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ABSTRACT

Text-to-image generative models have garnered immense attention for their ability
to produce high-fidelity images from text prompts. Among these, Stable Diffusion
distinguishes itself as a leading open-source model in this fast-growing field.
However, the intricacies of fine-tuning these models pose multiple challenges from
new methodology integration to systematic evaluation. Addressing these issues,
this paper introduces LyCORIS (Lora beYond Conventional methods, Other Rank
adaptation Implementations for Stable diffusion), an open-source library that offers
a wide selection of fine-tuning methodologies for Stable Diffusion. Furthermore,
we present a thorough framework for the systematic assessment of varied fine-
tuning techniques. This framework employs a diverse suite of metrics and delves
into multiple facets of fine-tuning, including hyperparameter adjustments and the
evaluation with different prompt types across various concept categories. Through
this comprehensive approach, our work provides essential insights into the nuanced
effects of fine-tuning parameters, bridging the gap between state-of-the-art research
and practical application.

1 Introduction

The recent advancements in deep generative models along with the availability of vast data on the
internet have ushered in a new era of text-to-image synthesis (Balaji et al., 2022; Ramesh et al., 2022;
Saharia et al., 2022). These models allow users to transform text prompts into high-quality, visually
appealing images, revolutionizing the way we conceive of and interact with digital media (Ko et al.,
2023; Zhang et al., 2023). Moreover, the models’ wide accessibility and user-friendly interfaces
extend their influence beyond the research community to laypeople who aspire to create their own
artworks. Among these, Stable Diffusion (Rombach et al., 2022) emerges as one of the pioneering
open-source models offering such capabilities. Its open-source nature has served as a catalyst for
a multitude of advances, attracting both researchers and casual users alike. Extensions such as
cross-attention control (Liu et al., 2022) and ControlNet (Zhang et al., 2023) have further enriched
the landscape, broadening the model’s appeal and utility.

While these models offer an extensive repertoire of image generation, they often fall short in capturing
highly personalized or novel concepts, leading to a burgeoning interest in model customization
techniques. Initiatives like DreamBooth (Ruiz et al., 2023) and Textual Inversion (Gal et al., 2023)
have spearheaded efforts in this domain, allowing users to imbue pretrained models like Stable
Diffusion with new concepts through a small set of representative images (see Appendix A for
detailed related work). Coupled with user-friendly trainers designed to customize Stable Diffusion,
the ecosystem now boasts a plethora of specialized models and dedicated platforms that host them—
often witnessing the upload of thousands of new models to a single website in just one week.

*Equal contribution.
†Corresponding author. Work done during the author’s Ph.D. at Université Grenoble Alpes.
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In spite of this burgeoning landscape, our understanding of the intricacies involved in fine-tuning
these models remains limited. The complexity of the task—from variations in datasets, image
types, and captioning strategies, to the abundance of available methods each with their own sets
of hyperparameters—renders it a challenging terrain to navigate. While new methods proposed by
researchers offer much potential, they are not always seamlessly integrated into the existing ecosystem,
which can hinder comprehensive testing and wider adoption. Moreover, current evaluation paradigms
lack a systematic approach that covers the full depth and breadth of what fine-tuning entails. To
address these gaps and bridge the divide between research innovations and casual usage, we present
our contributions as follows.

1. We develop LyCORIS, an open source library dedicated to fine-tuning of Stable Diffusion. This
library encapsulates a spectrum of methodologies ranging from the most standard LoRA to
a number of emerging strategies such as LoHa, LoKr, GLoRA, and (IA)3 that are newer and
lesser-explored in the context of text-to-image models.

2. To enable rigorous comparisons between methods, we propose a comprehensive evaluation
framework that incorporates a wide range of metrics, capturing key aspects such as concept
fidelity, text-image alignment, image diversity, and preservation of the base model’s style.

3. Through extensive experiments, we compare the performances of different fine-tuning algorithms
implemented in LyCORIS and assess the impacts of various hyperparameters, offering insights
into how these factors influence the results.

2 Preliminary

In this section, we briefly review the two core components of our study: Stable Diffusion and
LoRA for model customization.

2.1 STABLE DIFFUSION

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) are a family of probabilistic generative
models that are trained to capture a data distribution through a sequence of denoising operations.
Given an initial noise map xT ∼ N (0, I), the models iteratively refine it by reversing the diffusion
process until it is synthesized into a desired image x0. These models can be conditioned on elements
such as text prompts, class labels, or low-resolution images, allowing conditioned generation.

Specifically, our work is based on Stable Diffusion, a text-to-image latent diffusion model (Rombach
et al., 2022) pretrained on the LAION 5-billion image dataset (Schuhmann et al., 2022). Latent
diffusion models reduce the cost of diffusion models by shifting the denoising operation into the
latent space of a pre-trained variational autoencoder, composed of an encoder E and a decoder D.
During training, the noise is added to the encoder’s latent output z = E(x0) for each time step
t ∈ {0, . . . , T}, resulting in a noisy latent zt. Then, the model is trained to predict the noise applied
to zt, given text conditioning c = T (l) obtained from an image description l (also known as the
image’s caption) using a text encoder T . Formally, with θ denoting the parameter of the denoising
U-Net and ϵθ(·) representing the predicted noise from this model, we aim to minimize

L(θ) = Ex0,c,ϵ,t[||ϵ− ϵθ(zt, t, c)||22], (1)

where x0, c are drawn from the dataset, ϵ ∼ N (0, I), and t is uniformly drawn from {1, ..., T}.

2.2 MODEL CUSTOMIZATION WITH LORA

To enable more personalized experiences, model customization has been proposed as a means to
adapt foundational models to specific domains or concepts. In the case of Stable Diffusion, this
frequently involves fine-tuning a pretrained model by minimizing the original loss function (1) on a
new dataset, containing as few as a single image for each target concept. In this process, we introduce
a concept descriptor [V ] for each target concept, comprising a neutral trigger word [Vtrigger] and
an optional class word [Vclass] to denote the category to which the concept belongs. This concept
descriptor is intended for use in both the image captions and text prompts. While it is possible to
include a prior-preservation loss by utilizing a set of regularization images (Kumari et al., 2023; Ruiz
et al., 2023), we have chosen not to employ this strategy in the current study.
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Figure 1: This figure shows the structure of the proposed LoHa and LoKr modules implemented in LyCORIS.

Low-Rank Adaptation (LoRA). When integrated into the model customization process, Low-Rank
Adaptation (LoRA) could substantially reduce the number of parameters that need to be updated. It
was originally developed for large language models (Hu et al., 2021), and later adapted for Stable
Diffusion by Simo Ryu (2022). LoRA operates by constraining fine-tuning to a low-rank subspace of
the original parameter space. More specifically, the weight update ∆W ∈ Rp×q is pre-factorized
into two low-rank matrixes B ∈ Rp×r, A ∈ Rr×q, where p, q are the dimensions of the original
model parameter, r is the dimension of the low-rank matrix, and r ≪ min(p, q). During fine-tuning,
the foundational model parameter W0 remains frozen, and only the low-rank matrices are updated.
Formally, the forward pass of h′ =W0h+ b is modified to:

h′ =W0h+ b+ γ∆Wh =W0h+ b+ γBAh, (2)

where γ is a merge ratio that balances the retention of pretrained model information and its adaptation
to the target concepts.1 Following Hu et al. (2021), we further define α = γr so that γ = α/r.

3 The LyCORIS Library

Building upon the initiative of LoRA, this section introduces LyCORIS, our open-source library that
provides an array of different methods for fine-tuning Stable Diffusion.

3.1 DESIGN AND OBJECTIVES

LyCORIS stands for Lora beyond Conventional methods, Other Rank adaptation Implementations
for Stable diffusion. Broadly speaking, the library’s main objective is to serve as a test bed for users to
experiment with a variety of fine-tuning strategies for Stable Diffusion models. Seamlessly integrating
into the existing ecosystem, LyCORIS is compatible with easy-to-use command-line tools and
graphic interfaces, allowing users to leverage the algorithms implemented in the library effortlessly.
Additionally, native support exists in popular user interfaces designed for image generation, facilitating
the use of models fine-tuned through LyCORIS methods. For most of the algorithms implemented
in LyCORIS, stored parameters naturally allow for the reconstruction of the weight update ∆W .
This design brings inherent flexibility: it enables the weight updates to be scaled and applied to a
base model W ′

0 different from those originally used for training, expressed as W ′ = W ′
0 + λ∆W .

Furthermore, a weight update can be combined with those from other fine-tuned models, further
compressed, or integrated with advanced tools like ControlNet. This opens up a diverse range of
possibilities for the application of these fine-tuned models.

3.2 IMPLEMENTED ALGORITHMS

We now discuss the core of the library—the algorithms implemented in LyCORIS. For conciseness,
we will primarily focus on three main algorithms: LoRA (LoCon), LoHa, and LoKr. The merge ratio
γ = α/r introduced in (2) is implemented for all these methods.

1Setting γ is mathematically equivalent to scaling the initialization of B and A by
√
γ and scaling the

learning rate by
√
γ or γ, depending on the used optimizer. See Appendix B.1 for a generalization of this result.
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LoRA (LoCon). In the work of Hu et al. (2021), the focus was centered on applying the low-rank
adapter to the attention layer within the large language model. In contrast, the convolutional layers
play a key role in Stable Diffusion. Therefore, we extend the method to the convolutional layers of
diffusion models (details are provided in Appendix B.2). The intuition is with more layers getting
involved during fine-tuning, the performance (generated image quality and fidelity) should be better.

LoHa. Inspired by the basic idea underlying LoRA, we explore the potential enhancements in
fine-tuning methods. In particular, it is well recognized that methods based on matrix factorization
suffer from the low-rank constraint. Within the LoRA framework, weight updates are confined within
the low-rank space, inevitably impacting the performance of the fine-tuned model. To achieve better
fine-tuning performance, we conjecture that a relatively large rank might be necessary, particularly
when working with larger fine-tuning datasets or when the data distribution of downstream tasks
greatly deviates from the pretraining data. However, this cloud leads to increased memory usage and
more storage demands.

FedPara (Hyeon-Woo et al., 2022) is a technique originally developed for federated learning that
aims to mitigate the low-rank constraint when applying low-rank decomposition methods to federated
learning. One of the advantages of FedPara is that the maximum rank of the resulting matrix is
larger than those derived from conventional low-rank decomposition (such as LoRA). More precisely,
for ∆W = (B1A1) ⊙ (B2A2), where ⊙ denotes the Hadamard product (element-wise product),
B1, B2 ∈ Rp×r, A1, A2 ∈ Rr×q, and r ≤ min(p, q), the rank of ∆W can be as large as r2. To
make a fair comparison, we assume the low-rank dimension in equation (2) is 2r, such that they
have the same number of trainable parameters. Then, the reconstructed matrix ∆W = BA has a
maximum rank of 2r. Clearly, 2r < r2, if r > 2. This implies decomposing the weight update with
the Hadamard product could improve the fine-tuning capability given the same number of trainable
parameters. We term this method as LoHa (Low-rank adaptation with Hadamard product). The
forward pass of h′ =W0h+ b is then modified to:

h′ =W0h+ b+ γ∆Wh =W0h+ b+ γ [(B1A1)⊙ (B2A2)]h. (3)

LoKr. In the same spirit of maximizing matrix rank while minimizing parameter count, our library
offers LoKr (Low-rank adaptation with Kronecker product) as another viable option. This method
is an extension of the KronA technique, initially proposed by Edalati et al. (2022) for fine-tuning
of language models, and employs Kronecker products for matrix decomposition. Importantly, we
have adapted this technique to work with convolutional layers, similar to what we achieved with
LoCon. A unique advantage of using Kronecker products lies in the multiplicative nature of their
ranks, allowing us to move beyond the limitations of low-rank assumptions.

Going further, to provide finer granularity for model fine-tuning, we additionally incorporate an
optional low-rank decomposition (which users can choose to apply or not) that focuses exclusively
on the right block resulting from the Kronecker decomposition.2 In summary, writing ⊗ for the
Kronecker product, the forward pass h′ =W0h+ b is modified to:

h′ =W0h+ b+ γ∆Wh =W0h+ b+ γ [C ⊗ (BA)]h, (4)

The size of these matrices are determined by two user-specified hyperparameters: the factor f and
the dimension r. With these, we have C ∈ Rup×uq , B ∈ Rvp×r, and A ∈ Rr×vq , where

up = max (u ≤ min(f,
√
p) | p mod u = 0) , vp =

p

up
. (5)

The two scalars uq and vq are defined in the same way. Interestingly, LoKr has the widest range
of potential parameter counts among the three methods and can yield the smallest file sizes when
appropriately configured. Additionally, it can be interpreted an adapter that is composed of a number
of linear layers, as detailed in Appendix B.3.

Others. In addition to LoRA, LoHa, and LoKr described earlier, our library features other algo-
rithms including DyLoRA (Valipour et al., 2022), GLoRA (Chavan et al., 2023), and (IA)3 (Liu
et al., 2022). Moreover, between the date of submission and the preparation of the camera-ready
version for the main conference, we have further expanded LyCORIS by incorporating more recent
advancements, notably OFT (Qiu et al., 2023), BOFT (Liu et al., 2024), and DoRA (Liu et al., 2024).
However, the discussion of these supplementary algorithms is beyond the scope of this paper.

2As shown in Eq. (5), in our implementation, the right block is always the larger of the two.
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4 Evaluating Fine-Tuned Text-To-Image Models

With the wide range of algorithmic choices and hyperparameter settings made possible by LyCORIS,
one naturally wonders: Is there an optimal algorithm or set of hyperparameters for fine-tuning Stable
Diffusion? To tackle this question in a comprehensive manner, it is essential to first establish a clear
framework for model evaluation.

With this in mind, in this section, we turn our focus to two independent but intertwined components
that are crucial for a systematic evaluation of fine-tuned text-to-image models: i) the types of
prompts used for image generation and ii) the evaluation of the generated images. While these two
components are commonly considered as a single entity in existing literature, explicitly distinguishing
between them allows for a more nuanced evaluation of model performance (see Appendix A for a
comprehensive overview of related works on text-to-image model evaluation). Below, we explore
each of these components in detail.

4.1 CLASSIFICATION OF PROMPTS FOR IMAGE GENERATION

To fully understand the model’s behavior, it is important to distinguish between different types of
prompts that guide image generation. We categorize these into three main types as follows:

• Training Prompts: These are the prompts originally used for training the model. The images
generated from these prompts are expected to closely align with the training dataset, providing
insight into how well the model has captured the target concepts.

• Generalization Prompts: These prompts seek to generate images that generalize learned concepts
to broader contexts, going beyond the specific types of images encountered in the training set.
This includes, for example, combining the innate knowledge of the base model with the learned
concepts, combining concepts trained within the same model, and combining concepts trained
across different models which are later merged together. Such prompts are particularly useful to
evaluate the disentanglement of the learned representations.

• Concept-Agnostic Prompts: These are prompts that deliberately avoid using trigger words from
the training set and are often employed to assess concept leak, see e.g., Kumari et al. (2023). When
training also involves class words, this category can be further refined to distinguish between
prompts that do and do not use these class words.

4.2 EVALUATION CRITERIA

After detailing the different types of prompts that guide the image generation process, the next
important step is to identify the aspects that we would like to look at when evaluating the generated
images, as we outline below.

• Fidelity measures the extent to which generated images adhere to the target concept.

• Controllability evaluates the model’s ability to generate images that align well with text prompts.

• Diversity assesses the variety of images that are produced from a single or a set of prompts.

• Base Model Preservation measures how much fine-tuning affects the base model’s inherent
capabilities, particularly in ways that may be undesirable. For example, if the target concept is an
object, retaining the background and style as generated by the base model might be desired.

• Image Quality concerns the visual appeal of the generated images, focusing primarily on aspects
like naturalness, absence of artifacts, and lack of weird deformations. Aesthetics, though related,
are considered to be more dependent on the dataset than on the training method, and are therefore
not relevant for our purpose.

Taken together, the prompt classification of Section 4.1 and the evaluation criteria listed above offer
a nuanced and comprehensive framework for assessing fine-tuned text-to-image models. Notably,
these tools also enable us to evaluate other facets of model performance, such as the ability to learn
multiple distinct concepts without mutual interference and the capability for parallel training of
multiple models that can later be successfully merged.
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5 Experiments

In this section, we perform extensive experiments to compare different LyCORIS algorithms and to
assess the impact of the hyperparameters. Our experiments employ the non-EMA version of Stable
Diffusion 1.5 as the base model. All the experimental details not included in the main text along with
presentations of additional experiments can be found in the appendix.

5.1 DATASET

Contrary to prior studies that primarily focus on single-concept fine-tuning with very few images, we
consider a dataset that spans across a wide variety of concepts with an imbalance in the number of
images for each. Our dataset is hierarchically structured, featuring 1,706 images across five categories:
anime characters, movie characters, scenes, stuffed toys, and styles. These categories further break
down into various classes and sub-classes. Importantly, classes under “scenes” and “stuffed toys”
contain only 4 to 12 images, whereas other categories have 45 to 200 images per class.

The influence of training captions on the fine-tuned model is also widely acknowledged in the
community. It is particularly observed that training with uninformative captions such as “A photo
of [V]”, which are commonly employed in the literature, can lead to subpar results. In light of
this, we use a publicly available tagger to tag the training images. We then remove tags that are
inherently tied to each target concept. The resulting tags are combined with the concept descriptor to
create more informative captions as “[V], {tag1}, ..., {tagk}”. To justify this choice,
comparative analyses for models trained using different captions are presented in Appendix H.3.

5.2 ALGORITHM CONFIGURATION AND EVALUATION

Our experiments focus on methods that are implemented in the LyCORIS library, and notably LoRA,
LoHa, LoKr, and native fine-tuning (note that DreamBooth Ruiz et al., 2023 can be simply regarded
as native fine-tuning with regularization images). For each of these four algorithms, we define a set of
default hyperparameters and then individually vary one of the following hyperparameters: learning
rate, trained layers, dimension and alpha for LoRA and LoHa, and factor for LoKr. This leads to 26
distinct configurations. For each configuration, three models are trained using different random seeds,
and three checkpoints are saved along each fine-tuning, giving in this way 234 checkpoints in the
end. While other parameter-efficient fine-tuning methods exist in the literature, most of the proposed
modifications are complementary to our approach. We thus do not include them for simplicity.

Data Balancing. To address dataset imbalance, we repeat each image a number of times within
each epoch to ensure images from different classes are equally exposed during training.

Evaluation Procedure. To evaluate the trained models, we consider the following four types of
prompts i) <train> training captions, ii) <trigger> concept descriptor alone, iii) <alter> generalization
prompts with content alteration, and iv) <style> generalization prompts with style alteration. Using
only the concept descriptor tests if the model can accurately reproduce the concept without using the
exact training captions. As for generalization prompts, only a single target concept is involved. This
thus evaluates the model’s ability to combine innate and fine-tuned knowledge. For each considered
prompt type, we generate 100 images for each class or sub-class, resulting in a total of 14,900 images
per checkpoint. Note that we do not include concept-agnostic prompts in our experiments.

Evaluation Metrics. Our evaluation metrics are designed to capture the criteria delineated in
Section 4.2 and are computed on a per (sub)-class basis. We briefly describe below the metrics that
are used for each criterion.

• Fidelity: We assess the similarity between the generated and dataset images using average cosine
similarity and squared centroid distance between their DINOv2 embeddings (Oquab et al., 2023).

• Controllability: The alignment between generated images and corresponding prompts is measured
via average cosine similarity in the CLIP feature space (Radford et al., 2021).

• Diversity: Diversity of images generated with a single prompt is measured by the Vendi score
(Friedman & Dieng, 2023), calculated using the DINOv2 embeddings.

• Base Model Preservation: This generally needs to be evaluated on a case-by-case basis, de-
pending on which aspect of the base model we would like to retain. Specifically, we examine
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(a) Plots for category “movie characters” (scatter plots are for 30 epoch checkpoints)
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Figure 2: SHAP beeswarm charts and scatter plots for analyzing the impact of change in different algorithm
components. In the beeswarm plots, LoRA is in blue, LoHa is in purple, LoKr is in purple red, and native fine-
tuning is in red. Model capacity is adjusted by either increasing dimension (for LoRA or LoHa) or decreasing
factor (for LoKr). In the scatter plots, SCD indicates that we use squared centroid distance to measure image
similarity. This removes the implicit penalization towards more diverse image sets in the computation of average
cosine similarity (see Appendix D.4 for details). We believe it is thus more suitable when we are interested in
the trade-off between fidelity and diversity. The error bars in the scatter plots represent standard errors of the
metric values across random seeds and classes.

potential style leakage by measuring the standard style loss (Johnson et al., 2016) between base
and fine-tuned model outputs for <style> prompts.

• Image Quality: Although numerous methods have been developed for image quality assessment,
most of them target natural images. As far as we are aware, currently, there still lacks a systematic
approach for assessing the quality of AI-generated images. We attempted experiments with
three leading pretrained quality assessment models, as detailed in Appendix H.2, but found them
unsuitable for our context. We thus do not include any quality metrics in our primary experiments.

Further justification for our metric choices is provided in Appendices E and H.1, where we compute
correlation coefficients for a wider range of metrics and conduct experiments across three classification
datasets to assess the sensitivity of different image features to change in a certain image attribute.

5.3 EXPERIMENTAL RESULTS

To carry out the analysis, we first transform each computed metric value into a normalized score,
ranging from 0 to 1, based on its relative ranking among all the examined checkpoints (234 in total).
A score closer to 1 signifies superior performance. Subsequently, these scores are averaged across
sub-classes and classes to generate a set of metrics for each category and individual checkpoint.
Alongside the scatter plots, which directly indicate the values of these metrics, we also employ SHAP
(SHapley Additive exPlanations) analysis (Lundberg & Lee, 2017) in conjunction with CatBoost
regressor (Prokhorenkova et al., 2018) to get a clear visualization of the impact of different algorithm
components on the considered metrics, as shown in Figure 2. In essence, a SHAP value quantifies the
impact of a given feature on the model’s output. For a more exhaustive presentation of the results,
readers are referred to Appendix F.

5.3.1 CHALLENGES IN ALGORITHM EVALUATION

Before delving into our analysis, it is crucial to acknowledge the complexities inherent in evaluating
the performance of fine-tuning algorithms. Specifically, we identify several key challenges, including
i) sensitivity to hyperparameters, ii) performance discrepancy across concepts, iii) influence of dataset,
iv) conflicting criteria, and v) unreliability of evaluation metrics, among others. These challenges are
discussed in detail in Appendix C. To mitigate some of these issues, our evaluation encompasses a
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Figure 3: Qualitative comparison of checkpoints trained with different configurations. Samples of the top
row are generated using only concept descriptors while samples of the bottom row are generated with the two
prompts “[Vcastle] scene stands against a backdrop of snow-capped mountains” and “[Vcastle] scene surrounded by
a lush, vibrant forest”. The number of training epochs is chosen according to the concept category.

large number of configurations and includes separate analyses for each category. Additionally, we
complement our quantitative metrics with visual inspections conducted throughout our experiments
(see Appendix G for an extensive set of qualitative results). Finally, we exercise caution in making
any definitive claims, emphasizing that there is no one-size-fits-all solution, and acknowledging that
exceptions do exist to our guiding principles.

5.3.2 ANALYSIS OF RESULTS AND INSIGHTS FOR FINE-TUNING WITH LYCORIS

In this part, we delve into a detailed examination of our experimental results, aiming to glean
actionable insights for fine-tuning with LyCORIS. These insights should not be considered as rigid
guidelines, but rather as empirical observations designed to serve as foundational reference points.

Number of Training Epochs. To analyze the evolution of models over training, we generate images
from checkpoints obtained after 10, 30, and 50 epochs of training. Due to the small number of images
available for “scenes” and “stuffed toys” categories and the use of data balancing, the 30 and 50
epoch checkpoints are almost universally overtrained for these concepts, explaining why increasing
training epochs decreases image similarity as shown in the SHAP plot of Figure 2b.3 Otherwise,
increasing the number of epochs generally improves concept fidelity while compromising text-image
alignment, diversity, and base model preservation. Exceptions to this trend exist. Specifically, we
observe the overfit-then-generalize phenomenon, as often illustrated through the double descent curve
(Nakkiran et al., 2021), in certain situations. We explore this further in Appendix G.4.2.

Learning Rate. We consider three levels of learning rate, 5 · 10−7, 10−6, and 5 · 10−6 for native
fine-tuning, and 10−4, 5 · 10−4, and 10−3 for the other three algorithms. Within a reasonable range,
increasing the learning rate seems to have the same effect as increasing the number of training epochs.
A qualitative example is provided in Figure 3. It is worth noting, however, that an excessively low
learning rate cannot be remedied by simply extending the training duration (see Appendix G.3.2).

Algorithm. A central question driving the development of LyCORIS is to assess how different
methods of decomposing the model update affect the final model’s performance. We summarize our
observations in Table 1. We distinguish here between two learning rates for native fine-tuning as they
result in models that perform very differently. In particular, Figure 2a reveals that native fine-tuning at
a learning rate of 5 · 10−6 achieves high image similarity for training prompts and high text similarity

3We also experimented without data balancing and observed undertraining even after 50 epochs.
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LoRA LoHa LoKr Native (lr 5× 10−6) Native (lr 10−6)

Fidelity 3 2 4 5 1
Controllability 2 4 1 3 5
Diversity 3 4 2 1 5

Table 1: A tentative ranking based on different evaluation criteria for the methods we explore in our experiments
(the higher the number, the better the method’s performance). Although this ranking reflects the general trend
observed across different concept categories, deviations of varying degrees are common.

for generalization prompts. However, this strong performance in text similarity for generalization
prompts also leads to a lower image similarity score for these prompts, highlighting in this way both
the challenges in comprehensive method comparison and the necessity of evaluating on different types
of prompts independently. As for LoRA, LoHa, and LoKr, comparisons are based on configurations
with similar parameter counts and otherwise the same hyperparameters. Style preservation is not
included in this comparison as no consistent trend across concept categories is observed.

Trained Layers. To investigate the effects of fine-tuning different layers, we examine three distinct
presets: i) attn-only: where we only fine-tune attention layers; ii) attn-mlp: where we fine-tune both
attention and feedforward layers; and iii) full network: where we fine-tune all the layers, including the
convolutional ones. As can be seen from the SHAP plots in Figure 2, when all the other parameters
are fixed, restricting fine-tuning to only the attention layers leads to a substantial decrease in image
similarity while improving other metrics. This could be unfavorable in certain cases; for instance, the
top-left example in Figure 3 shows that neglecting to fine-tune the feedforward layers prevents the
model from correctly learning the character’s uniform. The impact of fine-tuning the convolutional
layers is less discernible, possibly because the metrics we use are not sensitive enough to capture
subtle differences. Overall, our observations align with those made by Han et al. (2023). Moreover, it
is worth noting that with the “attn-only” preset, we also fine-tune the self-attention layers in addition
to the cross-attention layers, but this may still be insufficient, as demonstrated above.

Dimension, Alpha, and Factor. We finally inspect a number of parameters that are specific to
our algorithms—dimension r, alpha α, and factor f . By default, we set the dimension and alpha of
LoRA to 8 and 4, and of LoHa to 4 and 2. As for LoKr, we set the factor to 8 and do not perform
further decomposition of the second block. These configurations result in roughly the same parameter
counts across the three methods. To increase model capacity, we either increase the dimension or
decrease the factor. This is what we refer to as “capacity” in the SHAP plots. We note that when the
ratio between dimension and alpha is fixed, increasing model capacity has roughly the same effect as
increasing learning rate or training epochs, though we expect the model’s performance could now
vary more greatly when varying other hyperparameters. We especially observe in Figure 2b that the
effects could be reversed when alpha is set to 1 (these checkpoints are not included in our SHAP
analysis). Some qualitative comparisons are further provided in the bottom row of Figure 3.

6 Concluding Remarks

In conclusion, this paper serves three main purposes. First, we introduce LyCORIS, an open-source
library implementing a diverse range of methods for Stable Diffusion fine-tuning. Second, we
advocate for a more comprehensive evaluation framework that better captures the nuances of different
fine-tuning methods. Lastly, our extensive experiments shed light on the impact of the choice of
the algorithm and their configuration on model performance, revealing their relative strengths and
limitations. For instance, based on our experiments, LoHa seems to be better suited for simple,
multi-concept fine-tuning, whereas LoKr with full dimension is better for complex, single-concept
tasks. This distinction in their applicability also indicates that the rank of the matrix update, often
considered a key factor, may not always be the definitive predictor of a method’s efficacy in various
fine-tuning scenarios.

Despite our extensive efforts, the scope of our study remains limited. For example, we have not
explored the task of generating images with multiple learned concepts, as this aspect is highly
sensitive to input prompts and more challenging to evaluate. However, recent works such as Huang
et al. (2023) aim to address these issues, and we believe that incorporating these emerging evaluation
frameworks will further enrich the comparison of fine-tuning methods in future studies.
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A Related Works

In this section, we review related works for two interconnected themes that are vital to our study:
text-to-image model customization and text-to-image model evaluation.

Model Customization. There has been a long-standing effort in adapting pretrained deep generative
models to learn new concepts with limited data (Bau et al., 2019; Robb et al., 2020; Roich et al.,
2022; Wang et al., 2018), but the surge of Stable Diffusion and similar large-scale text-to-image
generation models have accelerated this progress. Specifically, DreamBooth (Ruiz et al., 2023)
proposes fine-tuning the U-Net with a prior-preservation loss, which serves as the regularizer in
combating overfitting and improving the generation performance. Another pioneering work in this
direction is Textual Inversion (TI) (Gal et al., 2023), which instead optimizes the input text embedding
vector with the subject images and uses that optimized text embedding for generation.

Expanding on the initial concept of pivotal tuning (Roich et al., 2022) for StyleGAN (Karras et al.,
2019), other works have explored concurrent fine-tuning of both text embeddings and network
architectures for diffusion models (Gu et al., 2023; Kawar et al., 2023; Kumari et al., 2023; Smith
et al., 2023; Tewel et al., 2023). For instance, Imagic by Kawar et al. (2023) targets single-image
editing by initially optimizing the text embedding for a given input before further network fine-
tuning. On the other hand, Custom Diffusion (Kumari et al., 2023) and Perfusion (Tewel et al.,
2023) both focus on fine-tuning only the K-V cross-attention layers to reduce overfitting but adopt
different strategies. Custom Diffusion considers native fine-tuning of these layers and offers a way to
merge fine-tuned models without additional training, while Perfusion employs a more complex gated
mechanism and “locks” the K pathway using class-specific words, thereby enhancing the model’s
capacity to generate learned concepts across diverse contexts.

Efforts have also been made to address more specific challenges. For example, C-LoRA (Smith
et al., 2023) addresses the issue of catastrophic forgetting through a self-regularization mechanism
while fine-tuning the K-V cross-attention layers with LoRAs. In parallel, ED-LoRA (Gu et al., 2023)
employs LoRA dropout to counterbalance the otherwise dominant influence of LoRA in the learning
process, ensuring that the embeddings remain a significant component of concept learning.

Alongside these focused endeavors, there has been complementary progress in expanding and
improving upon Textual Inversion. Notably, Voynov et al. (2023) introduced Extended Textual
Inversion (XTI), a layer-wise embedding method that was also used in ED-LoRA. Another noteworthy
innovation is DreamArtist (Dong et al., 2022), which leverages positive and negative embeddings
for efficient one-shot model customization. Further improvements to the TI framework include the
works by Alaluf et al. (2023); Han et al. (2023).

While TI-based methods often struggle to generate concepts outside of the pretrained models’
domain (Gu et al., 2023; Smith et al., 2023), they do offer an advantage in terms of parameter
efficiency. Specifically, the number of stored parameters required by these methods is orders of
magnitude smaller than those necessitated by most network fine-tuning methods. This gap is partially
bridged by SVDiff (Han et al., 2023) and Cones (Liu et al., 2023). The former optimizes singular
values of the weight matrices of the network, which leads to a compact and efficient parameter space
that reduces the risk of overfitting and language-drifting. The latter proposes to focus on concept
neurons, a small set of parameters of the K-V attention layers, which are posited to be sufficient to
encode the target concept in an ideal scenario. Remarkably, several methods implemented in our
LyCORIS library, such as LoKr and (IA)3 can also result in weight updates with parameter counts
that are comparable to these methods.

In addition to the aforementioned methods, Qiu et al. (2023) proposed orthogonal fine-tuning (OFT)
that offers another approach to retain the knowledge of pretrained models. OFT consists in fine-tuning
a block diagonal orthogonal matrix that is multiplied with the original weight matrix. This has the
unique advantage of preserving the hyperspherical energy of the weight matrices, which could be
helpful in preserving the pretrained model’s generative capabilities. We have also incorporated this
method in the LyCORIS library as mentioned in Section 3.2.

A partial summary of the related works in text-to-image diffusion model customization is provided
in Table 2. This table shows that even though these methods may focus on optimizing different
components involved in the image generation process, they often introduce new techniques that can
be integrated in a complementary fashion. For example, elements like the positive and negative
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Method K-V Linear Conv TE Emb PP Loss Further Innovations

DreamBooth [67] ✓ ✓ ✓ ✓

Textual Inversion [18] ✓

DreamArtist [13] ✓
Positive and Negative

Embeddings

XTI [89] ✓
Layer-Wise
Embeddings

Custom Diffusion [41] ✓ ✓ ✓
Model Fusion

Technique

C-LoRA [77] ✓ ✓ ✓
Self-Regularization for

Continual Learning

Perfusion [82] ✓ ✓
Key-Locking,

Gated Rank-1 Update

Cones [47] ✓ ✓ Concept Neurons

SVDiff [25] ✓ ✓ ✓ ✓
Fine-Tune Singular

Values, Cut-Mix-Unmix

ED-LoRA [21] ✓ - ✓ ✓
XTI + LoRA Dropout,

Gradient Fusion

OFT [60] ✓ - ✓
Orthogonal

Transformation

LyCORIS (ours) ✓ ✓ ✓ ✓ LoHa, LoKr, etc.

Table 2: A brief recapitulation for the functioning of different existing diffusion model fine-tuning strategies.
K-V, Linear, Conv, TE, Emb, and PP Loss respectively stand for K-V cross-attention layers, linear layers in
attention and feed-forward blocks in U-Net, convolutional layers, text encoder, embedding, and prior-preservation
loss. We put a checkmark when the corresponding block is optimized or when the corresponding mechanism
is employed. Both ED-LoRA and OFT fine-tune linear layers within attention blocks, and this is why we
put - instead of a checkmark. For LyCORIS, we focus on the setup of this paper, but in reality, we have the
liberty to decide which part to fine-tune and whether to use prior-preservation loss or not. Note for the “further
innovations” column, we only include the main contributions from each work and further details concerning
the implementation of each method are omitted (for example, Textual Inversion also considers an additional
regularization term and progressive extensions, while Perfusion weights the diffusion reconstruction loss by a
soft segmentation mask).

guiding introduced in DreamArtist can be effectively coupled with algorithms implemented in our
LyCORIS library. Furthermore, other techniques, such as the layer-wise embeddings in XTI and
key-locking from Perfusion, can also be incorporated concurrently. Collectively, these innovations
thus form a robust toolkit conducive to the fine-tuning of text-to-image diffusion models.

Finally, there exists a distinct line of research that aims to facilitate test-time adaptation without the
need for further fine-tuning (see e.g., Gal et al., 2023; Ma et al., 2023; Ruiz et al., 2023; Shi et al.,
2023; Wei et al., 2023). In these cases, we need to train separate networks or additional modules,
using larger and more diverse datasets that encompass data from a single domain or multiple domains.
As a result, the adaptability of these models is generally confined to the domains encountered during
training. While such methods are useful for specialized, ad-hoc applications where users might want
to generate variations of a target concept with a limited set of input images, they don’t offer the broad
applicability inherent to direct fine-tuning strategies.

Model Evaluation. The evaluation of generative models has been a central concern since the
inception of these models. Early efforts focused on measuring the distance between the data distri-
bution and the distribution learned by the models, utilizing metrics like FID (Heusel et al., 2017),
KID (Bińkowski et al., 2018), and Precision-Recall (Sajjadi et al., 2018) which have been widely
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adopted in the community. Meanwhile, the limitations of these metrics are increasingly being recog-
nized, as detailed by Stein et al. (2023), who critically examined the flaws of various metrics used for
evaluating generative models. In our context, these metrics are primarily useful for evaluating the
concept fidelity of the generated images on the condition that we have a sufficiently large training set.

Another dimension comes into the scene when considering text-to-image models. In such scenarios,
assessing the text-image alignment of generated images becomes crucial. Commonly used metrics for
this purpose include CLIPScore (Hessel et al., 2021), R-precision (Xu et al., 2018), and BLEU (Pap-
ineni et al., 2002) or CIDEr (Vedantam et al., 2015) for evaluating the similarity between the captions
generated for the synthesized images and the original text prompts. To enhance interpretability and
enable finer-grained evaluation, recent works like TIFA (Hu et al., 2023) and X-IQE (Chen et al.,
2023) have also explored the use of pretrained large vision-language models such as mPLUG (Li et al.,
2022) and MiniGPT-4 (Zhu et al., 2023). Together with image fidelity/quality, these represent the
two main aspects on which text-to-image models are typically evaluated (Dinh et al., 2022; Saharia
et al., 2022). Notably, nearly all the text-to-image model customization studies we have discussed
have limited their quantitative evaluations to these two sets of metrics.

Yet, the need for going beyond these two aspects has also been acknowledged. Specifically, other
criteria such as visual reasoning, social bias, and creativity have been considered in DALL-EVAL (Cho
et al., 2022) and HRS-Bench (Bakr et al., 2023). While some of these can be regarded as the design
of more dedicated metrics to measure text-image alignment in particular situations, others necessitate
a completely different attack angle.

Importantly, all the previous works focus exclusively on the evaluation of general text-to-image
models, while we zoom in on the evaluation of fine-tuned models. Although we can borrow metrics
and criteria from these works, certain nuances exist. For example, as discussed in Section 4, we may
want to ensure that new concepts do not adversely affect the innate knowledge of the original model,
and image fidelity, image quality, and aesthetics should be evaluated independently (Silverstein &
Farrell, 1996). Moreover, we separate how the model is prompted (or how it is used more generally)
from how the generated images are evaluated, which together define the so-called “skills” in the
aforementioned papers. On top of this, we identify a few key aspects that could be the most affected
by model fine-tuning. That said, the metrics that we currently employ remain relatively rudimentary,
and integrating more advanced metrics from the literature would undoubtedly be beneficial.

Complementary to automatic evaluation, human evaluation is generally considered to yield the most
accurate assessments of model performance. Recent initiatives in this area include the works of
Otani et al. (2023); Petsiuk et al. (2022). In particular, Otani et al. (2023) introduced a well-defined
protocol for human evaluation to ensure verifiable and reproducible results. Nonetheless, most
studies employing human evaluations compare a limited set of models using relatively few generated
samples and evaluation criteria. Given the scale of our work, which involves hundreds of trained
checkpoints and millions of generated images, conducting a comprehensive human evaluation would
incur prohibitive costs, both in terms of time and resources. Therefore, we have opted to omit human
evaluations from this study. In the meantime, we believe that methods from the fields of multi-armed
bandits and Bayesian optimization may offer promising avenues for tackling the scalability challenges
of human evaluation (Moss et al., 2019; Turner et al., 2021).

As another avenue for exploration, several datasets have been introduced to capture human preferences
for AI-generated images (Kirstain et al., 2023; Wu et al., 2023; Xu et al., 2023). These datasets
pave the way for training human preference models, which could further be used for evaluation and
for fine-tuning text-to-image models for closer alignment with human preferences (Xu et al., 2023).
However, one should note that human preference represents just one facet in a multi-dimensional
evaluation landscape and is often more tied to the dataset than the training algorithm itself. Moreover,
as Casper et al. (2023) aptly points out, “A single reward function cannot represent a diverse society
of humans”. Over-reliance on such a reward function could inadvertently marginalize or overlook the
preferences and needs of under-represented groups, thus reinforcing existing biases and inequalities.
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B Further Discussion on Implemented Algorithms

This appendix discusses finer details of the algorithms implemented in our study. We especially focus
on the the effect of the merge ratio on training dynamics, Tucker decomposition of convolutional
layers, and the interpretation of LoKr as a number of consecutive linear layers.

B.1 EFFECT OF MERGE RATIO

In this section, we demonstrate an equivalence between scaling the merge ratio and scaling the
initialization parameters and the learning rates. For simplicity, we will write h′ = W0h + b to
represent the transformation performed by all types of layers in the neural network, whatever we deal
with convolutional or linear layers. Our result holds in a general setup in which each layer, identified
by the index ℓ, can use its own distinct decomposition function Tℓ and merge ratio γℓ.

Formally, we assume that the forward pass of layer ℓ is modified to

h′
ℓ =Wℓ,0hℓ + bℓ + γℓ∆Wℓhℓ =Wℓ,0hℓ + bℓ + γℓTℓ(Aℓ,1, . . . , Aℓ,mℓ

)hℓ, (6)

where Aℓ,1, . . . , Aℓ,mℓ
are a set of tensors that together define the weight update ∆Wℓ. In LyCORIS,

the decomposition function Tℓ is mainly composed of low rank decomposition, Hadarmard decom-
position, and Kronecker decomposition. However, other decomposition functions such as Tucker
decomposition (Tucker, 1966) can also be used (see Appendix B.2.2). The effect of the merge ratios
γ = (γℓ)ℓ is stated in the following theorem.

Theorem 1. Assume that we train a neural network with forward pass modified as in (6) and that
every Tℓ is homogeneous, i.e., for all a ∈ R and all possible input Aℓ,1, . . . , Aℓ,mℓ

, we have

Tℓ(aAℓ,1, . . . , aAℓ,mℓ
) = amℓTℓ(Aℓ,1, . . . , Aℓ,mℓ

). (7)

Then, replacing γℓ by 1 in (6), scaling the initialization parameters and learning rate of each layer
ℓ respectively by (γℓ)

1
mℓ and (γℓ)

c
mℓ is mathematically equivalent to training with the original

initialization parameters, learning rates, and merge ratios. Here, c = 2 if we train with stochastic
gradient descent (SGD), and c = 1 if we train with Adam, RMSProp, or AdaGrad with the ε
parameter set to 0.

Proof. Let L be the loss function for a specific step when the network is parameterized with (∆Wℓ)ℓ.
Note that this loss function is different from the one defined in Section 2.1, and in particular, it
depends on the data sampled at each step, and also the sampled noise and sampled diffusion step in
the case of diffusion model. Similarly, for any γ = (γℓ)ℓ, we define L̃γ as the loss function of the
same step (i.e., resulting from the same sampled data, noise, diffusion step etc.) but with respect to
the tensors A = (Aℓ,i)ℓ,i when the forward pass is modified following (6). By defining

Tγ : A → (∆Wℓ)ℓ = (γℓTℓ(Aℓ,1, . . . , Aℓ,mℓ
))ℓ, (8)

as the function that maps the decomposed tensors to weight updates, we have clearly L̃γ = L ◦Tγ .
To simplify the notation, we further write L̃ = L̃1 and T = T1. We claim that

∇Aℓ
L̃γ(A) = (γℓ)

1
mℓ ∇Aℓ

L̃(γ 1
m ·A). (9)

In the above, Aℓ = (Aℓ,i)i collects the decomposed tensors of layer ℓ, ∇Aℓ
represents the gradient

with respect to these tensors, and γ
1
m ·A = ((γℓ)

1
mℓ Aℓ)ℓ is obtained from scaling all the tensors by

a layer-dependent scalar (γℓ)
1

mℓ . For ease of mathematical treatment, it is convenient to consider
both the inputs and outputs of functions L, L̃γ , and Tγ as one-dimensional vectors, which are formed
by flattening the tensors and then concatenating them. Lastly, by slight abuse of notation, we use Aℓ

for both the variable and the value at which we evaluate the gradient.

To prove (9), we first apply chain rule to get

∇L̃γ(A)⊤ = ∇L(Tγ(A))⊤ JacTγ (A),

∇L̃(γ 1
m ·A)⊤ = ∇L(T(γ

1
m ·A))⊤ JacT(γ

1
m ·A),

(10)

where JacT represents the Jacobian matrix of operator T . Note that by the definition of Tγ , input
variable Aℓ,i only affects output variable ∆Wℓ, and thus JacTγ (A) is blockwise diagonal. This
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indicates that (10) can be written in a layer-wise way as following.

∇Aℓ
L̃γ(A)⊤ = ∇∆Wℓ

L(Tγ(A))⊤ JacγℓTℓ
(Aℓ),

∇Aℓ
L̃(γ 1

m ·A)⊤ = ∇∆Wℓ
L(T(γ

1
m ·A))⊤ JacTℓ

((γℓ)
1

mℓ Aℓ).
(11)

Since each Tℓ is homogeneous, it holds that

γℓTℓ(Aℓ) = Tℓ((γℓ)
1

mℓ Aℓ). (12)

Differentiating both sides with respect to Aℓ gives immediately

JacγℓTℓ
(Aℓ) = (γℓ)

1
mℓ JacTℓ

((γℓ)
1

mℓ Aℓ). (13)

On the other hand, it also follows from (12) that

Tγ(A) = T(γ
1
m ·A). (14)

Plugging (13) and (14) into (11) gives immediately (9).

To complete the proof, we just need to note that an important difference between AdaGrad-type
methods and vanilla SGD is in whether the learning rates are scaled by some scalar computed based
on gradient magnitude or not. This is not the case for SGD, and we can simply write

(γℓ)
1

mℓ (Aℓ − ηℓ ∇Aℓ
L̃γ(A)) = (γℓ)

1
mℓ Aℓ − ηℓ(γℓ)

2
mℓ ∇Aℓ

L̃(γ 1
m ·A), (15)

where ηℓ is the learning rate of layer ℓ. This shows that if for each layer ℓ, we scale the initialized
parameters by (γℓ)

1
mℓ and learning rate by (γℓ)

2
mℓ , while setting the merge ratio to 1, then after each

stochastic gradient step we still have A2 = γ
1
m ·A1. Here, A1 and A2 are respectively the tensors

obtained from the updates with merge ratio γ and merge ratio 1 but with scaled initialization and
learning rates. Together with (14) we then see that the two approaches lead to the same weight update
(∆Wℓ)ℓ at the end.

As for Adam, RMSProp, and AdaGrad, when ε is set to 0, the scaling of the learning rate causes the
two versions to have the same scaled update vector. In other words, instead of having a relation like
(9), the update is performed with the same vector d. One has clearly

(γℓ)
1

mℓ (Aℓ − ηℓd) = (γℓ)
1

mℓ Aℓ − ηℓ(γℓ)
1

mℓ d. (16)

This shows that one should rather scale the learning rate by (γℓ)
1

mℓ in this case to maintain the
relation A2 = γ

1
m ·A1, concluding the proof.

While Theorem 1 provides an intuitive way to understand how the merge ratio γ, or the related
α affects training, it is crucial to keep in mind that these quantities were specifically introduced
by Hu et al. (2021) to address numerical precision issues. In fact, if we were to simply scale the
initialization parameters and learning rates instead of using the merge ratios, the stored parameters
in the decomposed tensors would be much smaller. This could lead to numerical instability or
reduced precision during the optimization process, potentially affecting the model’s training and final
performance adversely.

B.2 DECOMPOSITION OF CONVOLUTIONAL LAYERS

In this section, we delve into the application of matrix decomposition techniques for convolutional
layers, with a focus on two distinct approaches implemented in the LyCORIS library.

B.2.1 THE STANDARD APPROACH

Consider a convolutional layer with a weight update denoted as ∆W ∈ Rcout×cin×k×k, where k
represents kernel size, cin and cout indicate the number of input channels and output channels. To
facilitate the application of our method, this weight update can be unrolled into a 2-D matrix
represented as ∆W ∈ Rcout×cink

2

. Factorizing this 2-D matrix with LoRA gives us two matrices
of reduced rank: B ∈ Rcout×r, A ∈ Rr×cink

2

. The matrix A can be reshaped back to a 4-D tensor:
A ∈ Rr×cin×k×k. Such a transformation implies that the given convolutional layer can be effectively
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approximated by two consecutive convolutional layers with kernel sizes k and 1. Notably, the
low-rank dimension r is the number of output and input channels of the first and second layers. This
decomposition method is well-established and has been extensively adopted in previous research
(see e.g., Wang et al., 2021). Adapting this approach to other factorization methods like LoHa and
LoKr is straightforward.

B.2.2 TUCKER DECOMPOSITION

Besides the standard approach that we just dedscribed Tucker decomposition (Tucker, 1966) can also
be applied to the convolutional layers to achieve higher computational and memory efficiency.

To explain this, let us denote by ×n the n-mode product which computes the matrix product on
dimension n of a tensor while casting over the remaining dimensions. Formally, for G = (gi1...id) ∈
RI1×...×Id a tensor of order d and A = (ainjn) ∈ RIn×Jn a matrix of size In × Jn, their n-mode
product G×n A ∈ RI1×...×In−1×Jn×In+1×...Id has its elements given by

(G×n A)i1...in−1jnin+1...id =

In∑
in=1

gi1...in−1inin+1...idainjn . (17)

With this in mind, Tucker decomposition is simply the decomposition of a tensor into a set of matrices
and a small core tensor using n-mode product.

In the context of fine-tuning convolutional layers, we can apply Tucker decomposition to decompose
the weight update ∆W ∈ Rcout×cin×k×k into one core tensor G ∈ Rr×r×k×k and two matrices
B ∈ Rr×cout , A ∈ Rr×cin , leading to

h′ =W0 ∗ h+ b+ γ(G×1 B ×2 A) ∗ h. (18)

Compared to the standard approach elaborated in Appendix B.2.1, the number of parameters changes
from r(cink

2+cout) to r(rk2+cin +cout). The latter is substantially smaller when r ≪ cin(1−1/k2).

Importantly, the tensor G can also be interpreted as a convolutional kernel with in-channels and
out-channels both set to r. To recast this decomposition as three convolutional layers (two of them
have k = 1), we first reshape B⊤ and A respectively into B̃ ∈ Rcout×r×1×1 and Ã ∈ Rr×cin×1×1.
The forward pass then becomes

h′ =W0 ∗ h+ b+ B̃ ∗ (G ∗ (Ã ∗ h)). (19)

Tucker decomposition was also adopted in FedPara (Hyeon-Woo et al., 2022) for decomposing
convolutional layers’ kernels. We borrow their methods and implement it for LoHa. In this case, the
forward pass is modified to

h′ =W0 ∗ h+ b+ γ(G1 ×1 B1 ×2 A1)⊙ (G2 ×1 B2 ×2 A2) ∗ h, (20)

where G1, G2 ∈ Rr×r×k×k, B1, B2 ∈ Rr×cout , and A1, A2 ∈ Rr×cin . The decomposition for
convolutional layers in LoKr follows the same methodology.

B.3 LOKR AS CONSECUTIVE LINEAR LAYERS

For a more intuitive understanding of LoKr, we introduce here a unique representation for ∆h =
(C ⊗ BA)h that effectively models it as a sequence three linear layers. The core mechanism for
this representation is the use of the mixed Kronecker matrix-vector product property. Consider the
linear transformation ∆h = ∆Wh, where h ∈ Rq , ∆h ∈ Rp and ∆W ∈ Rp×q . The weight update
∆W is further decomposed as ∆W = C ⊗ BA with C ∈ Rup×uq , B ∈ Rvp×r, and A ∈ Rr×vq .
Utilizing the mixed Kronecker matrix-vector product property, we can express this as

∆h = ∆Wh

= (C ⊗BA)h

= vec(C unvec(h)(BA)⊤)

= vec(C((BA unvec⊤(h))⊤)⊤).

(21)

Here, vec represents the row-major vectorization operator that stacks the rows of a matrix into a
vector, and unvec reshapes the vector h from h ∈ Rq to unvec(h) ∈ Ruq×vq by filling rows of
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...

...

Split into  groups, 

Merge from  groups, 

Figure 4: This figure shows how to represent LoKr as two or three linear layers (depending on whether we
perform the additional low-rank decomposition or not).

Algorithm 1: PyTorch-style pseudocode for LoKr as linear layers
1: def lokr_linear(h, a, b, c):
2: vq = a.size(1)
3: uq = c.size(1)
4: h_in_group = rearrange(
5: h,
6: "b ... (uq vq) -> b ... uq vq",
7: uq=uq, vq=vq
8: )
9: ha = F.linear(h_in_group, a)

10: hb = F.linear(ha, b)
11: h_cross_group = hb.transpose(-1, -2)
12: hc = F.linear(h_cross_group, c)
13: h = rearrange(hc, "b ... vp up -> b ... (up vp)")
14: return h

unvec(h) with consecutive elements from h. The unvec⊤ notation indicates an additional transpose
operation following unvec(h). As illustrated in Figure 4 , this representation enables us to interpret
LoKr as a composition of three consecutive linear layers. In Algorithm 1, we further provide a
PyTorch-style pseudo-code that implements the decomposition of (21).

C Challenges in Algorithm Evaluation

In this appendix, we highlight a number of difficulties in evaluating the performance of fine-tuning
algorithms. These complexities caution against simplistic comparisons and underscore the importance
of a more comprehensive evaluation framework, as what we proposed in Section 4.

24



Published as a conference paper at ICLR 2024

Sensitivity to Hyperparameters. As we can see from Figure 2, the algorithms’ performance are
sensitive to various hyperparameters, such as learning rate, dimension, and factor. Without a single
objective metric, pinpointing the optimal hyperparameters for a specific method becomes elusive.
As a result, comparing two methods based on a single set of hyperparameters oversimplifies the
evaluation process.

Performance Discrepancy Across Concepts. The models’ performances can differ substantially
across different concepts, whether these are trained in isolation or in tandem. This variance is
especially pronounced when comparing concepts that are fundamentally different or with differing
numbers of training images. Nonetheless, even when these factors are mitigated, discrepancies in
performance across concepts can still arise, as illustrated in Appendix G.1.

Influence of Dataset. In a similar vein, the composition of the dataset, including the images and
accompanying captions, exerts a significant influence on the performance of the fine-tuning model
(see Appendix H.3 for an illustration on the importance of having good captions). Additionally, the
nuances of each dataset may necessitate tailored approaches or specific configurations to achieve
optimal results. For instance, a larger training set or a dataset featuring concepts that diverge
substantially from the model’s pretrained knowledge may benefit from employing a model with
greater capacity. Thus, it is essential to adapt fine-tuning strategies to the particularities of the dataset
at hand.

Conflicting Criteria. There is an intrinsic trade-off between the various criteria under consideration.
We have particularly seen in Section 5.3 that models with higher concept fidelity often have lower
controllability, diversity, and base model preservation. Determining the optimal balance among these
criteria requires a nuanced, case-by-case analysis rather than a simple aggregation of metrics.

Unreliability of Evaluation Metrics. Despite the significant advancements in computer vision and
deep learning in recent years, the metrics we employ are still far from perfect. Often, these metrics
do not fully align with human judgement and may overlook nuanced details that define a concept, as
shown by Thrush et al. (2022); Yuksekgonul et al. (2023) and we further elaborate in Appendix G.2.
Additionally, a single numerical value can be insufficiently informative; for instance, a low image
similarity score could arise from either underfitting or overfitting.

Practical Considerations. In practice, a trained model often undergoes further adjustments. As
explained in Section 3.1, we can adjust the scaling factor of the fine-tuned weight differences ∆W ,
combine multiple trained networks, and apply the fine-tuned parameters to a different base model.
This is not to mention the influence of prompts and the potential for prompt engineering. All these
variables add layers of complexity to the evaluations.

In light of the aforementioned complexities, it becomes evident that assessing the effectiveness of fine-
tuning algorithms is a multifaceted challenge. While existing research often leans on a limited scope
of evaluation metrics, hyperparameters, and concept categories, such an approach risks not capturing
the full breadth and depth of these algorithms’ capabilities and inadvertently results in evaluations
that unfairly penalize certain methods. Therefore, we call upon the research community to build
upon our initial efforts by investing in the development of more extensive evaluation frameworks and
ecosystems for fine-tuned text-to-image models. These should aim to delve deeper into the subtleties
of various fine-tuning strategies, thereby promoting more robust and meaningful comparisons.

D Experimental Details

This part of the appendix offers detailed information about the experiments we conducted, ranging
from dataset specifics, algorithm settings, to details on the evaluation of the models.

D.1 DATASET

In this section, we provide more details on the composition of our dataset, the sources of the data,
and the captioning strategy.

Dataset Structure. Our dataset follows a hierarchical structure, as detailed in Tables 3 and 4. We
also include the count of images for each category, class, and subclass, as well as the number of
repeats for images in each class (used for dataset balancing) in these tables.
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Category Class Sub-class # of Images Repeat

Anime Characters

(571 images)

Yuuki Makoto 90 2
Kotomine Kirei N/A 51 4

Tushima Yoshiko 128 2

Ika Musume
Default outfit 118

Alternative outfit 20 1
Others 34

Abukuma (KanColle)
Dark color uniform 54
Light color uniform 48 2

Others 28

Movie Characters

(276 images)

K-2SO N/A 63 3

Admiral Piett
Figurine 13
Realistic 34 4
Others 2

Bodhi Rook

Figurine 11

3
Illustration 12
Realistic 34
Others 2

Saw Gerrera

Afro, illustration 4

4
Afro, realistic 23

Bald, 3d 10
Bald, realistic 7

Others 1

Illustration 10
3Rose Tico Realistic 45

Others 5

Styles

(776 images)

Ghibli

N/A

200 1
Ghibli 2 100 2

Old Book 100 2
Ukiyo E 87 2

Impressionism 101 2
Felix Vallotton 100 2

Vladimir Borovikovsky 88 2

Table 3: Summary of dataset composition—anime characters, movie characters, and styles.
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Category Class Subclass # of Images Repeat

Stuffed Toys

(53 images)

Tortoise

N/A

12 17
Pink 10 20

Panda 10 20
Bunny 7 29
Lobster 7 29

Teddy Bear 7 29

Scenes

(30 images)

Waterfall

N/A

9 22
Garden 7 29
Canal 5 40
Castle 5 40

Sculpture 4 50

Table 4: Summary of dataset composition—stuffed toys and scenes.

Data Sources. The images in our dataset originate from various sources to encompass a broad
range of styles and subjects.

• Images for anime characters are sourced from the DAF:re dataset (Rios et al., 2021).
• Movie character images are extracted from a public dataset available on Kaggle (Young, 2019).
• Scene and stuffed toy images are part of the CustomConcept101 dataset (Kumari et al., 2023).
• Style-related images are compiled from multiple sources, including the “new” WikiArt dataset (Tan

et al., 2019), the Old Book Illustrations dataset (gigant, 2007), and Studio Ghibli’s official website4.
For the images obtained from Studio Ghibli’s website, it is important to note that Studio Ghibli
specifies they should be used “with common sense” and are not intended for commercial use.5

Captioning. For captioning of our dataset, we employ a tagger with a ConvNeXt V2 architec-
ture (Woo et al., 2023), hosted on Hugging Face.6 This tagger is trained on the Danbooru dataset
(Anonymous et al., 2022). We set the threshold to 0.35 for our use. After the initial tagging phase,
we manually adjust the tags for all the images within the categories “scenes” and “stuffed toys”. As
for images of other categories, we filter out tags that are naturally bound to the target concept, such
as tags that represent hair color or gender. We also remove tags that are related to the corresponding
outfit for character outfit sub-classes.

Regarding class words and trigger words, we use unique tokens for each class and outfit sub-class,
leading to a total of 32 different tokens. The class word is set to one of the following: anime girl,
anime boy, robot, man, woman, scene, stuffed toy, or style. Sub-class keywords are used as is for
movie characters and otherwise formed by concatenating the relevant token with the word “outfit” for
the two anime characters in question. We do not use sub-class keywords for the sub-class “others”.
The final prompt consists of a string where the concept descriptor, sub-class keyword, and tags are
separated by commas. For illustration, an example is provided below:

“[Vabukuma] anime girl, [Vdark uniform] outfit, looking at viewer,
smile, simple background, full body, boots, black background”

A Note on Prior-Preservation Loss. The prior-preservation loss is frequently used in the literature
to enhance the model’s performance for generalization and concept-agnostic prompts, see e.g., Han
et al. (2023); Kumari et al. (2023); Ruiz et al. (2023). Specifically, this approach has proven effective
in mitigating unwanted concept drift and enriching the diversity of the generated images. Despite

4https://www.ghibli.jp/works/ (Accessed: 2023-07-16)
5Studio Ghibli’s original note in Japanese: ※画像は常識の範囲でご自由にお使いください。
6https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2 (Accessed:

April 22, 2023)
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these merits, we have opted not to incorporate the prior-preservation loss in our experiments for two
important reasons.

First, implementing this loss function necessitates the creation of a separate regularization dataset.
This can be a labor-intensive process, particularly in our case where the training set encompasses
a broad range of concept categories. While one could always build a regularization set using the
pretrained model, there remains the challenge of designing the prompts for generation and ensuring
the diversity and quality of the generated samples. Furthermore, some users would prefer the
fine-tuned model to produce samples distinct from those produced by the pretrained model.

Secondly, it is our hope that by focusing on this more challenging setup, we can better identify the
impacts of various algorithmic configurations and settings. In fact, with the prior-preservation loss
the model learns from both the training set and the regularization set, making the analysis of the
methods even more complicated.

D.2 ALGORITHM CONFIGURATION AND HARDWARE

This section details the configurations employed for training and image generation, as well as the
hardware specifications utilized in our experiments. The configuration files for fine-tuning can
also be found at https://github.com/cyber-meow/LyCORIS-evaluation/tree/
main/exp_configs/training_configs.

Base Model. As explained in Section 5, we perform fine-tuning on top of the non-EMA version
of Stable Diffusion 1.5, which can be accessed at https://huggingface.co/runwayml/
stable-diffusion-v1-5.

Shared Hyperparameters. The following hyperparameters are used throughout our experiments.

• Optimizer: We use 8-bit AdamW (Dettmers et al., 2022; Loshchilov & Hutter, 2019) with weight
decay 0.1, β1 = 0.9, β2 = 0.99, and a constant scheduler with 5 epochs of warm-up. Gradient
clipping is also applied, with a maximum gradient norm set to 1.

• Data: We load the data using aspect ratio bucketing with resolution set to 512. This ensures that
each image is resized to maintain its original aspect ratio as much as possible, while the new
height and width must be multiples of 64, and the new area must not exceed 512× 512. Batch
size is set at 8, and a caption-dropping rate of 5% is applied, meaning that empty captions are
used in the loss calculation with a 5% probability.

• Image generation: We use 25 steps of DDIM sampler (Song et al., 2021) with a CFG scale of 7.
All the generated images are of size 512× 512. No negative prompt is used.

Configuration-Dependent Hyperparameters. By default, we train all the linear layers of the text
encoder and U-Net, with a learning rate of 10−6 for native fine-tuning, and a learning rate of 5 · 10−4

for LoRA, LoHa and LoKr. The default dimension and alpha for LoRA and LoHa are respectively
(8, 4) and (4, 2). The default factor for LoKr is 8. Note that as explained in Section 3.2, it is also
possible to specify dimension for LoKr in LyCORIS, and this leads to a low rank decomposition
of the second block obtained from the Kronecker product decomposition. To avoid this behavior,
we need to set the dimension to a sufficiently large number. The hyperparameters for the remaining
experiments where we individually vary 1 to 2 hyperparameters are as specified in Section 5.3.2. The
same set of hyperparameters is applied to all the trained layers of the network. The resulting file
sizes, average training time, and approximate VRAM usage for each network configuration that we
consider are provided in Table 5.

Remark 1. The VRAM usage and training efficiency of the methods are influenced by various
factors, including their implementation and the underlying hardware specifics. Therefore, what we
provide here should just be treated as a reference and may not reflect the efficiency of these methods
in the latest version of the library.

Interestingly, LoRA training takes less time compared to LoHa and LoKr when convolutional layers
are involved, which is not the case when only linear layers are trained. To understand this, we
distinguish between two different ways to implement LoRA.
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Algorithm Trained Layers Dimension Factor File Size Time (hr) VRAM (G)

LoRA

Attention 8

N/A

4.4 M 4.2 13.6
Linear 8 9.2 M 4.9 16.2
Full 8 20 M 5.6 15.5

Linear 32 37 M 5 16.5

LoHa

Attention 4

N/A

4.4 M 4.3 14.5
Linear 4 9.3 M 4.9 15.2
Full 4 20 M 6.4 18.1

Linear 16 37 M 5 15.7

LoKr

Linear

N/A

12 6.4 M 4.4 15.8
Attention 8 3.8 M 3.9 14.5

Linear 8 11 M 4.5 15.5
Full 8 29 M 6 16.6

Linear 4 43 M 4.5 15.2

Native
Fine-Tuning

Attention
N/A N/A

233 M 4.4 14.9
Linear 672 M 3.9 17.6
Full 1.8 G 4.7 18.2

Table 5: Resulting file size (saved in fp16 format), average training time, and approximate VRAM usage from
different algorithm configuration that we consider. Note that among the hyperparameters that we consider, only
trained layers, dimension, and factor have the largest impact on these metrics.

1. We can first construct the matrix W0 +BA and then perform the forward pass (W0 +BA)h+b
with the entire matrix. This approach is generally more efficient for layers near the input and
output of the UNet due to larger batch sizes or sequence lengths.7

2. Alternatively, we can compute W0h and B(Ah) separately and sum them together, with the
latter implemented via two consecutive linear layers. This method is particularly beneficial for
layers in the middle of the UNet, where the latent resolution is lower, but the dimensions of the
unfolded convolutional layers are significantly larger.

We have implemented LoRA using the second approach, while for LoHa and LoKr, we construct the
weight matrix, so it is closer to the first approach described above. However, the second approach’s
advantage becomes more pronounced for convolutional layers in the middle layers of the UNet due
to their significantly larger dimensions. This explains why LoRA, implemented using the second
method, exhibits a relative advantage in training time when convolutional layers are involved.

Hardware and Library. We conduct all experiments on a Ubuntu Server equipped with four A6000
GPUs. For the training script, we re-use the public sourced code from kohaya-ss/sd-scripts8, version
0.6.5. After fine-tuning, we generate the images through the API provided by stable-diffusion-webui9.
Note that support for LyCORIS has been integrated as the default feature of stable-diffusion-webui
during paper writing. The versions of stable-diffusion-webu and LyCORIS are respectively 1.6.0 and
1.9.0.dev9. We adopt the Python 3.10 interpreter with Pytorch 2.0 (Paszke et al., 2019). Moreover, we
employ transformers 4.26 (Wolf et al., 2020), diffusers 0.10.2 (von Platen et al., 2022), and accelerate
0.15 (Gugger et al., 2022) for our experiment.

7Here, the term batch size may also refer to the redefined batch size after unfolding convolutional layers.
8https://github.com/kohya-ss/sd-scripts
9https://github.com/AUTOMATIC1111/stable-diffusion-webui
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For Anime and Movie Characters For Stuffed Toys
{} selfie standing under the pink blossoms of a cherry tree {} in grand canyon
{} in a chef’s outfit, cooking in a kitchen {} swimming in a pool
{} paddling a canoe on a tranquil lake {} sitting at the beach with a view of the sea
{} playing with their pet dog {} in times square
{} in an astronaut suit, floating in a spaceship {} in front of a medieval castle
{} dressed in a a firefighter’s outfit, a raging forest fire in the background {} wearing sunglasses
{} wearing Victorian-era clothing, reading a book in a classic British library {} working on the laptop
{} dressed as a knight, riding a horse in a medieval castle {} on a boat in the sea
{} kneeling under trees with aurora in the background {} wearing headphones
{} wearing red dress jumping in the sky in a rainy day {} lying in the middle of the road

For Styles For Waterfall
{} of a city skyline during sunset {} at dusk with the first rays of sunlight creeping in
{} of a bustling marketplace in the 1800s {} at night full of stars
{} of a lone tree standing in a vast desert A frozen {} in the winter season and snow all around
{} of children flying kites on a breezy day {} in a neon-lit cyberpunk cityscape
{} of a roaring lion in the heart of the jungle A golden retriever in front of the {}
{} of a mountain climber scaling a snowy peak A cat sitting in front of the {}
{} of a dancer lost in the rhythm of music {} with a vibrant rainbow arching across its mist
{} of a quaint countryside cottage surrounded by wildflowers {} in a fantasy world, with dragons flying around
{} of a serene monk meditating atop a hill A painter painting the scene of the {} on canvas
{} of a vintage car speeding along a coastal road {} of molten lava flowing down

For Canal For Garden
{} surrounded by towering skyscrapers {} with an active volcano in the background
{} against a backdrop of snow-capped mountains {} with night sky
{} under a star-filled night sky {} with cloudy sky
{} in the autumn season with colorful foliage {} with stone pillars and intricate carvings on it
{} with a hot air balloon drifting all over the sky A British shorthair cat sitting in front of {}
{} with a cobblestone bridge arching over the water A koala eating leaves in {}
{} with a rustic wooden boat gently floating in the water A red cardinal flying in {}
{} with a swan gliding gracefully in the water A rustic wooden swing in {}
{} with the water turned into liquid gold, reflecting the setting sun A laughing Buddha statue in {}
{} with the water replaced by a smooth pathway of glowing emeralds {} with yellow marigold flowers

For Castle For Sculpture
{} stands against a backdrop of snow-capped mountains {} at a beach with a view of the seashore
{} surrounded by a lush, vibrant forest {} in the middle of a highway road
{} in the autumn season with colorful foliage {} in Times Square
{} on a rocky cliff, with crashing waves below {} on the surface of the moon
{} surrounded by a field of grazing sheep A puppy in front of {} with a close-up view
{} overlooks a serene lake A cat sitting in front of {} in the snow
{} overlooks a serene lake, where a family of geese swims A squirrel in front of {}
{} guarded by mythical elves {} in snowy ice
A peacock in front of the {} {} made of metal
{}, made of crystal, shimmers in the sunlight {} digital painting 3D render in geometric style

Table 6: Evaluation prompts of type <alter> for image generation. {}’s are to be filled with concept descriptors.

D.3 EVALUATION PROMPTS

We provide below the complete list of the generalization prompts used in the generation of our
evaluation images. These prompts are formulated using natural language syntax, in contrast to the
tag-based structure used for training captions.

<Alter> Generalization Prompts with Content Alteration. The prompts of this type are organized
into 8 templates as shown in Table 6. Each template contains 10 prompts, and multiple (sub-)classes
use the same template. Many of these prompts are directly taken from the CustomConcept101 dataset.

<Style> Generalization Prompts with Style Alteration. For generalization prompts with style
alteration, we use a set of 5 prompts that are shared across all the classes, as listed below.

• {} in the style of pencil drawing

• {} in the style of watercolor painting

• {} in the style of Vincent Van Gogh

• {} in the style of Claude Monet

• {} in the style of pixel art
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Note that we do not generate images using <style> prompts for classes that fall under the “styles”
category and we do not generate images for sub-classes “others” that fall under the “movie charac-
ters” category. This results in a total of 14,900 generated images per checkpoint, as mentioned in
Section 5.2.

D.4 EVALUATION METRICS

The metrics we examine are built upon two fundamental elements: a lower-dimensional representation
space and simple, analytically defined functions operating within that space. We use an encoder
to project images into this representation space, which is intended to capture perceptual relevance
that is broadly applicable to a wide array of images. Following this transformation, we compute
the analytically defined functions within this embedding space. In this way, the functions and the
encoders can be discussed separately, and in this section, our primary focus is on these functions,
assuming that the features for both images and text are readily given.

Image Similarity. Given two sets of images with their corresponding features Z1 = {z1i }ni=1 and
Z2 = {z2i }mi=1, the average cosine similarity between the two sets is computed as

SC(Z1,Z2) =
1

nm

n∑
i=1

m∑
j=1

⟨z1i , z2j ⟩
∥z1i ∥∥z2j ∥

=
1

nm

n∑
i=1

m∑
j=1

⟨ẑ1i , ẑ2j ⟩, (22)

where for a vector z we define ẑ = z/∥z∥ as its normalized vector. We also define

z̄1 =
1

n

n∑
i=1

ẑ1i and z̄2 =
1

m

m∑
i=1

ẑ2i .

These are the centroids of the normalized vectors. The centroid distance that we consider in our
experiments is given by

distcent(Ẑ1, Ẑ2) = ∥z̄1 − z̄2∥.

In the above, we write Ẑ1 and Ẑ2 for the sets of normalized vectors. It is worth noticing that with
Var(Z) denoting the variance of set Z , it holds that

1− SC(Z1,Z2) =
1

2

(
∥z̄1 − z̄2∥2 +Var(Ẑ1) + Var(Ẑ2)

)
. (23)

The above formula reveals that average cosine similarity inherently rewards image sets with lower
diversity, as mentioned in Section 5.3.2. This insight compels us to consider squared centroid distance
as a complementary measure. Specifically, we utilize squared centroid distance when contrasting
results against the Vendi scores of the images to remove the aforementioned bias.

Text-Image Alignment. Let Z image = {zimage
i }ni=1 be the features of a set of images and Z text =

{ztext
i }ni=1 be the features of their corresponding prompts. To evaluate text-image alignment, we

compute the cosine similarity between an image and its corresponding prompt and average the results.
This gives

S′
C(Z image,Z text) =

1

n

n∑
i=1

⟨zimage
i , ztext

i ⟩
∥zimage

i ∥∥ztext
i ∥

.

Moreover, in our experiments, we process the prompts as following before feature encoding:

• For anime and movie characters, we remove trigger words and retain class words.
• For scenes and stuffed toys, we replace trigger words with the corresponding class names, as given

in Table 4.
• For styles and outfit sub-classes, we remove both trigger words and class words. Any extra

commas or prepositions that remain are also removed.

Diversity. We employ the Vendi score, as proposed by Friedman & Dieng (2023), to assess the
diversity within a set of images. Given the images’ features Z = {zi}ni=1, the definition of the Vendi
score relies on the eigenvalues λ1, . . . , λn of a matrix K/n, where K is a kernel matrix constructed
using a positive semi-definite kernel function k. More precisely, the entries of K are calculated as
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Kij = k(zi, zj). In this work, we specifically employ a linear kernel between normalized vectors to
compute the entries of the kernel matrix, i.e.,

k(z, z′) =
⟨z, z′⟩
∥z∥∥z′∥

.

With these in mind and using the convention 0 log 0 = 0, the Vendi score of the feature set is given by

VS(Z) = e−
∑n

i=1 λi log λi .

The Vendi score can be interpreted as the “effective number of modes” within the feature set. In
particular, it is more sensitive to changes in the number of modes compared to the intra-dissimilarity.
See also Stein et al. (2023) and our experiments in Appendix H.1 for further support for the use of
the Vendi score.

Style Loss. Unlike the metrics described above, the style loss introduced by Johnson et al. (2016),
is intrinsically associated with a specific encoder: the VGG network (Simonyan & Zisserman, 2015).
For its computation, we use feature maps from several convolutional layers to extract information.
In particular, we select the layers conv1_1, conv2_1, conv3_1, conv4_1, and conv5_1 from a
pretrained VGG-19 network in our experiments.10 Each of these layers provides an output with a
shape of ci ×hi ×wi, where i identifies the particular layer (ranging from 1 to 5 in our setup), and ci,
hi, wi represent respectively the number of channels, the height, and the width of the feature maps.
These outputs are further reshaped to matrices ψi(x) of shape ci × hiwi, where x represents the
image in input. Following the reshaping, we calculate the corresponding normalized Gram matrices

Gi(x) =
1

cihiwi
ψ(x)ψ(x)⊤.

Finally, to obtain the style loss, we compute the squared Frobenius norm of the differences between
the Gram matrices of the two images. This is done for each selected layer, and the results are summed,
leading to

Lstyle(x, x
′) =

5∑
i=1

∥Gi(x)−Gi(x
′)∥2.

Importantly, as the VGG network can take images of any resolution in input (as long as the short edge
has at least 224 pixels) and the size of the gram matrices does not depend on the size of the input
images, we can compute the style loss between two images of different resolutions. In our evaluation
of base model preservation, we compute the style losses between pairs of images generated from
identical prompts and seeds but differing in whether the model is fine-tuned or not. We then average
these individual style losses to arrive at a single metric for each (sub-)class.

D.5 ENCODERS

For the computation of image similarity and Vendi score, we consider three different encoders:
DINOv2 (Oquab et al., 2023), CLIP (Radford et al., 2021), and ConvNeXt V2 (Woo et al., 2023).
This choice is motivated by Stein et al. (2023), where the authors compared a number of encoders and
concluded that DINOv2, CLIP VIT-L/14, and MAE (He et al., 2022) are much better at extracting
high-level representations that align with human perception. In particular, they showed that the
Fréchet distance (Dowson & Landau, 1982; Heusel et al., 2017) measured in the representation space
of these networks are more correlated with human error rate in distinguishing real from fake images,
compared to other networks they examined. Although ConvNeXt V2 was not considered by Stein
et al. (2023), we include it in the correlation analysis of Appendix E for it being itself an improvement
over MAE. We use models of size “L” throughout our work.

As for the main experiments, we opt for DINOv2 as our encoder for evaluating image similarity
and Vendi scores following the recommendation of Stein et al. (2023). To accommodate DINOv2’s
input resolution, all the images are padded (in cases where the image is non-square) and resized to
dimensions of 224× 224.11 On the other hand, among the aforementioned encoders, CLIP is the only

10https://pytorch.org/vision/main/models/generated/torchvision.models.
vgg19.html (Accessed: 2023-08-16)

11The impact of the resizing method is also investigated in Appendices E and H.1
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one that can be used to evaluate text-image alignment. More details on the used pretrained networks
are provided below.

• DINOv2: We use the original pretrained DINOv2 VIT-L/14 model available via PyTorch Hub.12

• CLIP: Following Stein et al. (2023), we use the OpenCLIP ViT-L/14 implementation (Ilharco
et al., 2021) trained on DataComp-1B (Gadre et al., 2023), which is reported to be the best CLIP
ViT-L/14 model in the OpenClip library. We use the image features that are obtained after the
final projection layer.

• ConvNeXt V2: We load the pretrained convnextv2_large.fcmae_ft_in22k_in1k_384 check-
point using the timm toolkit (Wightman, 2019). The pre_logits features are used.

D.6 METRIC VALUE PROCESSING

In this section, we discuss in detail how the resulting metric values are processed and analyzed.

Normalization and Aggregation. To account for the varying ranges of metric values across
different classes and sub-classes, we employ a rank-based normalization technique. Specifically,
for each metric value (e.g., average cosine similarity between dataset and generated images, Vendi
score) computed for a given class or subclass and a specific type of prompt, we rank it against other
metric values computed with the same metric, for the same class or sub-class and prompt type, but
for different checkpoints. This allows us to assign a normalized score to each metric value, with the
highest-ranking score set to 1 and the lowest set to 0. These normalized scores are equally distributed
between 0 and 1. This rank-based normalization is motivated by our focus on relative performance
and enables more equitable comparisons across varying classes.

Building upon the above, we then first average the normalized scores across sub-classes of the same
class and then average across different classes within the same category. For the scatter plots, we
also average these scores across random seeds, and the error bars indicate the standard error of these
scores across both random seeds and classes.

SHAP Analysis. The SHAP analysis is performed on the average normalized scores for each
category. As shown in Figure 2, we consider 5 dependent variables: algorithm, trained layers,
epoch, capacity, and learning rate level. Among these, algorithm and trained layers are treated as
categorical features, while the remaining ones are treated as numerical features. The learning rate
level is set to either 1, 2, or 3, corresponding to the smallest, intermediate, and largest learning
rates considered for each algorithm. As for the capacity variable, we assign a value of 1 for default
hyperparameters and 2 for configurations with altered dimensions and factors in LoRA, LoHa, and
LoKr. However, LoRA and LoHa configurations with higher dimensions and an alpha of 1, along with
LoKr configurations with a factor of 12, are excluded from the SHAP analysis. It is also important to
note that the capacity variable is not meaningful for native fine-tuning. To accommodate this, we
designate a capacity value of 3 for all native fine-tuning configurations, and subsequently adjust the
SHAP value for the algorithm variable by adding up the SHAP value from the capacity variable for
these configurations.

Due to the presence of categorical feature, we used CatBoostRegressor for the analysis.13 We set
iterations to 300 and the learning rate to 0.1 while leaving the remaining hyperparameters untouched.

E Correlation Analysis

In our study, we are faced with a plethora of metrics that could be considered for evaluating the
models. Moreover, the precise definitions and computation of these metrics can vary depending on
factors like the encoder used or the resizing methods applied. Given this complexity, we are interested
in the following two main questions: how do these variables affect the results, and what relationships
exist between different metrics? To answer these, we go beyond the metrics studied in Section 5.3
and present a comprehensive correlation analysis in this appendix.

12https://github.com/facebookresearch/dinov2 (Accessed: 2023-08-14)
13https://catboost.ai/en/docs/concepts/python-reference_

catboostregressor (Accessed: 2023-08-25)
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(a) Correlation matrix heatmap for
image similarity.

(b) Correlation matrix heatmap
for image similarity based on
squared centroid distance.

(c) Correlation matrix heatmap for
Vendi score.

Figure 5: Pearson correlation for metrics computed using different encoders and resizing methods, evaluated on
images generated from different types of prompts (best viewed when zoomed in).

Resizing Methods. Given a target resolution s, we consider four different methods for resizing a
rectangular image.

• Scale: The image is resized such that the smaller edge matches the target resolution while
preserving the original aspect ratio.

• Letterbox: This method adds black-colored padding around the original image to fit it within the
target resolution, preserving the aspect ratio of the original image.

• Center Crop: After scaling the image, the central part fitting within the target resolution is
retained, and the outer portions are cropped away.

• Stretch: The original image is stretched or compressed to fit the target resolution, potentially
causing distortion as the aspect ratio is not preserved.

It is important to note that while the last three methods produce images with dimensions of s× s,
the “scale” method maintains the original aspect ratio. Therefore, “scale” is only applicable when
the encoder can accept rectangular images. For this reason, in our experiments, we use the “scale”
method exclusively for ConvNeXt V2 and Vgg19 (the latter is used in the computation of style
loss). The “stretch” method is applied for DINOv2 and CLIP. Both “letterbox” and “center crop”
(abbreviated as “crop” in the figures) are tested across DINOv2, CLIP, and ConvNeXt V2.

Implementation Details. We compute the Pearson correlation coefficients of the normalized scores.
We do not perform aggregation across classes or sub-classes before the computation.

E.1 INFLUENCE OF ENCODERS, RESIZING METHODS, AND PROMPT TYPES

We first investigate the influence of the choice of encoder and resizing method. To this end, we
compute two types of image similarity (based on either average cosine similarity or squared centroid
distance as discussed in Appendix D.4) and the Vendi score using different encoders and resizing
methods. Note however that as our generated images are all squares, the difference in resizing
methods only matters when dataset images are also included in the computation in the metrics (which
is not the case for Vendi score). Moreover, for the computation of Vendi score on images generated
from the prompts of type <alter>, we first compute the Vendi score for each unique prompt before
averaging them to form a single score for each class or sub-class.

The results of the correlation analysis are presented in Figure 5. Generally speaking, we can see that
that the choice of resizing method has little influence on the outcomes, with correlation coefficients
ranging between 0.95 and 1. While the choice of encoder has a greater influence, the resulting
metrics still exhibit strong positive correlations (typically between 0.65 and 0.9). In particular, we
observe a higher correlation between image similarity metrics calculated with different encoders
when images are generated using generalization prompts, as opposed to using training prompts
or prompts containing only the concept descriptor. We believe that this occurs because the image
similarity score in the former cases is primarily influenced by how closely the generated images
adhere to either the prompts or the dataset images. This overarching trend can be readily discerned
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(a) Correlation matrix heatmap for
image and text similarity metrics
on <train> prompts.

(b) Correlation matrix heatmap for
image and text similarity met-
rics on <alter> prompts.

(c) Correlation matrix heatmap for
the main metrics studied in this
work.

Figure 6: Pearson correlation for the main metrics studied in this work (best viewed when zoomed in). SCD
stands for squared centroid distance.

regardless of the encoder used. Conversely, for training prompts and simple captions containing only
the concept descriptor, a more nuanced analysis is required to gauge image similarity, making the
choice of encoder more critical.

Finally, we observe a lower positive correlation (often below 0.5) between metrics evaluated on
images generated from different prompt types. This suggests that model rankings could vary consid-
erably depending on the types of prompts under consideration, highlighting again the importance of
evaluating images generated by each type of prompt individually. Interestingly, utilizing the CLIP
encoder tends to yield the highest correlations across images generated using different prompt types.

E.2 RELATION BETWEEN DIFFERENT METRICS

We next examine how the various types of metrics under consideration relate to each other. The
results are shown in Figure 6. Since our primary focus here is on the metrics used in Section 5.3, we
employ DINOv2 as the encoder for the computation of image similarity and Vendi score, and we use
letterbox resizing to resize dataset images to the target resolution when computing image similarity.

As we can see from Figures 6a and 6b, text and image similarity metrics exhibit a strong negative
correlation when generalization prompts are used to generate images. However, this correlation
weakens considerably when training prompts are utilized. This suggests again that the trade-off
between producing images that look similar to those in the training set and producing images that
follow the prompts is much easier to be evaluated by the considered metrics. Finally, we make
two observations in Figure 6c. First, the correlation between Vendi score, text similarity, and base
model style preservation (as measured by the style loss) is relatively weak, even though they are
all negatively correlated with image similarity. This underscores the fact that these metrics serve
as distinct indicators of model performance and should be independently evaluated. Secondly, we
observe that the correlation between Vendi score and image similarity weakens when the latter is
assessed using squared centroid distance. This observation is consistent with our prior discussion in
Appendix D.4 and validates our decision to contrast diversity against image similarity as measured
by squared centroid distance in Figure 2.

F Supporting Plots

To substantiate the claims made in Section 5.3, we include in this section a comprehensive set of plots
for the key metrics under review. This set comprises both the beeswarm plots showcasing the SHAP
values and the scatter plots contrasting various metrics. Among these, we have made the decision to
omit the scatter plots for the epoch 30 checkpoints, as we believe that the plots for epochs 10 and
50 are sufficient to demonstrate the sensitivity of the results to the number of training epochs. As in
Section 5.3, these plots are organized according to concept categories.
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It is important to acknowledge that some discrepancies do arise when comparing these plots to the
principles laid out in Section 5.3. Upon closer examination, we categorize these discrepancies into
two groups. First, there are genuine deviations, which indicate that the models behave in ways not
entirely captured by our initial guidelines. Second, there are metric-induced deviations, which arise
from the limitations or biases in the metrics themselves. As we explore the plots by category in the
remainder of this section, we will briefly touch upon some of these discrepancies. Further elaboration
on the genuine deviations, supported by qualitative examples, are presented in Appendix G.4.
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F.1 PLOTS FOR CATEGORY “MOVIE CHARACTERS”

The plots for the “movie characters” category are shown in Figures 7 to 9. These results largely
align with our general guidelines. Specifically, we observe that for generalization prompts with
content alteration, LoKr exhibits high image similarity and low text similarity at lower epochs, while
LoRA achieves similar result at higher training epochs.
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Figure 7: SHAP beeswarm charts for the category “Movie Characters” showing the impact of diverse algorithm
factors on the evaluation metrics. LoRA is in blue, LoHa is in purple, LoKr is in purple red, and native
fine-tuning is in red.
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Figure 8: Scatter plots comparing different evaluation metrics for the category “Movie Characters”, with
variations across algorithms and learning rates. As in Section 5.3, in the middle column we use squared centroid
distance (SCD) to measure image similarity.
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Figure 9: Scatter plots comparing different evaluation metrics for the category “Movie Characters”, with
variations across algorithms and either i) top: number of training epochs, ii) middle: trained layers, or iii) bottom:
dimensions, factors, and alphas.
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F.2 PLOTS FOR CATEGORY “SCENES”

The plots for the “scenes” category are shown in Figures 10 to 12. As both the checkpoints after 30
and 50 epochs are severely overtrained for this category, we only consider the epoch 10 checkpoints
when performing SHAP analysis. Again, the results mostly agree with the claims made in Section 5.3,
though the difference between LoRA and LoHa are less pronounced here. We do however note that
LoRA now has the best base model style preservation among all the algorithms. The qualitative
comparison in Appendix G.4.1 further validates this observation.
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Figure 10: SHAP beeswarm charts for the category “Scenes” showing the impact of diverse algorithm factors on
the evaluation metrics. LoRA is in blue, LoHa is in purple, LoKr is in purple red, and native fine-tuning is in red.
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Figure 11: Scatter plots comparing different evaluation metrics for the category “Scenes”, with variations across
algorithms and learning rates. As in Section 5.3, in the middle column we use squared centroid distance (SCD)
to measure image similarity.
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Figure 12: Scatter plots comparing different evaluation metrics for the category “Scenes”, with variations across
algorithms and either i) top: number of training epochs, ii) middle: trained layers, or iii) bottom: dimensions,
factors, and alphas.
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F.3 PLOTS FOR CATEGORY “STUFFED TOYS”

The plots for the “stuffed toys” category are shown in Figures 13 to 15. Following the reasoning
of Appendix F.2, the SHAP analysis is only conducted with epoch 10 checkpoints. For the most
part, these plots corroborate the statements of Section 5.3. Although the evaluation metrics indicate
that training LoRA leads to greater diversity at the expense of base model style preservation, this
trend is not visually discernible in the generated images. Another interesting observation is the
significant improvement in base model style preservation for LoKr when the factor is decreased,
which corresponds to an increase in model capacity. We further investigate this phenomenon in
Appendix G.4.3.
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Figure 13: SHAP beeswarm charts for the category “Stuffed Toys” showing the impact of diverse algorithm
factors on the evaluation metrics. LoRA is in blue, LoHa is in purple, LoKr is in purple red, and native
fine-tuning is in red.
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Figure 14: Scatter plots comparing different evaluation metrics for the category “Stuffed Toys”, with variations
across algorithms and learning rates. As in Section 5.3, in the middle column we use squared centroid distance
(SCD) to measure image similarity.
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Figure 15: Scatter plots comparing different evaluation metrics for the category “Stuffed Toys”, with variations
across algorithms and either i) top: number of training epochs, ii) middle: trained layers, or iii) bottom:
dimensions, factors, and alphas.
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F.4 PLOTS FOR CATEGORY “ANIME CHARACTERS”

The plots for the “anime characters” category are shown in Figures 16 to 18. As we will discuss in
Appendix G.2, the metrics that we consider are less suitable for this category. There are thus a number
of inconsistencies with our general guidelines that can be attributed to the limitations of these metrics,
especially for the image similarity of images generated from training prompts. In spite of this, it
could still be surprising to see that text-image alignment for generalization prompts gets improved
over training. Our qualitative results in Appendix G.4.2 suggest that this can indeed happen.
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Figure 16: SHAP beeswarm charts for the category “Anime Characters” showing the impact of diverse algorithm
factors on the evaluation metrics. LoRA is in blue, LoHa is in purple, LoKr is in purple red, and native fine-
tuning is in red.
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Figure 17: Scatter plots comparing different evaluation metrics for the category “Anime Characters”, with
variations across algorithms and learning rates. As in Section 5.3, in the middle column we use squared centroid
distance (SCD) to measure image similarity.
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Figure 18: Scatter plots comparing different evaluation metrics for the category “Anime Characters”, with
variations across algorithms and either i) top: number of training epochs, ii) middle: trained layers, or iii) bottom:
dimensions, factors, and alphas.

44



Published as a conference paper at ICLR 2024

F.5 PLOTS FOR CATEGORY “STYLES”

The plots for the “styles” category are shown in Figures 19 to 21. These plots differ from the plots
for the other categories in the two following ways: First, we also use average style loss to evaluate
concept fidelity. For consistency, in the plots, we still use “Image Similarity” to refer to the average
cosine similarity measured in the DINOv2 feature space, and we use “Style Similarity” to refer to the
similarity measured by the average style loss between dataset and generated images. Second, we do
not measure base model style preservation here.

As we can see in the plots, the tendency suggested by the two different ways to measure fidelity do not
always agree, and violations of the claims made in Section 5.3 are common. In fact, despite the seemly
advantage of using style loss to measure style similarity as we will demonstrate in Appendix H.1,
we recognize this metric may still fall short of capturing all the nuanced elements that should be
considered when comparing styles reproduced by different models. Furthermore, the very notion of
what we refer to as “style” is inherently ambiguous and may require more specific and finely detailed
methods of study. Consequently, it becomes challenging for us to render a definitive judgment on this
topic. For illustration, some generated images for this category are shown in Appendix G.5.
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Figure 19: SHAP beeswarm charts for the category “Styles” showing the impact of diverse algorithm factors on
the evaluation metrics. LoRA is in blue, LoHa is in purple, LoKr is in purple red, and native fine-tuning is in red.
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Figure 20: Scatter plots comparing different evaluation metrics for the category “Styles”, with variations across
algorithms and learning rates.
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Figure 21: Scatter plots comparing different evaluation metrics for the category “Styles”, with variations
across algorithms and either i) top: number of training epochs, ii) middle: trained layers, or iii) bottom:
dimensions/factors, and alphas.
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G Further Qualitative Results

In this section, we include an extensive set of qualitative results to support the claims that we
have made throughout the paper. We highlight especially the challenges in algorithm evaluation,
the prevailing trends related to the impact of different algorithmic factors, and some noteworthy
deviations from these general principles. As for the prompts that are used to generate these images,
please refer to Appendix D.3.

G.1 DISCREPANCY OF RESULTS ACROSS CLASSES

We have seen in Section 5.3 and Appendix F that the performance of an algorithm can vary greatly
across different concept categories. This variability is due to both differences in the number of
training samples as well as intrinsic differences in the complexities of the concepts themselves. In
Figures 22 and 23, we further demonstrate that such discrepancies can still occur even among classes
with the same type of objects and comparable number of images. In Figure 22, the left model learns
the “lobster stuffed toy” concept better, while the right model has more success with the “panda
stuffed toy” concept. In Figure 23, the left model allows to generalize the “canal” concept to broader
contexts while the right model has more flexibility when dealing with the “garden” concept.

G.2 UNRELIABILITY OF METRICS

While it is expected that the considered metrics may not always give results that align with human
perception, it remains the hope that these deviations are simply “noises” that can be averaged out
when we perform the evaluation on a large number of images. Unfortunately, this is not necessarily
the case. For example, CLIP score for measuring text-image alignment often fails to understand
compositional relationships between objects or attributes (Thrush et al., 2022; Yuksekgonul et al.,
2023). Here, we further demonstrate that the image similarity metrics we consider may have some
inconsistencies in fully capturing the nuances of likeness across various image types, and this becomes
more noticeable for categories that are less commonly seen during the pretraining of the encoders.
Concretely, Figure 17 suggests that a model trained with native fine-tuning at a learning rate of
5 · 10−6 has the lowest image similarity for images generated with training prompts in the “anime
characters” category. On closer inspection, we find this is misleading. A specific example is given
in Figure 24, where we demonstrate that none of the encoders we consider could accurately assess
similarity in anime character appearance.

Such observations caution against an over-reliance on metrics, and emphasize the importance of
using task-relevant metrics and encoders. In particular, the metrics we consider in our work may not
be nuanced enough for specialized applications.

G.3 ILLUSTRATING THE IMPACT OF DIFFERENT ALGORITHM COMPONENTS

In this part, we illustrate the general principles that we established in Section 5.3 through qualitative
examples of three (sub-)classes: Abukuma [dark color uniform], Bohdi Rock [realistic], and castle.
Example images for these three (sub-)classes are provided in Figure 25.

G.3.1 A CASE STUDY ON SUB-CLASS “ABUKUMA [DARK COLOR UNIFORM]”

It is known that Stable Diffusion 1.5 does not perform well in generating anime-style images.
Moreover, complex outfits are generally hard to learn. With these in mind, we believe that the
uniforms of “Abukuma” would be a good test bed to evaluate the methods’ capacity in learning more
difficult concepts. We visualize the images generated with the prompt “[Vabukuma] anime girl,
[Vdark uniform] outfit” in Figure 26 (we consider the epoch 50 checkpoints here for they being
the ones that are the most trained). Although none of the models can perfectly reproduce the outfit,
we do notice that a number of them can generate quite similar uniforms. This includes LoRA and
LoKr trained with default parameters, and native fine-tuning with learning rate 5 · 10−6. For LoHa,
among all the considered configurations, only increasing both dimension and alpha allows us to learn
the outfit to some extent. For LoRA and LoKr, with the hyperparameters that we consider, fine-tuning
only the attention layers is however not sufficient for learning the appearance of the outfit.

47



Published as a conference paper at ICLR 2024

Figure 22: Example generations for “lobster” and “panda” classes using two 10 epoch checkpoints trained with
different algorithm configurations. The first 5 prompts of type <alter> are used to generate these samples.

Figure 23: Example generations for “canal” and “garden” classes using two 10 epoch checkpoints trained with
different algorithm configurations. The first 5 prompts of type <alter> are used to generate these samples.
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Figure 24: An illustrative example showing that image similarity scores could be misleading. Here, we compute
the average cosine similarity between the features of the generated images and of the reference image shown on
the left top corner. We consider images generated from two epoch 50 checkpoints. No matter what encoder we
use, we get a higher score for the top model. Nonetheless, looking closely at the hairstyle, the outfit, and the
armband, one would conclude that the bottom model performs better in generating the same character.
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Abukuma [dark color uniform] Bohdi Rook [realistic] castle

Figure 25: Example training images for the three (sub-)classes studied Appendix G.3.

LoRA, dim 8, alpha 4 LoRA, dim 32, alpha 16 LoRA, dim 32, alpha 1 LoRA, attn-only

LoKr, factor 8 LoKr, factor 4 LoKr, factor 12 LoKr, attn-only

LoHa, dim 4, alpha 2 LoHa, dim 16, alpha 8 LoHa, dim 16, alpha 1 LoHa, full network

LoHa, lr 10−3 Native Native, full network Native, lr 5 · 10−6

Figure 26: Example generations for “Abukuma [dark color uniform]” from checkpoints trained with different
configurations. The images are generated with only the concept descriptor (i.e., trigger and class words) as
input. These checkpoints are obtained after 50 training epochs and the default hyperparameters are used unless
otherwise specified. Models that learn this concept more successfully are marked with red frames.
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G.3.2 A CASE STUDY ON CLASS “CASTLE”

We next zoom in on the learning of the class “castle”. We first present a number of failure cases in
Figure 27. For models with higher capacity, we observe an increased tendency for mode collapse
and artifacts that arise from overtraining (the latter, of course, can potentially be avoided by reducing
the number of training epochs). On the other hand, when the learning rate is too small, even with
native fine-tuning, we may fail to learn the concept correctly, and this cannot be solved with a larger
number of training epochs. In particular, we see that after 50 epochs of native fine-tuning at learning
rate 10−6, the image quality already gets compromised while the concept is still barely learned.

LoHa, dim 16, alpha 8 LoKr, factor 4 Native, lr 10−6 Native, lr 10−6, 50 epochs

Figure 27: Illustrations of typical failures that we may encounter during concept customization. This includes
mode collapse (leftmost), overtraining artifact (second to the left), and underfitting (right two). These images are
generated for class “castle” with prompts of type <alter>. The left three models are trained for 10 epochs.

The generated images of several other models are presented in Figures 29 to 32 (we show the results
obtained from the epoch 10 checkpoints as 30 epochs systematically cause overtraining for this
concept). First, comparing LoRA, LoHa, LoKr trained with default hyperparameters and native
fine-tuning with learning rate 5 · 10−6, we can see that LoKr and LoHa respectively give the most
and the least fitted model. This can be adjusted by modifying the hyperparameters. In particular, we
show in these figures that a LoRA with higher model capacity (higher dimension and alpha) would
be more fitted than a LoKr with lower model capacity (higher factor).

Another observation from these figures is the occurrence of concept leaks from other classes. For
instance, elements like waterfalls and sculptures from two other classes (illustrated in Figure 28)
appear in several generated samples in Figure 31. This leakage appears to stem from either the word
“forest” or “peacock”, and is more pronounced in models that are more fitted to the concepts. Notably,
this phenomenon is less observed in LoHa, LoKr with a factor of 12, and native fine-tuning.

waterfall sculpture

Figure 28: Examples training images for the two classes “waterfall” and “sculpture”.

G.3.3 A CASE STUDY ON SUB-CLASS “BODHI ROOK [REALISTIC]”

Here, we turn our attention to the generation of photorealistic images of Bodhi Rook, with sample
generations shown in Figures 33 to 36. We find most models perform equally well in generating
the character (while some details may still be to desired, we leave the judgement to the readers).
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(a) LoRA with dimension 32, alpha 16 (b) LoKr with factor 12

(c) LoRA (d) LoKr

(e) LoHa (f) Native fine-tuning with learning rate 5 · 10−6

Figure 29: Synthetic images of class “castle” that are generated using the prompts of type <train>. The models
are trained for 10 epochs and the default hyperparameters are used unless otherwise specified.
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(a) LoRA with dimension 32, alpha 16 (b) LoKr with factor 12

(c) LoRA (d) LoKr

(e) LoHa (f) Native fine-tuning with learning rate 5 · 10−6

Figure 30: Synthetic images of class “castle” that are generated using the prompts of type <trigger>. The
models are trained for 10 epochs and the default hyperparameters are used unless otherwise specified.
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(a) LoRA with dimension 32, alpha 16 (b) LoKr with factor 12

(c) LoRA (d) LoKr

(e) LoHa (f) Native fine-tuning with learning rate 5 · 10−6

Figure 31: Synthetic images of class “castle” that are generated using the prompts of type <alter>. The models
are trained for 10 epochs and the default hyperparameters are used unless otherwise specified.
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(a) LoRA with dimension 32, alpha 16 (b) LoKr with factor 12

(c) LoRA (d) LoKr

(e) LoHa (f) Native fine-tuning with learning rate 5 · 10−6

Figure 32: Synthetic images of class “castle” that are generated using the prompts of type <style>. The models
are trained for 10 epochs and the default hyperparameters are used unless otherwise specified.
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Nonetheless, the models that are considered to be “more fitted”, such as LoRA and LoKr with default
hyperparameters, and native fine-tuning with learning rate 5 · 10−6 would have a higher tendency to
generate clothes that look similar to those in the dataset, even when it is asked to generate a different
outfit, as seen in the “chef’s outfit” examples in the second row of each image grid in Figure 35. In
spite of this, these models are still flexible enough to capture other elements of the prompts, such as
backgrounds, like cherry blossoms, poses, like kneeling, or interactions, like playing with dogs.

Yet another way to distinguish between these groups of models is to look at image diversity when
we only prompt with the concept descriptor “[Vbodhi rook] man, realistic”. Models with
lower learning rate (LoKr with learning rate 10−4, native fine-tuning with default learning rate 10−6)
and LoHa clearly have more diverse generations as can be seen from Figure 34. It is worth noticing
that it may not always be possible to really compare the diversity of two sets of images, as one set
may be more diverse in background while the other being more diverse in pose, but this does not
seem to be the case here. Finally, we do observe that native fine-tuning seems to yield models with
the best base model style preservation for this sub-class, no matter whether we train with learning
rate 10−6 or 5 · 10−6, as shown in Figure 36.

G.4 VIOLATIONS OF THE GENERAL PRINCIPLES

The goal of this section is to showcase a number of violations to the general principle that we
outlined in Section 5.3. Such exceptions indicate that we are still far from having a comprehensive
understanding of the myriad factors that influence the fine-tuning process.

G.4.1 LORA WITH BETTER STYLE PRESERVATION FOR “CANAL” AND “WATERFALL”

We have seen in Figure 36 that for the sub-class “Bodhi Rook [realistic]”, native fine-tuning seems
to perform the best in terms of base model style preservation. Nonetheless, the plots shown in
Appendix F.2 suggest that this would not be the case for the “scenes” category. Instead, the metrics
suggest that LoRA has the best base model style preservation in this case. Upon visual inspection,
we confirmed that this is indeed the case, as evidenced by the examples provided in Figure 37. This
observation highlights the benefits of reducing the number of fine-tuned parameters especially when
working with a small dataset.

G.4.2 IMPROVED CONTROLLABILITY OVER TRAINING

Although more training would generally increase concept fidelity at the expense of controllability,
this rule does not hold universally. For example, Figures 16 to 18 in Appendix F.4 suggest that, when
considering the “anime characters” category, the models’ text-image alignment for generalization
prompts actually improves with more training. While the difference is rather subtle, we do observe
this for several configurations as shown in Figures 38 and 39. Specifically, note how “Tsushima
Yoshiko” is more likely to be depicted riding a horse, as indicated by the prompt in Figure 38 after
longer training (8th row of the grids). Similarly, “Yuuki Makoto” dons a more accurate space suit
when LoKr undergoes more training, as shown in the 5th row of the grids in Figure 39. This tendency
might be linked to the fact that Stable Diffusion 1.5 struggles with generating anime-style images.
For these specific concepts, it appears that the models need to overfit before generalize.

In a related vein, this phenomenon bears similarities to what is described as grokking (Power et al.,
2022) or double descent (Nakkiran et al., 2021) in the literature. More compelling evidence for this
comes from training LoHa with a dimension of 16 and an alpha value of 8. Here, the overfit-then-
generalize effect is not confined to the “anime characters” category but becomes more pronounced
across all classes. Initially, after 10 epochs of training, the model barely reacts to the prompts.
However, its generalization capabilities show a significant improvement after 50 epochs of training.
An illustration of this is given in Figure 40. It is also worth noticing that this behavior is consistent
across all three runs trained with identical configurations but different random seeds, suggesting that
this is not merely coincidental. Indeed, this trend is also manifested in our plots in Appendix F. In the
10-epoch plots, the point representing this configuration, denoted by a yellow triangle, consistently
occupies the upper-left corner when comparing “image similarity <alter>” against “text similarity
<alter>”, while in the 50-epoch plots, this point shifts towards the lower-right corner.
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(a) LoRA (b) LoHa

(c) LoKr (d) Native fine-tuning

(e) LoKr with learning rate 10−4 (f) Native fine-tuning with learning rate 5 · 10−6

Figure 33: Synthetic images of “Bodhi Rook [realistic]” that are generated using the prompts of type <train>.
The models are trained for 30 epochs and the default hyperparameters are used unless otherwise specified. See
Appendix G.3.3 for the accompanying discussion.
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(a) LoRA (b) LoHa

(c) LoKr (d) Native fine-tuning

(e) LoKr with learning rate 10−4 (f) Native fine-tuning with learning rate 5 · 10−6

Figure 34: Synthetic images of “Bodhi Rook [realistic]” that are generated using the prompts of type <trigger>.
The models are trained for 30 epochs and the default hyperparameters are used unless otherwise specified. See
Appendix G.3.3 for the accompanying discussion.
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(a) LoRA (b) LoHa

(c) LoKr (d) Native fine-tuning

(e) LoKr with learning rate 10−4 (f) Native fine-tuning with learning rate 5 · 10−6

Figure 35: Synthetic images of “Bodhi Rook [realistic]” that are generated using the prompts of type <alter>.
The models are trained for 30 epochs and the default hyperparameters are used unless otherwise specified. See
Appendix G.3.3 for the accompanying discussion.
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(a) LoRA (b) LoHa

(c) LoKr (d) Native fine-tuning

(e) LoKr with learning rate 10−4 (f) Native fine-tuning with learning rate 5 · 10−6

Figure 36: Synthetic images of “Bodhi Rook [realistic]” that are generated using the prompts of type <style>.
The models are trained for 30 epochs and the default hyperparameters are used unless otherwise specified. See
Appendix G.3.3 for the accompanying discussion.
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No fine-tuning LoRA LoHa

LoKr Native fine-tuning, lr 10−6 Native fine-tuning, lr 5 · 10−6

No fine-tuning LoRA LoHa

LoKr Native fine-tuning, lr 10−6 Native fine-tuning, lr 5 · 10−6

Figure 37: Example generations for classes “canal” and “waterfall” using the prompts of type <style> (cf.
Appendix D.3). The models are trained for 10 epochs and the default hyperparameters are used unless otherwise
specified. We note that LoRA seems to have the best style preservation here.
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(a) Example image

(b) LoKr, epoch 10 (c) LoKr, epoch 50

(d) Native fine-tuning, lr 5 · 10−6, epoch 10 (e) Native fine-tuning, lr 5 · 10−6, epoch 50

Figure 38: Example image and generated samples for “Tsushima Yoshiko”. Prompts of type <alter> are used
for the generations (cf. Table 6). We observe improved text-image alignment over training.
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(a) Example image

(b) LoKr, epoch 10 (c) LoKr, epoch 50

(d) Native fine-tuning, lr 5 · 10−6, epoch 10 (e) Native fine-tuning, lr 5 · 10−6, epoch 50

Figure 39: Example image and generated samples for “Yuuki Makoto”. Prompts of type <alter> are used for the
generations (cf. Table 6). We observe improved text-image alignment over training.
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(a) Generations with prompts of type <alter>

(b) Generations with prompts of type <style>

Figure 40: Example generations for sub-class “Saw Gerrera [afro, illustration]” using a LoHa with dimension
16 and alpha 8. From left to right we use respectively the epoch 10, 30, and 50 checkpoints. We observe that
both text-image alignment and style preservation improve over training.

G.4.3 RICHER STYLISTIC VARIATIONS WITH INCREASED MODEL CAPACITY

While our general guidelines propose that increasing a model’s capacity—while keeping other
hyperparameters constant (for alpha, we maintain the alpha/dimension ratio)—tends to diminish the
model’s ability to preserve the base model’s style, Figure 13 for the “stuffed toy” category suggests
otherwise. To better understand this apparent discrepancy, we delve deeper into this issue in Figure 41.
For LoRA, there is no evidence for such improvement in base style preservation when increasing
dimension and alpha. However, for LoKr, the improvement may be real. At least, LoKr with smaller
factors (and hence larger capacity) seems to generate more stylistically rich images with <style>
prompts, though whether these images authentically align with the styles specified in the prompts is
subject to discussion. One plausible reason for the emergence of more stylistic images with larger
models could be the presence of various styles in our dataset, which the model then incorporates
during the fine-tuning process.

G.5 EXAMPLE GENERATIONS FOR CATEGORY “STYLES”

For the sake of illustration, we present a number of generated samples for the “styles” category in
Figures 43, 45 and 47. We note that different styles need different number of training epochs and
model capacity to be learned properly. Moreover, when the dataset only depicts a specific type of
object, as in the class “Felix Valloton”, increasing dimension and alpha of LoRA or LoHa can be
harmful for these models’ performance on generalization prompts (cf. Figure 47). Conversely, these
changes can be beneficial for the learning of other styles, as shown in Figure 43.

Generally speaking, the trend observed in these figures align with the guiding principles we outlined
in Section 5.3. Although Figure 19 suggest that both image and style similarities decrease over
training for these classes, we find no evidence of this. One potential explanation for this decrease
could then be that the images become “oversaturated” in certain style classes as training progresses,
as illustrated in Figure 45.
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Figure 41: Generated images from four models trained with different configurations. The prompts of type
<style> are used here (cf. Appendix D.3). Note that increasing model capacity enhances LoKr’s ability to
generate more stylistically rich images.
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Figure 42: Example training images for class “Ghibli 2”.

10 epochs 50 epochs 10 epochs 50 epochs

LoRA

dim 8, alpha 4 dim 8, alpha 4 dim 32, alpha 8 dim 32, alpha 8

LoHa

dim 4, alpha 2 dim 4, alpha 2 dim 16, alpha 8 dim 16, alpha 8

LoKr

factor 8 factor 8 factor 4 factor 4

Native

learning rate 10−6 learning rate 10−6 learning rate 5 · 10−6 learning rate 5 · 10−6

Figure 43: Example generations for “Ghibli 2” from different checkpoints. The first 5 prompts of type <alter>
(cf. Table 6) are used to generate these images.
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Figure 44: Example training images for class “impressionism”.

10 epochs 50 epochs 10 epochs 50 epochs

LoRA

dim 8, alpha 4 dim 8, alpha 4 dim 32, alpha 8 dim 32, alpha 8

LoHa

dim 4, alpha 2 dim 4, alpha 2 dim 16, alpha 8 dim 16, alpha 8

LoKr

factor 8 factor 8 factor 4 factor 4

Native

learning rate 10−6 learning rate 10−6 learning rate 5 · 10−6 learning rate 5 · 10−6

Figure 45: Example generations for “impressionism” from different checkpoints. The first 5 prompts of type
<alter> (cf. Table 6) are used to generate these images.
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Figure 46: Example training images for class “Felix Vallotton”.

10 epochs 50 epochs 10 epochs 50 epochs

LoRA

dim 8, alpha 4 dim 8, alpha 4 dim 32, alpha 8 dim 32, alpha 8

LoHa

dim 4, alpha 2 dim 4, alpha 2 dim 16, alpha 8 dim 16, alpha 8

LoKr

factor 8 factor 8 factor 4 factor 4

Native

learning rate 10−6 learning rate 10−6 learning rate 5 · 10−6 learning rate 5 · 10−6

Figure 47: Example generations for “Felix Vallotton” from different checkpoints. The first 5 prompts of type
<alter> (cf. Table 6) are used to generate these images.
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H Additional Experiments

This appendix presents a number of additional experiments that have been omitted from the main
text. These experiments validate some design choices that we have made for our main study, and
provide further insights into fine-tuning of text-to-image models.

H.1 INVESTIGATING THE RELEVANCE OF IMAGE FEATURES

The primary objective of this section is to investigate how different image features focus on distinct
aspects when measuring similarity between images. This serves as a critical sanity check to shed
light on why different encoders are preferable for calculating style loss versus semantic similarity.

Encoders and Resizing Methods. Precisely, we compare a number of ways to extract image
features which mainly differ in the choice of encoders and resizing methods.

• Encoders: We consider four distinct encoders: DINOv2, CLIP, ConvNeXt V2, and VGG-19, as
explained in Appendices D.4 and D.5. For VGG-19, the features are generated by concatenating
the flattened normalized Gram matrices that are involved in the computation of the style loss.

• Resizing Methods: Four different resizing techniques are considered: scale, letterbox, center crop,
and stretch. These are applied to DINOv2, CLIP, and ConvNeXt V2 as discussed in Appendix E.
For VGG-19, we only consider the scale method as it can take non-square inputs.

In sum, we explore a total of 10 distinct encoding methods, each representing a unique combination
of an encoder and a resizing technique.

Datasets. Our experiments make use of the following three classification datasets.

• ImageNet100: A subset of ImageNet (Russakovsky et al., 2015) containing 100 distinct classes,
comprising a total of 130,000 images.14

• DAF:re-250: A subset of DAF:re (Rios et al., 2021) with 250 classes, featuring 99,361 images.
• Style30: An expanded version of the new WikiArt dataset (Tan et al., 2019), enriched with three

additional style classes, summing up to 30 classes and 112,349 images. Notably, the “anime” class
in this dataset contains artworks from 279 different artists and includes a total of 29,830 images.
Each of these artists’ work can be further considered as a unique style.

By considering datasets with varied image types and classification criteria, we would like to dissect
how changes in either the image’s style or content affect the distribution of different image features.

Diversity Ratio. Building upon the above, for each encoding method we compute the diversity
ratio defined as diversityclass/diversitydataset. It compares the intra-class feature diversity against the
overall dataset diversity. Then, for example, low diversity ratios in our style dataset would imply that
the features in question are particularly sensitive to stylistic changes, while high diversity ratios in
other classification tasks might suggest their insensitivity to changes in the subject of the images.

Nonetheless, it still remains the question of how we evaluate feature diversity. For this, we consider
three different metrics as listed below.

• Vendi Score: This follows the definition given in Appendix D.4.
• Intra-Dissimilarity: For a set of features Z , its intra-dissimilarity is computed as 1− SC(Z,Z)

where SC is the average cosine similarity metric defined in (22). This measure is directly related
to the use of cosine similarity to assess the similarity of two images.

• Variance: We also consider the variance of the feature set. This is directly related to the use of
Euclidean distance to assess the similarity of two images, as what we do in computing style loss.

It is worth noticing that the intra-dissimilarity is nothing but the variance of the normalized vectors,
as can be seen from (23). Therefore, in reality, the only difference between the second and the third
metrics boils down to whether the feature vectors are normalized or not.

Result. We compute the diversity ratios for the three datasets, as well as for the anime class within
the style dataset, putting each artist’s work in a separate sub-class. Moreover, we only compute

14https://www.kaggle.com/datasets/ambityga/imagenet100 (Accessed: 2023-08-20)
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(a) ImageNet100
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(b) DAF:re-250
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(c) Style30
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(d) Style30-anime

Figure 48: Distribution of diversity ratios across classes for different metrics/encoding methods. IntDis and Var
respectively stand for intra-dissimilarity and variance. We observe that the choice of resizing methods has little
influence on the results.

diversity scores for classes with more than 50 images, and whenever we need to compute the diversity
score for a set of more than 1, 000 images, we sub-sample it to a fixed size of 1, 000 before performing
the computation. The distributions of the diversity ratios obtained in our experiments are shown in
Figures 48 and 49.

In Figure 48, we see that the choice of resizing method has little influence on the results. This
is consistent with what we have observed for our main experiments in the correlation analysis of
Appendix E. We next zoom in on the influence of encoders and metrics in Figure 49. We first
observe that the distributions of diversity ratios for intra-dissimilarity and variance are relatively
close. For these two metrics, using the VGG-19 features gives lower diversity ratios for style datasets
and higher diversity ratios for ImageNet100 and DAF:re-250, suggesting that VGG-19 features are
indeed the most suitable for evaluating style similarity among all the four features that we consider
here. Intriguingly, this observation does not hold true when we compute the diversity ratio using the
Vendi score. The reason behind this discrepancy warrants further investigation. Finally, we generally
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(a) ImageNet100
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(b) DAF:re-250
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(c) Style30
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(d) Style30-anime

Figure 49: Distribution of diversity ratios across classes for different metrics/encoding methods. IntDis and Var
respectively stand for intra-dissimilarity and variance. Only one resizing method is chosen for each encoder here.

observe a lower diversity ratio when Vendi score is used to compute diversity. This does suggest that
the Vendi score can better discern datasets of various degrees of diversity.

H.2 IMAGE QUALITY ASSESSMENT WITH PRETRAINED MODELS

Evaluating the quality of images generated by deep generative models is itself a challenge. In this
appendix, we show that existing state-of-the-art image quality assessment (IQA) models may not be
suitable for this task due to distribution shift. Specifically, We examine three leading IQA models:
LIQE (Zhang et al., 2023), MANIQA (Yang et al., 2022), and a publicly available artifact scorer
trained on the AI Horde ratings dataset (Haidra-Org, 2023; Wang et al., 2022).15

In more detail, we use the MANIQA model pretrained on the KONIQ-10K dataset (Hosu et al., 2020),
and the artifact scorer that uses the openclip_vit_l_14 features. For LIQE and MANIQA, multiple

15The artifact scorer is available at https://github.com/kenjiqq/aesthetics-scorer (Ac-
cessed: 2023-08-20).
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Figure 50: Distributions of the image quality scores on the training dataset. We note an important bias in these
scores that favor or disfavor images of certain categories.

Evaluated on training
images

Evaluated on training
images in “movie char-
acters”, “scenes”, and
“stuffed toys”

Evaluated on generated
images

Evaluated on generated
images in “movie char-
acters”, “scenes”, and
“stuffed toys”

Figure 51: Correlation matrices of the considered image quality scores. We compute the correlation coefficients
for scores obtained on different sets of images.

patches of size 224× 224 need to be extracted from the images to estimate the scores. For this, we
first resize the images so their shortest edges have 512 pixels, and then we extract 10 patches from
each image. As for the artifact scorer, we resize the images to resolution 224 × 224, with black
padding added to the images if necessary (i.e., lettebox resizing).

Importantly, among the three models, only the artifact scorer is specifically made to evaluate AI-
generated images, which is why we have included it in our study. Also, it is worth mentioning that
while LIQE and MANIQA assign higher scores to better-quality images, the artifact scorer does the
opposite. It gives a score between 0 and 5, where a higher score signifies more artifacts in the image.
To make our results easier to compare, we thus convert this to “5 minus the original score” below.

Results. With these three IQA models, we evaluate the quality of both the images from our training
set and those generated using training prompts and a 10th-epoch LoRA checkpoint trained with
default hyperparameters. Our observations are as follows:

• Style-Related Bias: As shown in Figure 50, we find the image quality scores predicted by the
models vary based on the style of the images. In particular, LIQE and MANIQA tend to give
higher scores to anime-style images whereas the artifact scorer tends to give lower scores to
them. For LIQE and MANIQA, we believe this is because they are trained exclusively on natural
images, thereby limiting their predictive accuracy for artworks. In the case of the artifact scorer,
the observed bias likely stems from inherent biases in the AI Horde ratings dataset. Such biases
undermine the credibility of these IQA models, as image quality should ideally be style-agnostic.

• Disagreement Among Models: The correlation coefficients of the scores computed by different
models are illustrated in Figure 51. Given the biases previously mentioned, we analyze the
correlations in two distinct contexts: first across all training or considered generated images, and
then excluding images from the “anime characters” and “styles” categories. In all the scenarios,
we observe that the models exhibit only a weak correlation in their predicted scores, indicating a
lack of agreement among the predictions made by these models.

• Inability to Distinguish Real from Generated Images: In Figure 52, we contrast the quality
scores assigned to dataset images with those given to generated images. The plots reveal that none
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(a) LIQE

(b) MANIQA

(c) Artifact Scorer

Figure 52: Distributions of the image quality scores on training (top, blue) and generated (bottom, yellow)
images. We observe that these scores often fail to attribute higher scores to real images.

of the three models consistently award higher scores to real images. More surprisingly, MANIQA
often assigns higher scores to generated images, even when these contain noticeable artifacts.

In summary, the above observations cast doubt on the reliability of the three IQA models under
consideration in evaluating the quality of AI-generated images. As a consequence, we have opted not
to include them in our primary experiments.

H.3 IMPACT OF CAPTIONING STRATEGIES ON MODEL PERFORMANCE

In this section, we explore the influence of captioning strategies on the performance of fine-tuned
models. Specifically, we focus on three captioning strategies:

• No Tags: This approach follows the common practice in existing literature, using brief captions
like “a photo of [V]” or “an illustration of [V]”.

• All Tags: In this setup, we append all tags predicted by the employed tagger to the concept
descriptor, thereby creating richer captions.

• Adjusted Tags: This strategy is the one employed in our main experiment, wherein the tags are
manually adjusted after the initial tagging phase. See Appendix D.1 for more details.

For the sake of simplicity, in the following, we just consider LoRA, LoHa, and LoKr trained with
default hyperparameters, and native fine-tuning with learning rate 5× 10−6 as our main experiment
suggests that this consistently leads to better results than using the default 10−6 learning rate.

The image generation, metric computation, and metric processing procedures follow those employed
in our main experiment. It is however important to note that when it comes to rank-based normal-
ization of the metrics, we only compare with the checkpoints studied in this section. We report
quantitative and qualitative results across these captioning strategies respectively in Figures 53 and 54.
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Impact on Concept Fidelity, Controllability, and Base Style Preservation. A closer look at
Figure 53 reveals the following trade-offs between different captioning strategies.

• With no tags: Although the use of simple caption seems to enhance concept fidelity, it comes at
the expense of both controllability and base style preservation.16

• With all tags: Conversely, including all tags improves controllability and base style preservation
but sacrifices concept fidelity. This compromise occurs because each component of the target
concept is automatically mapped to the tag that most closely describes it. Without manual
adjustments to these tags, the concept becomes fragmented across its various components. As a
result, the concept descriptor captures only a partial and limited aspect of the target concept.

These contrasting effects are demonstrated in Figure 54. The leftmost figures of the first and third
rows show that models trained on captions devoid of tags struggle to appropriately respond to prompts.
On the other hand, in the rightmost figure of the first row, it is shown that a model trained with all the
tags produced by the tagger fails to accurately capture the hairstyle and the uniform of the character.
Even worse, in the rightmost figure of the second row, the sculpture, which should be the focus of
the concept, is completely absent. Instead, the concept descriptor is associated with the background.
This misdirection is likely due to the consistent presence of the tag “Christmas tree” in the training
captions for this specific class, causing the model to associate the sculpture with “Christmas tree”
rather than with the intended concept descriptor.

The above findings also validate our choice of using adjusted tags in our main experiment. This
approach strikes a delicate balance between the extremes observed in the “no tags” and “all tags”
strategies, ensuring degrees of controllability without sacrificing concept integrity.

Impact on Diversity. Interestingly, Figure 53 also reveals that both alternative captioning strategies
improve image diversity compared to the default “adjusted tags” approach. However, we believe
this occurs for two distinct reasons. For the “no tags” strategy, this is mostly because the concept
descriptor unintentionally captures additional elements from the training set, leading to a broader,
albeit less accurate, interpretation of the target concept. In contrast, for the “all tags” strategy, the
diversity seems to stem from the fact that the concept descriptor only captures a limited part of the
target concept, allowing the model greater freedom in generating more diverse images.

In the meantime, we observe that in the “stuffed toys” category, the “all tags” strategy not only
improves diversity but also enhances image similarity for images generated using solely the concept
descriptor. This likely happens because our manually adjusted tags better encapsulate the image
backgrounds compared to the predicted tags, resulting in models generating images with more
“neutral” backgrounds when only the concept descriptor is involved in the prompts. On the other
hand, when using the tags produced by the tagger, details from the training set’s background leak into
the learned concepts, contributing to both higher similarity and diversity. This phenomenon is further
illustrated in the last row of Figure 54.

16An exception to this general trend is observed in the case of LoHa, where base style preservation actually
improves with simple captions, potentially due to the specific phrasing “A ... of [V]” used in this case.
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Figure 53: Scatter plots comparing different evaluation metrics with variations across algorithms and captioning
strategies.
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Figure 54: Generated images from models trained with different sets of captions. We observe that models
trained with short captions without any further description of the images lack flexibility while training with
unpruned tags could cause the target concept to be associated with the tags instead of the concept descriptor.
Readers are referred to Appendix D.3 for details on the evaluation prompts.
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I Author Contributions

The contributions of each author are summarized in Table 7.

S.-Y. Yeh Y.-G. Hsieh Z. Gao B. B W Yang G. Oh Y. Gong

Algorithm
Conception X X X

Library
Development X

Evaluation
and Experiments X X

Writing X XX X X X

Table 7: Author contributions.
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