

Iter. #1500
ut, 1
ut, 2

0 5 10 15 20 25
Time t

2

1

0

1

2

3

Ge
ne

ra
te

d
u t

Safe PDP, = 10 4

Iter. #0
Iter. #1500

0 5 10 15 20 25
Time t

umax

umin

Unconstrained

Figure S2: Safe neural policy optimization for robot arm. The first panel plots the loss (control cost)
versus gradient-descent iteration under different outer-level barrier parameter ε; the second panel plots
all intermediate control trajectories generated by the NN policy during the entire gradient-descent
iteration (ε = 10−4); and the third panel plots all intermediate control trajectories generated by the
NN policy for the unconstrained policy optimization under the same experimental conditions. The
system constraints are also marked using black dashed lines in the second and third panels.

= 1
= 10 1

= 10 2

0 500 1000 1500 2000
Iteration

2000

2500

3000

3500

4000

Lo
ss

 (c
on

tro
l c

os
t) Iter. #0

Iter. #2000

0 5 10 15 20 25
Time t

0

5

10

15

20
Ge

ne
ra

te
d

||u
t||

Safe PDP, = 10 2

Iter. #0
Iter. #2000

0 5 10 15 20 25
Time t

umax

Unconstrained

Figure S3: Safe neural policy optimization for 6-DoF maneuvering quadrotor. The first panel plots
the loss (control cost) versus gradient-descent iteration under different outer-level barrier parameter
ε; the second panel plots all intermediate control trajectories generated by the NN policy during
the entire gradient-descent iteration (ε = 10−2); and the third panel plots all intermediate control
trajectories generated by the NN policy for the unconstrained policy optimization under the same
experimental conditions. The system constraints are also marked using black dashed lines in the
second and third panels.

In order to show the constraint satisfaction of Safe PDP throughout the entire policy optimization
process, in the second panel in Fig. S1-S3, respectively, we plot all intermediate control trajectories
generated from the NN policy throughout the entire gradient-descent iteration of Safe PDP, as shown
from the light to dark blue. From the second panel in Fig. S1-S3, we note that throughout the
optimization process, the NN policy is guaranteed safe, meaning that the generated trajectory will
never violate the constraints. Under the same experimental conditions (NN configuration, policy
initialization, learning rate), we also compare with the unconstrained policy optimization and plot its
results in the third panel in Fig. S1-S3, respectively. By comparing the results between Safe PDP
and unconstrained policy optimization, we can confirm that Safe PDP enables to achieve an optimal
policy while guaranteeing that any intermediate policy throughout optimization is safe, as asserted in
Theorem 3.

We have provided the video demonstrations for the above safe policy optimization using Safe
PDP; please visit https://youtu.be/sC81qc2ip8U. The codes for all experiments here can be
downloaded at https://github.com/wanxinjin/Safe-PDP.

F.2 Safe Motion Planning

In this experiment, we apply Safe PDP to solve the safe motion planning problem for the systems in
Table 1. In Problem P, we set the details of Σ(θ) as follows,

Σ(θ) :
dynamics: xt+1 = f(xt,ut) with x0,

control input: ut = u(t,θ),
(S.80)

where the dynamics f is learned from demonstrations in Section F.3, and we parameterize the control

36

https://youtu.be/sC81qc2ip8U
https://github.com/wanxinjin/Safe-PDP

input function ut = u(t,θ) using the Lagrangian polynomial [83] as follows,

u(t,θ) =

N∑
i=0

uibi(t) with bi(t) =
∏

0≤j≤N,j 6=i

t− tj
ti − tj

. (S.81)

Here, bi(t) is called Lagrange basis, and the policy parameter θ is defined as

θ = [u0, · · · ,uN]′ ∈ Rm(N+1), (S.82)

which is the vector of the pivots of the Lagrange polynomial. The benefit of the above parameterization
is that the trajectory of system states, which results from integrating (S.80) given the input polynomial
trajectory ut = u(t,θ), is inherently smooth and dynamics-feasible. In our experiments, the degree
N of the Lagrange polynomial is set as N = 10. Also in Problem P, we set the task/planning loss
`(ξθ,θ) as the control cost J(θobj), and set the task constraints Ri(ξθ,θ) as the system constraints
g(θcstr), both given in Table 1 with θobj and θcstr known.

Since the system Σ(θ) in (S.80) now does not include the control cost J anymore, solving Problem
B(θ) for ξθ becomes a simple integration of (S.80) from t = 0 to T−1, and the auxiliary control
system Σ(ξθ) in (3) to compute ∂ξθ

∂θ is simplified to a feedback control system [71] below:

Σ(ξθ) :
dynamics: Xθt+1 = F xt X

θ
t + Fut U

θ
t with X0 = 0,

control input: Uθt = Uet ,
(S.83)

where Uet = ∂πt
∂θ . Integrating (S.83) from t = 0 to T − 1 leads to {Xθ0:T , U

θ
0:T−1} = ∂ξθ

∂θ .

For each system in Table 1, we apply Safe PDP Algorithm 3 to perform safe motion planning, and
the complete experiment results are shown in Fig. S4-S6. For each system, at a fixed outer-level
barrier parameter ε, we have applied the vanilla gradient descent to solve Problem SP(ε) with the step
size (learning rate η in Algorithm 3) set to 10−2 or 10−1. We plot the planning loss `(ξθ,θ) versus
gradient descent iteration in Fig. S4a-S6a, respectively; here we only show the results for ε taking
from 100 to 10−2 because the trajectory has already achieved a good convergence when ε ≤ 10−2.
As shown in Fig. S4a-S6a, for each system, the trajectory achieves a good convergence after a small
number of iterations given a fixed ε, and obtains a good convergence after ε ≤ 10−2.

To demonstrate that Safe PDP can guarantee safety throughout the optimization process, we plot all
intermediate trajectories during the entire iteration of Safe PDP in S4b-S6b. At the same time, we
also show the results of the ALTRO method [21], which is a state-of-the-art method for constrained
trajectory optimization. By comparing the results in Fig. S4b-S6b, we can observe that Safe PDP
enables to find the optimal trajectory while guaranteeing strict constraint satisfaction throughout the
entire optimization process; while for ALTRO, although the trajectory satisfies the constraints at
convergence, the intermediate trajectories during optimization may violate the constraints, making it
not suitable to handle safety-critical motion planning tasks.

= 1
= 10 1

= 10 2

0 1000 2000 3000
Iteration

160

180

200

220

240

260

Lo
ss

 (p
la

nn
in

g
lo

ss
)

(a) Loss versus iteration

Iter. #0 Iter. #3000

5
0
5

Co
nt

ro
l

Safe PDP, = 10 2

Iter. #0 Iter. #3000

ALTRO

Iter. #0 Iter. #3000

0 5 10 15 20 25
Time t

2

0

2

Ca
rt

po
s. Iter. #0 Iter. #3000

0 5 10 15 20 25
Time t

umax

umin

xmax

xmin

(b) Constraint violation during optimization

Figure S4: Safe motion planning for cartpole. (a) plots the loss (i.e., planning loss) versus gradient-
descent iteration under different outer-level barrier parameter ε. The left figure in (b) shows all
intermediate trajectories during the entire iteration of Safe PDP (ε = 10−2), and the right figure in
(b) shows all intermediate trajectories during the entire iteration of the ALTRO algorithm [21]. The
state and control constraints are also marked in (b).

37

= 10 1

= 10 2

= 10 3

0 200 400 600 800 1000
Iteration

15

20

25

30

35

40

Lo
ss

 (p
la

nn
in

g
lo

ss
)

(a) Loss versus iteration

Iter. #0 Iter. #1000

0

2

Co
nt

ro
l u

t,
1

Safe PDP, = 10 3

Iter. #0 Iter. #1000

ALTRO

Iter. #0 Iter. #1000

0 5 10 15 20 25
Time t

0

2

Co
nt

ro
l u

t,
2

Iter. #0 Iter. #1000

0 5 10 15 20 25
Time t

Umax

Umin

Umax

Umin

(b) Constraint violation during optimization

Figure S5: Safe motion planning for robot arm. (a) plots the loss (i.e., planning loss) versus gradient-
descent iteration under different outer-level barrier parameter ε. The left figure in (b) shows all
intermediate trajectories during the entire iteration of Safe PDP (ε = 10−3), and the right figure in
(b) shows all intermediate trajectories during the entire iteration of the ALTRO algorithm [21]. The
control constraints are also marked in (b).

= 1
= 10 1

= 10 2

0 500 1000 1500
Iteration

1

2

3

4

Lo
ss

 (p
la

nn
in

g
lo

ss
)

×105

(a) Loss versus iteration

Iter. #0 Iter. #1500

0
10
20
30

Th
ru

st
 ||

u|
| 2

Safe PDP, = 10 2

Iter. #0 Iter. #1500

ALTRO

Iter. #0 Iter. #1500

0 10 20 30 40
Time t

0.0

0.2

0.4

Ti
lt

an
gl

e Iter. #0 Iter. #1500

0 10 20 30 40
Time t

||u||max

tiltmax

(b) Constraint violation during optimization

Figure S6: Safe motion planning for 6-DoF rocket powered landing. (a) plots the loss (i.e., planning
loss) versus gradient-descent iteration under different outer-level barrier parameter ε. The left figure
in (b) shows all intermediate trajectories during the entire iteration of Safe PDP (ε = 10−2), and
the right figure in (b) shows all intermediate trajectories during the entire iteration of the ALTRO
algorithm [21]. The state and control constraints are also marked in (b).

We have provided the videos for the above safe motion planning using Safe PDP. Please visit the
link https://youtu.be/vZVxgo30mDs. The codes for all experiments here can be downloaded at
https://github.com/wanxinjin/Safe-PDP.

F.3 Learning MPCs from Demonstrations

In this experiment, we apply Safe PDP to learn dynamics f , constraints g, or/and control cost J for
the systems in Table 1 from demonstration data. This type of problems has been extensively studied
in system identification [88] (neural ODEs [89]), inverse optimal control (inverse reinforcement
learning) [90–92], and learning from demonstrations [85, 93]. However, existing methods have the
following two technical gaps; first, existing methods are typically developed without considering
constraints; second, there are rarely the methods that are capable to jointly learn dynamics, state-input
constraints, and control cost for continuous control systems. In this part, we will show that the above
technical gaps can be addressed by Safe PDP. Throughout this part, we define the task loss in Problem
P as the reproducing loss as below

`(ξθ,θ) = ‖ξdemo − ξθ‖22, (S.84)

which is to penalize the distance between the reproduced trajectory ξθ from the learnable model
Σ(θ) and the given demonstrations ξdemo, and there is no task constraint. For Σ(θ) in Problem P,
only the unknown parts (dynamics, control cost, or/and constraints) are parameterized by θ. Thus, by
solving Problem P, we are able to learn Σ(θ) such that its trajectory ξθ has closest distance to the
given demonstrations ξdemo.

In our experiment, when dealing with ξθ and ∂ξθ
∂θ for Σ(θ), we use the following three strategies.

38

https://youtu.be/vZVxgo30mDs
https://github.com/wanxinjin/Safe-PDP

• Strategy (A): use an optimal control solver [77] to solve the constrained optimal control
Σ(θ) in Problem B(θ) to obtain ξθ, and use Theorem 1 (i.e., Algorithm 1) to obtain the
trajectory derivative ∂ξθ

∂θ by solving Σ(ξθ) in (3).

• Strategy (B): by applying Theorem 2 (i.e., Algorithm 2), approximate ξθ and ∂ξθ
∂θ using

ξ(θ,γ) and
∂ξ(θ,γ)
∂θ , respectively, with a choice of small barrier parameter γ > 0.

• Strategy (C): obtain ξθ by solving Σ(θ) in Problem B(θ) via a solver [77], and apply
Theorem 2 (i.e., Algorithm 2) only to approximate ∂ξθ

∂θ using
∂ξ(θ,γ)
∂θ .

In the following experiments, when using Algorithm 2, we choose γ = 10−2 because the corre-
sponding inner-level approximations ξ(θ,γ) and

∂ξ(θ,γ)
∂θ already achieve a good accuracy, as shown

in previous experiments. In practice, the choice of γ > 0 is very flexible depending on the desired
accuracy (a smaller γ never hurts but would decrease the computational efficiency, as discussed in
Appendix G.3).

F.3.1 Learning Constrained ODEs from Demonstrations

In the first experiment, consider that in Σ(θ) the control cost J is known while the dynamics
(Ordinary Difference Equation) f(θdyn) and constraints gt(θcstr) are unknown and parameterized, as
in Table 1, θ={θdyn,θcstr}. We aim to learn θ from given demonstrations ξdemo by solving Problem P.
Here, the demonstrations are generated by simulating the true system (i.e., expert) with θ known; the
demonstrations for each system contain two episode trajectories with time horizon around T = 50.

To solve Problem P, since there are no task constraints, we use the vanilla gradient descent to
minimize the reproducing loss (S.84) while using the three strategies as mentioned above to handle
the lower-level Problem B(θ). The initial condition for the gradient descent is given randomly, and
the learning rate for the gradient descent is set as 10−5. The complete results for all systems in Table
1 are given in Fig. S7.

Thm 1
Thm 2 for and
Thm 2 only for

0 20 40 60
Iteration

0

100

200

300

400

500

Re
pr

od
uc

in
g

lo
ss

(a) Cartpole

Thm 1
Thm 2 for and
Thm 2 only for

0 20 40 60
Iteration

0.0

2.5

5.0

7.5

10.0

12.5

Re
pr

od
uc

in
g

lo
ss

(b) Robot arm

Thm 1
Thm 2 for and
Thm 2 only for

0 20 40 60
Iteration

0

20

40

60

80

Re
pr

od
uc

in
g

lo
ss

(c) Quadrotor

Thm 1
Thm 2 for and
Thm 2 only for

0 20 40 60
Iteration

0

100

200

300

400

500
Re

pr
od

uc
in

g
lo

ss

(d) Rocket

Figure S7: Learning both dynamics and constraints from demonstrations.

Fig. S7a-S7d plot the reproducing loss (S.84) versus gradient-descent iteration. The results show
that for Strategies (B) and (C) (in blue and red, respectively), the reproducing loss (S.84) is quickly
covering to zeros, indicating that the dynamics and constraints are successfully learned to reproduce
the demonstrations. However, we also note that Strategy (A) (in green) suffers from some numerical
instability, and this will be discussed later.

F.3.2 Jointly Learning Dynamics, Constraints, and Control Cost from Demonstrations

In the second experiment, suppose in all systems in Table 1, the control cost J(θcost), dynamics
f(θdyn), and state and input constraints gt(θcstr) are all unknown and parameterized as in Table 1.
We aim to jointly learn θ = {θcost,θdyn,θcstr} from given demonstrations ξdemo by solving Problem
P. Here, the demonstrations are generated by simulating the system (i.e., expert) with θ known, the
demonstrations for each system contain two episode trajectories for each system with time horizon
around T = 50.

To solve Problem P, since there is no task constraints, we use the vanilla gradient descent to minimize
the reproducing loss (S.84) while using the three strategies as mentioned above to handle the lower-
level Problem B(θ). The initial condition for the gradient descent is given randomly, and the learning

39

rate for the gradient-descent is set as 10−5. The complete results for all systems in Table 1 are given
in Fig. S8 (also see Fig. 4a-4d in the primary text of the paper).

Thm 1
Thm 2 for and
Thm 2 only for

0 20 40 60
Iteration

10 1

100

101

102

Re
pr

od
uc

in
g

lo
ss

(a) Cartpole (log-y)

Thm 1
Thm 2 for and
Thm 2 only for

0 20 40 60
Iteration

0

10

20

30

40

50

60

Re
pr

od
uc

in
g

lo
ss

(b) Robot arm

Thm 1
Thm 2 for and
Thm 2 only for

0 50 100
Iteration

10 1

100

101

102

Re
pr

od
uc

in
g

lo
ss

(c) Quadrotor (log-y)

Thm 1
Thm 2 for and
Thm 2 only for

0 30 60
Iteration

0

100

200

300

400

Re
pr

od
uc

in
g

lo
ss

(d) Rocket

Figure S8: Jointly learning dynamics, constraints, and control cost from demonstrations.

Fig. S8a - Fig. S8d plot the reproducing loss (S.84) versus gradient-descent iteration. The results
show that for Strategies (B) and (C) (in blue and red, respectively), the reproducing loss (S.84) is
quickly covering to zeros, indicating that the dynamics, constraints, and control cost function are
successfully learned to reproduce the demonstrations. However, we also note that Strategy (A) (in
green) suffers from some numerical instability, which will be discussed below.

We have provided some videos for the above learning MPCs from demonstrations using Safe PDP.
Please visit the link https://youtu.be/OBiLYYlWi98. The codes for all experiments here can be
downloaded at https://github.com/wanxinjin/Safe-PDP. 1

Why implementation of Theorem 1 is not numerically stable? In both Fig. S7 and S8, we
have noted that Strategy (A) suffers from some numerical instability, and this is due to the following
reasons. First, Theorem 1 requires to accurately detect the inactive/active inequalities (i.e., whether
an inequality constraint is zero or not), which is always difficult accurately due to computational error
(in our experiments, we detect the active constraints by applying a brutal threshold, as described in
Algorithm 1). Second, although the differentiability of ξθ holds at the local neighborhood of θ, ξθ
might be extremely discontinuous due to the ‘jumping switch’ of the active and inactive inequality
constraints for the large range of θ; thus, such non-smoothness will deteriorate the decrease of loss
between iterations.

Why implementation of Theorem 2 is more numerically stable? Theorem 2 has perfectly
addressed the above numerical issues of Theorem 1. Specifically, first, there is no need to distinguish
the active and inactive inequality constraints in Theorem 2; and second, in Theorem 2, by adding
all constraints to the control cost function, it introduces the ‘softness’ of the hard constraints and
potentially eliminates the discontinuous ‘jumping switch’ between inactive and active inequalities
over a large range of θ, enabling a stable decrease of loss when applying gradient descent.

1All experiments in this paper have been performed on a personal computer with 3.5 GHz Dual-Core Intel
Core i7 and macOS Big Sur system.

40

https://youtu.be/OBiLYYlWi98
https://github.com/wanxinjin/Safe-PDP

G Further Discussion

In this section, we will provide further experiments and discussion on the performance of Safe PDP.

G.1 Comparison Between Safe PDP and PDP

In this part, we compare Safe PDP and non-safe PDP [71] to show the performance trade-offs between
the constraint enforcement of Safe PDP and its resulting computational expense. We use the example
of learning MPCs from expert demonstrations for the cartpole system (in Table 1) to show this, and
the experiment settings are the same with Appendix F.3. The comparison results between Safe PDP
and PDP are given in the following Table S1.

Table S1: Performance comparison between Safe PDP and PDP

Methods Loss at convergence Timing for
Forward Pass

Timing for
Backward Pass

Learning
constraints?

Constraint
Guaranteed?

PDP 524.02 0.10s 0.046s No No
Safe PDP 7.42 0.21s 0.042s Yes Yes

Based on the results in Table S1, we have the following comments and analysis.

(1) We note that Safe PDP achieves lower training loss. This is because compared to PDP, Safe PDP
has introduced the inductive bias of constraints within its model architecture, making it more suited
to learn from demonstrations which are the results of a constrained control system (expert). In this
sense, Safe PDP architecture (with an inductive bias of constraints) can be thought of as having more
expressive power than PDP architecture for the above experiments.

(2) For Safe PDP, its ability to learn and guarantee constraints comes at the cost of lower computational
efficiency in the forward pass, as shown in the second column in Table S1. Even though Safe PDP
handles constraint enforcement by adding them to the control cost using barrier functions, solving
the resulting unconstrained approximation still needs more time than solving the unconstrained PDP.
This could be because the added log barrier terms can increase the complex/stiff curvature of the
cost/loss landscape, thus taking longer to find the minimizer. Further discussion about how barrier
parameter influences the computational efficiency of the forward pass will be given in Appendix G.3.

(3) The running time for the backward pass is almost the same for both PDP and Safe PDP because
both methods are solving an unconstrained LQR problem (auxiliary control system) of the same size
(see Theorem 2), which can be very efficient based on Riccati equation.

G.2 Strategies to Accelerate Forward Pass of Safe PDP

In the previous experiments in Appendix F, we have used an NLP solver to solve the trajectory
optimization (optimal control) in the forward pass. Since the solver blindly treats an optimal control
problem as a general non-linear program without leveraging the (sparse) structures in an optimal
control problem. Thus, solving the long-horizon trajectory optimization is not very efficient. To
accelerate long-horizon trajectory optimization, one can use plenty of strategies, as described below.

• To solve a long-horizon optimal control problem, one effective method is to scale a (continu-
ous) long time horizon into a smaller one (like a unit) by applying a time-warping function to
the system dynamics and control cost [85]. After discretizing and solving this short-horizon
optimal control problem, re-scale the obtained optimal trajectory back. This time-scaling
strategy is common in many commercial optimal control solvers, such as GPOPS [94].

• There are also the ‘warm-up’ tricks to accelerate the trajectory optimization in the forward
pass of Safe PDP. For example, one can initialize the trajectory at the next iteration using
the result of the previous iteration.

• One also can use a coarse-to-fine hierarchical strategy to solve long-horizon trajectory
optimization. For example, given a long-time horizon optimal control system, first, discretize
the trajectory with larger granularity and solve for a coarse-resolution optimal trajectory;

41

then use the coarse trajectory as initial conditions to solve the trajectory optimization with
fine granular discretization.

As an additional experiment based on cartpole system (in Table 1), we tested and compared the above
three strategies for accelerating the forward pass of Safe PDP. The timing for each strategy is given
in the following Table S2. Here, tf is the continuous-time horizon of the cartpole system, ∆ is the
discretization interval, and the discrete-time horizon is T = tf/∆.

Table S2: Running time for different strategies in accelerating the forward pass of Safe PDP

Strategies tf = 2s, ∆ = 0.1s,
T = tf/∆ = 20

tf = 6s, ∆ = 0.1s,
T = tf/∆ = 60

tf = 10s, ∆ = 0.1s,
T = tf/∆ = 100

tf = 20s, ∆ = 0.1s,
T = tf/∆ = 200

Plain NPL solver 0.082s 0.202s 0.491s 1.743s
Time scaling 0.014s 0.033s 0.055s 0.083s
Warm start 0.055s 0.095s 0.108s 0.224s

Hierarchical 0.021s 0.055s 0.074s 0.133s

From the results in Table S2, one can see that time-scaling is the most effective way among others
to accelerate long-horizon trajectory optimization. Of course, one can combine some of the above
strategies to further improve the running performance of the forward pass of Safe PDP.

Additionally, one can also use iLQR [81] and DDP [82] to solve optimal control problems. iLQR can
be viewed as the one-and-half-order method—linearizing dynamics and quadratizing cost function.
DDP is a second-order method — quadractizing both dynamics and cost function. Both methods
solve a local bellman equation to generate the update of the control sequence. But without coding
optimization, both methods are slower than the commercial NPL solver (e.g., CasADi [77]). Some
ongoing works are trying to take advantage of GPUs for accelerating trajectory optimization, which
is also our future research.

G.3 Trade-off Between Accuracy and Efficiency using Barrier Penalties

In the paper, we have provided both theoretical guarantees (see Theorem 2 and Theorem 3) and
empirical experiments (see Fig. 1, Fig. 2a and 2c, Fig. 3a and 3c, and Fig. 4) for the relationship
between the accuracy of a solution to an unconstrained approximation and the choice of the barrier
parameter. This subsection further investigates the trade-off between accuracy and computational
efficiency under different choices of the barrier parameter.

In the experiment below (based on the cartpole system in Table 1), by choosing different barrier
parameters γ in the forward pass of Safe PDP, we show the accuracy of the trajectory ξ(γ) solved
from an unconstrained approximation system Σ(γ) and the corresponding computation time. The
results are presented in Table S3.

Table S3: Accuracy of the trajectory ξ(γ) from the unconstrained approximation system Σ(γ) and
its computation time with different choices of barrier parameter γ

choice of γ

1 10−1 10−2 10−3 10−4 10−5

Accuracy of ξ(γ) in percentage:
‖ξ(γ)−ξ∗‖2
‖ξ∗‖2

× 100% 1 51.9% 12.2% 1.6% 0.18% 0.018% 0.0002%

Timing for computing ξ(γ) 0.023s 0.033s 0.035s 0.040s 0.038s 0.047s
1 Note that in the above table, ξ∗ is the ground-truth solution obtained from solving the original constrained

trajectory optimization, and the computation time for such a constrained trajectory optimization is 0.062s.

We have the following comments on the above results in Table S3.

• First, the results in the first row of Table S3 show that a smaller barrier parameter leads to
higher accuracy of the approximation solution. This again confirms the theoretical guarantee

42

in Theorem 2 (Claim (b)). The results here are also consistent with the ones in Fig. 1 in the
paper.

• Second, the second row of Table S3 shows that a smaller barrier parameter, however,
increases the computation time for solving the unconstrained approximation optimization.
This could be because using a small barrier parameter, the added barrier terms can increase
the complex/stiff curvature of the cost/loss landscape, thus taking Safe PDP longer to find
the minimizer. Despite this, the time needed for finding a minimizer is still lower than
directly solving a constrained trajectory optimization in the above experiment.

• Third, if one still wants to further increase the computation efficiency of Safe PDP, we have
provided some strategies to achieve so, including "time scaling," "warm start," and "coarse-
to-fine." Please check the Appendix G.2 for more detailed descriptions and corresponding
experiment results.

In summary, we have shown that higher accuracy of the unconstrained approximation solution can
be achieved using a smaller barrier parameter, while a smaller barrier parameter would increase the
computation time for finding the approximation solution. In practice, one would likely choose an
appropriate barrier parameter to balance the trade-off between accuracy and computational efficiency.
Also, there are multiple strategies available to increase the computational efficiency of Safe PDP, as
discussed in the Appendix G.2.

G.4 Learning MPCs from Non-Optimal Demonstrations

In the application of learning MPCs (including objective, dynamics, constraints), given non-optimal
demonstrations, Safe PDP can still learn an MPC such that the trajectory reproduced by the learned
MPC has the closest discrepancy to the given non-optimal demonstrations (e.g., when the task loss is
defined as l2 norm between the reproduced trajectory and demonstrations). As an illustrative example,
the following Table S4 shows learning an MPC from a sub-optimal demonstration for the cartpole
system.

Table S4: Safe PDP for learning MPCs from non-optimal demonstrations
Number of iterations

0 10 20 50 100 150 200 1000

loss with optimal demo 779.986 2.206 1.481 0.832 0.641 0.620 0.611 0.232

loss with non-optimal demo 1126.820 18.975 17.771 15.602 13.690 12.469 11.620 10.923

As shown in S4, the only difference between learning from optimal and non-optimal demonstrations
is that the converged loss for the non-optimal demonstrations is relatively higher than for the optimal
ones. This is because, for non-optimal demonstrations, there might not necessarily exist an exact MPC
model in the parameterized model space which perfectly corresponds to the given demonstration.
In such a case, however, Safe PDP can still find the best model in the parametrized model space
such that its reproduced trajectory has a minimal distance to the given non-optimal demonstrations.
For the extended research of the generalization ability of the learned MPCs from the non-optimal
demonstrations, please refer to [85].

G.5 Limitation of Safe PDP

Safe PDP requires a safe (feasible) initialization such that the log-barrier-based objectives (cost or
task) are well-defined. While this requirement can be restrictive in some cases, we have the following
empirical experiences on how to provide safe initialization for different types of problems.

• In safe policy optimization, one could first use supervised learning to learn a safe policy
from some safe trajectories/demonstrations (which could not necessarily be optimal). Then,
use the learned safe policy to initialize Safe PDP. We have used this strategy in our previous
experiments in Appendix F.1.

• In safe motion planning, one could arbitrarily provide a safe trajectory (not necessarily
optimal) to initialize Safe PDP. We have used this strategy in the previous experiments in
Appendix F.2.

43

• In learning MPCs from demonstrations (Appendix F.3), the goal includes learning constraint
models, and there is no such requirement.

Also, Safe PDP cannot apply to robust learning and control tasks. The goal of robust learning and
control concerns achieving or maintaining good performance (such as stability or optimality) in the
case of the worst disturbance or attacks to a system. Methods for handling those types of problems,
such as robust control and differential game, have been well-developed in both control and machine
learning communities. On the other hand, Safe PDP only focuses on guaranteeing the satisfaction of
inequality constraints throughout a learning or control process, and such constraints are defined on
the system states and inputs.

44

	Second-order Sufficient Condition
	Proof of Theorem 1
	Differential Constrained Pontryagin Maximum/Minimum Principle
	Proof of Theorem 1

	Proof of Theorem 2
	Proof of Claim (a)
	Proof of Claim (b)
	Proof of Claim (c)

	Proof of Theorem 3
	Proof of Claim (a)
	Proof of Claim (b)
	Proof of Claim (c)

	Algorithms for Safe PDP
	Algorithm for Theorem 1
	Algorithm for Theorem 2
	Algorithm for Theorem 3

	Experiment Details
	Safe Policy Optimization
	Safe Motion Planning
	Learning MPCs from Demonstrations
	Learning Constrained ODEs from Demonstrations
	Jointly Learning Dynamics, Constraints, and Control Cost from Demonstrations

	Further Discussion
	Comparison Between Safe PDP and PDP
	Strategies to Accelerate Forward Pass of Safe PDP
	Trade-off Between Accuracy and Efficiency using Barrier Penalties
	Learning MPCs from Non-Optimal Demonstrations
	Limitation of Safe PDP

