
Appendix
A Proof of Theorem 1
Before we present the proof, we first obtain the following lemma on the dual variable.

Lemma 1. Under the update rule of �t in Algorithm 1, we have for any � 2 [0, ⇢],
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2.

Proof. By the dual variable update rule in Algorithm 1 and the non-expansiveness of projection to
[0, ⇢], we have
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V
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Summing over T steps and multiplying both sides by V
2 , we have
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Hence,
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2, (7)

which completes the proof.

Now, we are ready to present the proof of Theorem 1.

Proof of Theorem 1. Under Slater condition in Assumption 1, we have the boundedness of the
optimal dual solution by standard convex optimization analysis (cf. [38, Theorem 8.42])

0  �⇤


(E⇡⇤ [f(x)]� E⇡0 [f(x)])

�


2B

�
,

where the last inequality holds by the boundedness of f(x). Note that the reason why we can use
convex analysis is that E⇡ [h(x)] for any fixed h is a linear function with respect to ⇡ (and is thus
convex). Now, we turn to establish a bound over R+(T ) + �

PT
t=1 g(xt). First, note that
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We can further bound (8) by using Lemma 1. In particular, we have
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2V
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where (a) holds since �t � 0 and E⇡⇤ [g(x)]  0; (b) holds by adding and subtracting terms; (c)
follow from Lemma 1 to bound the last term; (d) holds by the fact �1 = 0, the boundedness of ḡt and
the definitions of T1 and T2, i.e.,

T1 =
TX

t=1
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(g(xt)� ḡt(xt)). (11)

Plugging (9) into (8), yields for any � 2 [0, ⇢],
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2
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First, assume that we already have a bound on T1+T2 , i.e., T1+T2  �(T,�) with high probability,
and �(T,�) is an increasing function in �. This directly leads to the following inequality (with
V = G

p
T/⇢) for any � 2 [0, ⇢]:
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2
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Based on this key inequality, we can analyze both regret and constraint violation.

Regret. We can simply choose � = 0 in (13), and obtain that with high probability

R+(T ) = O
⇣
�(T, 0) + ⇢G

p

T
⌘
. (14)

Constraint violation. To obtain the bound on V(T ), inspired by [11], we will resort to tools from
constrained convex optimization. First, we have 1

T

PT
t=1 f(xt) = E⇡0 [f(x)] and 1

T

PT
t=1 g(xt) =

E⇡0 [g(x)] for some probability measure ⇡0 by the convexity of probability measure. As a result, we
have
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where [a]+ := max{0, a}, and the first equality holds by choosing � = ⇢ if
PT

t=1 g(xt) � 0, and
otherwise � = 0, and the second inequality holds by upper bounding RHS of (13) with � = ⇢
since (13) holds for all � 2 [0, ⇢] and �(T,�) is increasing in �.

Then, we will apply the following useful lemma, which is adapted from Theorem 3.60 in [38].

Lemma 2. Consider the following convex constrained problem h(⇡⇤) = max⇡2C{h(⇡) : w(⇡) 
0},where both h and w are convex over the convex set C in a vector space. Suppose h(⇡⇤) is finite

and there exists a slater point ⇡0 such that w(⇡0)  ��, and a constant ⇢ � 2⇤
, where ⇤

is the

optimal dual variable, i.e., ⇤ = argmin��0(max⇡ h(⇡)� w(⇡)). Assume that ⇡0
2 C satisfies

h(⇡⇤)� h(⇡0) + ⇢ [w(⇡0)]+  ", (16)
for some " > 0, then we have [w(⇡0)]+  2"/⇢.

Thus, since (15) satisfies (16) and E⇡ [h(x)] for any fixed h is a linear function with respect to ⇡, by
Lemma 2, we have

V(T ) = O

✓
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⇢
�(T, ⇢) +G

p

T

◆
. (17)

We are only left to bound T1 + T2 by �(T,�). To this end, we will resort to standard concentration
results for GP bandits. First, by [5, Theorem 2], we have the following lemma.

Lemma 3. Fix ↵ 2 (0, 1], with probability at least 1� ↵, the followings hold simultaneously for all

t 2 [T ] and all x 2 X

|f(x)� µt�1(x)|  �t�t�1(x), |g(x)� eµt�1(x)|  e�te�t�1(x),

Thus, based on this lemma and the definition of GP-UCB exploration, we have with high probability,
ft(x) � f(x) and gt(x)  g(x) for all t 2 [T ] and x 2 X . This directly implies that f̄t(x) � f(x)
and ḡt(x)  g(x) for all t 2 [T ] and x 2 X (i.e., optimistic estimates), which holds by |f(x)|  B
and |g(x)|  G and the way of truncation in Algorithm 1. Now, to bound T1 in (10), we have

T1 =
TX
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�

(b)
 0,

where (a) holds by the fact that estimates are optimistic, i.e., f̄t(x) � f(x) and ḡt(x)  g(x) for all
t 2 [T ] and x 2 X ; (b) holds by the greedy selection of Algorithm 1.

Now, we turn to bound T2. In particular, we have

T2

(a)


TX

t=1

2�t�t�1(xt) + �
TX

t=1

2e�te�t�1(xt)

(b)
 O

⇣
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p
T�T + �e�T

p
Te�T

⌘
, (18)

where (a) holds by Lemma 3 and the definition of GP-UCB exploration, i.e., ft(x) = µt�1(x) +

�t�t�1(x) and gt(x) = eµt�1(x)� e�te�t�1(x). Note that truncation also does not affect this step; (b)
holds by Cauchy-Schwartz inequality and the bound of sum of predictive variance (cf. [5, Lemma 4]).
Note that we have also used the fact that �t and e�t is increasing in t.
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Putting the bounds on T1 and T2 together, we have obtained that with high probability

T1 + T2  �(T,�) := O
⇣
�T

p
T�T + �e�T

p
Te�T

⌘
.

Finally, plugging �(T, 0) into (14), yield the regret bound as follows (note that �t = B +
R
p
2(�t�1 + 1 + ln(2/↵)))

R+(T ) = O
⇣
B
p
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p
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p

T
⌘
,

and plugging �(T, ⇢) into (17), yields the bound on constraint violation as

V(T ) = O

✓✓
1 +

1
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◆⇣
C
p
Tb�T +

p
Tb�T (b�T + ln(2/↵))

⌘
+G

p
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◆
,

where C := max{B,G} and b�T := max{�T , e�T }. Hence, it completes the proof.

B Proof of Theorem 2
Before we present the proof, we introduce a new notation to make the presentation easier. In particular,
we let h(⇡) := E⇡ [h(x)] for any function h and ⇡t is a dirac delta function at the point xt.

Proof of Theorem 2. As shown in the proof of Theorem 1, all we need to do is to find a high
probability bound over T1 + T2 under the sufficient condition in Assumption 3. Under our newly
introduced notation, we have

T1 + T2 =
TX

t=1

(z�t(⇡
⇤)� bz�t(⇡t) + bz�(⇡t)� z�(⇡t)) :=

TX

t=1

dt, (19)

where z�t(·) := f(·)� �tg(·) and bz�t(·) := f̄t(·)� �tḡt(·), and similar definitions for z� and bz�.

Let ��t(⇡) := z�t(⇡
⇤) � z�t(⇡) = (f(⇡⇤) � �tg(⇡⇤)) � (f(⇡) � �tg(⇡)). Then, we define the

‘undersampled’ set as
S̄t := {⇡ 2 ⇧ : ↵�t(⇡) := cf,t�t�1(⇡) + �tcg,te�t�1(⇡) � ��t(⇡)},

where cf,t = (c(1)f,t + c(2)f,t) and cg,t = (c(1)g,t + c(2)g,t ) (similarly ↵�(⇡) := cf,t�t�1(⇡)+�cg,te�t�1(⇡)).
Let ut = argmin⇡2S̄t

↵�t(⇡). Thus, conditioned on Eest and Econc
t , we have

dt = z�t(⇡
⇤)� bz�t(⇡t) + bz�(⇡t)� z�(⇡t)

= z�t(⇡
⇤)� z�t(ut) + z�t(ut)� bz�t(⇡t) + bz�(⇡t)� z�(⇡t)

= ��t(ut) + z�t(ut)� bz�t(⇡t) + bz�(⇡t)� z�(⇡t)

(a)
 ��t(ut) + bz�t(ut)� bz�t(⇡t) + ↵�t(ut) + ↵�(⇡t)

(b)
 ��t(ut) + ↵�t(ut) + ↵�(⇡t)

(c)
 2↵�t(ut) + ↵�(⇡t), (20)

where (a) holds since under event Eest
\ Econc

t , for all x, |f(x) � ft(x)|  (c(1)f,t + c(2)f,t)�t�1(x)

and |g(x)� gt(x)|  (c(1)g,t + c(2)g,t )e�t�1(x) and the facts that |g(x)� ḡt(x)|  |g(x)� gt(x)| since
|g(x)|  G and |f(x)� f̄t(x)|  |f(x)� ft(x)| since |f(x)|  B; (b) holds by the greedy selection
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in Algorithm 1; (c) follows from ut 2 S̄t. Thus, conditioned on Eest, we have
Et [dt] = Et [dtI{E

conc
t }] + Et

⇥
dtI{Ē

conc
t }

⇤

(a)
 Et [rtI{E

conc
t }] + (4B + 4⇢G)p2,t

(b)
 Et [↵�(⇡t)] + 2↵�t(ut) + (4B + 4⇢G)p2,t
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 Et [↵�(⇡t)] + 2

Et [↵�t(⇡t)]
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�
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�
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�
!
Et [↵⇢(⇡t)] + (4B + 4⇢G)p2,t,

where (a) holds by definition of p2,t, the fact that �,�t  ⇢ and the boundedness of functions; (b)
follows from Eq. (20) and the fact that given Ft�1, ↵�t(ut) is deterministic; (c) holds by the following
argument: Et [↵�t(⇡t)] � Et

⇥
↵�t(⇡t)|⇡t 2 S̄t

⇤
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�
⇡t 2 S̄t

�
� ↵�t(ut)Pt

�
⇡t 2 S̄t

�
, which holds

by the definition of ut and the fact that ↵�t(ut) and St are both Ft�1-measurable; (d) holds by
definition ↵⇢(⇡t) := cf,t�t�1(⇡t) + ⇢cg,te�t�1(⇡t) and the fact that both �,�t are bounded by ⇢.
Hence, the key is to find a lower bound on the probability Pt

�
⇡t 2 S̄t

�
. In particular, conditioned on

Eest, we have
Pt

�
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�
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✓
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⇡j2St
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t

◆

(b)
� Pt (bz�t(⇡

⇤) � z�t(⇡
⇤), Econc

t )

� Pt (bz�t(⇡
⇤) � z�t(⇡

⇤))� Pt

�
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t

�

� Pt

�
f̄t(⇡

⇤) � f(⇡⇤), ḡt(⇡
⇤)  g(⇡⇤)

�
� Pt

�
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t

�

(c)
= Pt (ft(⇡

⇤) � f(⇡⇤), gt(⇡
⇤)  g(⇡⇤))� Pt

�
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t

�

(d)
� Pt

⇣
ft(⇡

⇤) � µt�1(⇡
⇤) + c(1)f,t�t�1(⇡

⇤), gt(⇡
⇤)  eµt�1(⇡

⇤)� c(1)g,te�t�1(⇡
⇤)
⌘
� Pt

�
Ēconc

t

�

= Pt

�
Eanti

t

�
� Pt

�
Ēconc

t

�

= p3 � p2,t,

where (a) holds by the greedy selection in Algorithm 1 and ⇡⇤
2 S̄t since ��t(⇡

⇤) = 0. Note that
St is the complement of the ‘undersampled’ set S̄t; (b) holds given Eest

\ Econc
t , for all ⇡j 2 St

bz�t(⇡j)  z�t(⇡j) + ↵�t(⇡j)  z�t(⇡j) +��t(⇡j) = z�t(⇡
⇤); (c) holds since |g(x)|  G for all

x and |f(x)|  B for all x; (d) holds since under Eest, we have f(x)  µt�1(x⇤) + c1,f�t�1(x⇤)
and g(x) � eµt�1(x⇤)� c1,ge�t�1(x⇤) for all x.

Putting everything together, we have now arrived at that conditioned on Eest,

Et [dt]  Et [↵⇢(xt)]

✓
1 +

2

p3 � p2,t

◆
+ (4B + 4⇢G)p2,t


1

p4
Et [↵⇢(xt)] + (4B + 4⇢G)p2,t. (21)

where the last inequality follows from the boundedness condition in the sufficient condition. In order
to obtain a high probability bound, inspired by [5], we will resort to martingale techniques. Let us
define the following terms
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Definition 3. Define Y0 = 0, and for all t = 1, . . . , T ,

d̄t = dtI{E
est

}

Xt = d̄t �
1

p4
↵⇢(xt)� (4B + 4⇢G)p2,t

Yt =
tX

s=1

Xs,

where I{·} is the indicator function.

Now, we can show that {Yt}t is a super-martingale with respect to filtration Ft. To this end,
we need to show that for any t and any possible Ft�1, E [Yt � Yt�1|Ft�1]  0, i.e., Et

⇥
d̄t
⇤


1
p4
Et [↵⇢(xt)] + (4B + 4⇢G)p2,t. For Ft�1 such that Eest holds, we already obtained the required

inequality as in Eq. (21). For Ft�1 such that Eest does not hold, the required inequality trivially
holds since the LHS is zero. Now, we turn to show that {Yt}t is a bounded incremental sequence, i.e.,
|Yt � Yt�1|  Mt for some constant Mt. We first note that

|Yt � Yt�1| = |Xt|  |d̄t|+
1

pt
↵⇢(xt) + (4B + 4⇢G)p2,t

= |d̄t|+
1

p4
(cf,t�t�1(xt) + ⇢cg,te�t�1(xt)) + (4B + 4⇢G)p2,t

(a)
 (4B + 4⇢G) +

1

p4
(cf,t + ⇢cg,t) + (4B + 4⇢G)p2,t


1

p4
(cf,t + ⇢cg,t)(4B + 4⇢G) := Mt,

where (a) holds since d̄t  dt  (4B + 4⇢G), �t�1(xt)  �0(xt)  1 and e�t�1(xt)  e�0(xt)  1.
Thus, we can apply Azuma-Hoeffding inequality to obtain that with probability at least 1� ↵,

TX

t=1

r̄t 
TX

t=1

1

p4
↵⇢(xt) +

TX

t=1

(4B + 4⇢G)p2,t +

vuut2 ln(1/�)
TX

t=1

M2
t

(a)


1

p4

TX

t=1

↵⇢(xt) + C 0(4B + 4⇢G) +
(cf (T ) + ⇢cg(T ))(4B + 4⇢G)

p4

p
2T ln(1/�),

where (a) we have used the boundedness condition. Note that since Eest holds with probability at
least 1� p1 for all t and x. By a union bound, we have with probability at least 1� ↵� p1,

TX

t=1

dt 
1

p4

TX

t=1

↵⇢(xt) + C 0(4B + 4⇢G) +
(cf (T ) + ⇢cg(T ))(4B + 4⇢G)

p4

p
2T ln(1/�)

= O

 
1

p4

TX

t=1

(cf (T )�t�1(xt) + ⇢cg(T )e�t�1(xt)) +
(cf (T ) + ⇢cg(T ))

p4

p
2T ln(1/�)

!

= O

✓
1

p4
cf (T )

p
T�T +

1

p4
⇢cg(T )

p
Te�T +

(cf (T ) + ⇢cg(T ))

p4

p
2T ln(1/�)

◆
, (22)

where  := 4B + 4⇢G. Plugging (22) into (19), we obtain that

T1 + T2  O

✓
1

p4
cf (T )

p
T�T +

1

p4
⇢cg(T )

p
Te�T +

(cf (T ) + ⇢cg(T ))

p4

p
2T ln(1/�)

◆

:= �(T,�).

Note that here �(T,�) is independent of � since we have bounded it by ⇢ in the analysis. Finally,
plugging �(T,�) into (14) and (17) yields the results of Theorem 2.

C Flexible Implementations of RandGP-UCB
In this section, we will give more insights on the choices of bD, i.e., sampling distribution for bZt. In
particular, we consider the unconstrained case for useful insights with black-box function being f .
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By the definition of RandGP-UCB, for each t, the estimate under RandGP-UCB is given by
ft(x) = µt�1(x) + Zt�t�1(x),

where Zt ⇠ D. First, by Lemma 3, we have with high probability
f(x)  µt�1 + �t�t�1(x),

which directly implies that in order to guarantee Eanti
t happens with a positive probability, one

needs to make sure that P(Zt � �t) � p3 > 0. Thus, one simple choice of D is a uniform discrete
distribution between [0, 2�t] with N points. Then, it can be easily checked that Pt

�
Eanti

t

�
� p3 > 0

and also Pt (Econc
t ) = 1 with c(2)f,t = 2�t. In addition to uniform discrete distribution, one can

also use discrete Gaussian distribution within a range [L,U ] as long as U , L are properly chosen.
Of course, there are many other choices as long as the insight shown above is satisfied, and hence
RandGP-UCB provides a lot of flexibility in the algorithm design.

D Details on Heavy-Tailed Real-World Data
This dataset is the adjusted closing price of 29 stocks from January 4th, 2016 to April 10th 2019. We
use it in the context of identifying the most profitable stock in a given pool of stocks. As verified
in [47], the rewards follows from heavy-tailed distribution. We take the empirical mean of stock
prices as our objective function f and empirical covariance of the normalized stock prices as our
kernel function k. The noise is estimated by taking the difference between the raw prices and its
empirical mean (i.e., f ), with R set as the maximum. The constraint is given by g(·) = �f(·) + h
with h = 100 (i.e., h ⇡ B/2). We perform 50 trials (each with T = 10, 000) and plot the mean along
with the error bars.

E More Details on Zero Constraint Violation
Claim 1. TE⇡⇤ [f(x)]� TE⇡⇤

"
[f(x)]  2BT"

� .

To show this, we let ⇡"(x) := (1 �
"
� )⇡

⇤(x) + "
�⇡0(x), where ⇡⇤ is the optimal solution to the

original baseline problem and ⇡0 is the Slater’s policy satisfying Slater’s condition. First, we note
that ⇡" is a feasible solution to the new baseline problem introduced above. To see this, we note that
⇡"(x) � 0 and

E⇡" [g(x)] = (1�
"

�
)E⇡⇤ [g(x)] +

"

�
E⇡0 [g(x)]  0 + (�") = �".

Since ⇡⇤

" is the optimal solution while ⇡" is a feasible one, we have
TE⇡⇤ [f(x)]� TE⇡⇤

"
[f(x)]  TE⇡⇤ [f(x)]� TE⇡" [f(x)]

= T
⇣
E⇡⇤ [f(x)]� (1�

"

�
)E⇡⇤ [f(x)]�

"

�
E⇡0 [f(x)]

⌘


2BT"

�
,

where in the last step, we use the boundedness of f . Therefore, one can properly choose " such that
the subtraction of "T in the constraint violation can cancel the leading term O(

p
T ) (hence bounded

or even zero constraint violation) while only incurring an additional additive term of the same order
in the regret.

Remark 4. We believe that the same slackness trick can improve the existing eO(
p
T ) constraint

violation in MDPs [11, 12].

F Discussion on Alternative Method
To the best of our knowledge, there exist two popular methods for analyzing constrained bandits or
MDPs. They are both based on primal-dual optimization and differ mainly in the analysis techniques.
The first one is based on convex optimization tools as in [11, 12] and our paper. The other one is
based on Lyapunov-drift arguments as in [13–15]. For simplicity, we call the first method convex-opt

method and the second one as Lyapunov-drift method. Before we provide further discussion, one
thing to note is that all existing works only deal with UCB-type exploration for tabular or linear
functions, while our paper is the first one that studies general functions with general exploration
strategies beyond UCB.
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Algorithm 2 Algorithm in the Lyapunov-drift method

1: Parameters: V , ", Q(1) = 0
2: for batch t=1, 2, . . . do
3: Generate estimate ft(x), gt(x) and truncate them to f̄t, ḡt
4: Pseudo-acquisition function: zt(x) = f̄t(x)�

1
V Q(t)ḡt(x)

5: Choose action xt = argmaxx2X
zt(x); observe reward rt, and cost ct

6: Pseudo-acquisition function: bz�t(x) = f̄t(x)� �tḡt(x)
7: Update virtual queue: Q(t+ 1) = [Q(t) + ḡt(xt) + "]+
8: Posterior model update: using observations to update model
9: end for

Now we first briefly explain the main idea behind the Lyapunov-drift method when applied to our
setting (for the UCB exploration only). It basically has the same algorithm as the convex-opt method.
One minor change is that in Lyapunov-drift method, the dual variable is not truncated by ⇢ and is
denoted by Q(t), since this dual update is similar to a typical queue length update in queueing theory,
i.e., truncated at zero; see Algorithm 2. To bound the regret, Lyapunov-drift method decomposes it as
the following one, where "  �/2 is the slackness as in the last section.

R+(T ) = TE⇡⇤ [f(x)]�
TX

t=1

f(xt)

= TE⇡⇤ [f(x)]� TE⇡⇤
"
[f(x)]

| {z }
Term 1

+
TX

t=1

Z

x2X

�
f(x)� f̄t(x)

�
⇡⇤

" (x) dx

| {z }
Term 2

+
TX

t=1

Z

x2X

f̄t(x)⇡
⇤

" (x) dx� f̄t(xt)

| {z }
Term 3

+
TX

t=1

f̄t(xt)� f(xt)

| {z }
Term 4

. (23)

From this, one can see that Term 1, Term 2, and Term 4 can be easily bounded under UCB-type
exploration. In particular, by optimism and well-concentration of f̄t, one has Term 2  0 and
Term 4 = eO(

p
T ) (we ignore �T term in this section for simplicity). Moreover, Term 1 enjoys the

bound as in Claim 1. Thus, the only challenge is to bound Term 3, which cannot be naturally bounded
by greedy selection as in the standard way, since in the constrained case, the greedy selection is with
respect to the combined function. To handle this, one needs the following result, which not only helps
to bound Term 3, but also is the key in bounding the constraint violation.
Lemma 4. Let �(t) := L(Q(t+ 1))� L(Q(t)) = 1

2 (Q(t+ 1))2 � 1
2 (Q(t))2. For any ⇡, we have

�(t)  �V

✓Z

x2X

f̄t(x)⇡(x) dx� f̄t(xt)

◆
+

1

2
(G+ ")2 +Q(t)

✓Z

x2X

ḡt(x)⇡(x) dx+ "

◆
.

(24)

Proof. See Appendix F.1.

Thus, one can see that the first term on the RHS of (24) exists in Term 3 if one chooses ⇡ = ⇡⇤

" . By
the optimism ḡt(x)  g(x) and the definition of ⇡⇤

" , with a telescope summation, one can easily
bound Term 3, hence the regret bound.

Comparison in regret analysis. Compared to the regret decomposition in our paper (i.e., (5)
and (6)), (23) in the Lyapunov-drift method is more tailored to UCB-type exploration in the sense
that the Term 3 is upper bounded separately using the optimism. As a result, it is unclear to us how
to generalize it to handle general exploration strategies where one often need to bound Term 2 +
Term 3 + Term 4 together and optimism does not hold in general. In contrast, our decomposition (5)
and (6) basically keep the same pattern as in the unconstrained case, which enables us to utilize this
structure to handle general exploration strategies.
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We now turn to the constraint violation. By the virtual queue length update in Algorithm 2, the key
step behind the constraint violation bound is to bound Q(T + 1). To see this, by the virtual queue
length update in Algorithm 2, we have

Q(T + 1) �
TX

t=1

ḡt(xt) + T" =
TX

t=1

ḡt(xt)� g(xt) + g(xt) + T",

which implies that
TX

t=1

g(xt)  Q(T + 1) +
TX

t=1

(g(xt)� ḡt(xt))� T" = Q(T + 1) + eO(
p

T )� T",

where in the last step we uses the well-concentration of ḡt. To bound the remaining term Q(T + 1),
the Lyapunov-drift method resorts to a classic tool in queueing theory, i.e., Hajek lemma [16], to
bound the virtual queue length at time T + 1. The idea behind it is simple: if the queue length drift
�(t) (defined in Lemma 4) is negative whenever the queue length is large, then Q(T +1) is bounded.
To establish the negative drift, one resorts to (24) again by choosing ⇡ = ⇡0. By the definition of
⇡0 (Slater’s policy), the optimism ḡt(x)  g(x) and boundedness of f̄t, one can easily establish a
negative drift, and hence the constraint violation.

Comparison in constraint violation analysis. Instead of using Hajek lemma, we directly utilize
the convex optimization tool to obtain the constraint violation as in [11, 12], which is conceptually
simpler. Moreover, the current constraint violation analysis in the Lyapunov-drift method also relies
on the optimism of ḡt, which does not hold in general explorations beyond UCB. On the other
hand, one possible limitation of convex-opt method is that the constraint violation depends on the
maximum information gain of both f and g (for small T ) while under Lyapunov-drift method and
UCB exploration, the constraint violation only depends on g. Finally, when applying Hajek lemma to
bound the virtual queue length, there exists a subtlety that makes the standard expected version of
Hajek lemma fail due to the correlation of virtual queue length Q(t) and ḡt. We give more details on
this subtlety in Appendix G.

Summary. Both methods are able to establish sublinear regret and sublinear constraint violation
under UCB. Moreover, with the aid of slackness (i.e., ") in the dual update, both methods can establish
bounded or even zero constraint violation. For general exploration strategies beyond UCB, we tend to
believe that convex-opt method has advantages over the current analysis in the Lyapunov-drift method,
since the latter explicitly relies on optimism in both regret and constraint violation analysis. On the
other hand, Lyapunov-drift method can easily handle an anytime slackness, say, "t = O(1/

p
t) rather

than " = O(1/
p
T ).

F.1 Proof of Lemma 4
Proof. Note that by the update rule of the virtual queue in Algorithm 2 and non-expansiveness of
projection, we have

�(t)  Q(t)(ḡt(xt) + ") +
1

2
(ḡt(xt) + ")2 .

Now we will bound the RHS as follows.

Q(t)(ḡt(xt) + ") +
1

2
(ḡt(xt) + ")2

(a)
Q(t)(ḡt(xt) + ") +

1

2
(G+ ")2

=� V f̄t(xt) +Q(t)ḡt(xt) +Q(t)"+ V f̄t(xt) +
1

2
(G+ "t)

2

(b)
 � V

Z

x2X

f̄t(x)⇡(x) dx+Q(t)

Z

x2X

ḡt(x)⇡(x) dx+Q(t)"+ V f̄t(xt) +
1

2
(G+ ")2,

where (a) holds by the boundedness of ḡt; (b) holds by the greedy selection in Algorithm 2. Reorga-
nizing the term, yields the required result.
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G Subtlety in Applying Hajek Lemma to Constraint Violation
As stated before, the key step behind the constraint violation is to establish a negative drift of the
virtual queue and then by Hajek lemma, one can show that the virtual queue is bounded in expectation,
which in turn can be used to establish a zero constraint violation with a proper choice of slackness
variable (i.e., ") in the virtual queue update. However, the negative drift condition in the standard
Hajek lemma (cf. Lemma 11 in [13]) requires a conditional expectation, i.e., condition on all large
enough Q, the expected drift is negative. Then, if one directly applies the standard Hajek lemma, she
would proceed as follows. The goal is to show that E [�(t) | Q(t) = Q]  �cQ for all large Q and
c is some positive constant. Recall the bound on �(t) in (24), by the boundedness and let ⇡ = ⇡0,
the key is to show that

E
Z

x2X

ḡt(x)⇡0(x) dx+ " | Q(t) = Q

�
 �c. (25)

To illustrate the idea, we simply suppose that the Slater’s condition is satisfied at a single point x0

and " = 0. To show the above inequality, she may choose the following direction.
E [ḡt(x0)|Q(t) = Q] = E [ḡt(x0)� g(x0)|Q(t) = Q]| {z }

Term (i)

+E [g(x0)|Q(t) = Q]| {z }
Term (ii)

 �c.

For Term (ii), it is easily bounded by Term (ii)  �� via Slater’s condition since g(·) is a fixed
function. To bound Term (i), she may resort to the standard self-normalized inequality for linear
bandits and the definition of UCB exploration (cf. [48]). By these standard results, she can show that
for any fixed ↵ 2 (0, 1], the following holds:

P{8x, 8t, ḡt(x)  g(x)} � 1� ↵. (26)
That is, ḡt is optimistic with respect to g. Then, by setting ↵ = 1/T and using the boundedness
assumption of both ḡt and g, she may conclude that Term (i) = O(1/T ). Unfortunately, the bound
on Term (i) is ungrounded since it is obtained by treating the conditional expectation in Term (i) as
an unconditional expectation. The subtlety here is that one cannot remove the condition on Q(t)
in Term (i), since ḡt is not independent of Q(t) as both of them depend on the randomness before
time t. Given a particular Q(t), it roughly means that we are taking expectation conditioned on a
particular history (i.e., a sample-path). Under this particular history, (26) does not necessarily hold,
and moreover, the concentration of ḡt given Q(t) is hard to compute in this case. As a result, the
conditional expectation for Term (i) is hard to compute in general.

One correct way. Instead of applying the standard expected version of Hajek lemma, one can
consider removing the expectation in Hajek lemma by directly showing that ḡt(x0)  �c almost
surely under the “good event”. This is exactly the approach used in [15] (cf. Lemma 5.6). In this way,
one can show that with a high probability (i.e., under good event), a negative drift exists and hence
the constraint violation bound with high probability.

H Proof of Corollaries
First, we remark that the first event Eest in the probability condition of Assumption 3 can be easily
obtained by standard GP concentration result. That is, by [5, Theorem 2], we have P(8x, t, |f(x)�
µt�1(x)|  �t�t�1(x)) � 1�↵f for any ↵f 2 (0, 1), where �t = B+R

p
2(�t�1 + 1 + ln(1/↵f ))

(similar for g). Thus, we have P (Eest) � 1 � p1 with p1 = ↵f + ↵g, c(1)f,t = �t, and c(1)g,t =
e�t = B +R

p
2(e�t�1 + 1 + ln(1/↵g)). Thus, we only need to check probability condition for the

remaining two events and the boundedness condition under different exploration methods.

Proof of Corollary 1. UCB: By Definition 1, ft(x) = µt�1(x)+�t�t�1(x) and gt(x) = eµt�1(x)�
e�te�t�1(x). From this, we can directly obtain that Econc

t and Eanti
t hold with probability one.

Moreover, the boundedness condition naturally holds.

TS: By Definition 1, we have that given the history up to the end of round t � 1, ft(x) ⇠

N (µt�1(x),�2
t �

2
t�1(x)) and gt(x) ⇠ N (eµt�1(x), e�2

t e�2
t�1(x)). Thus, for any fixed x 2 X , by con-

centration of Gaussian distribution, we have Pt(|ft(x)� µt�1(x)|  2�t�1(x)�t

p
ln t) � 1� 1/t2,

and hence, using the union bound over all x, we obtain 8x, Pt

⇣
Econc

t,f (x)
⌘

� 1 � 1/t2 with
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c(2)f,t = 2�t

p
ln(|X |t). Similarly, we have 8x, Pt

�
Econc

t,g (x)
�
� 1�1/t2 with c(2)g,t = 2e�t

p
ln(|X |t).

Hence, by union bound, we have Pt (Econc
t ) � 1 � p2,t with p2,t = 2/t2. Moreover, when ⇡⇤

concentrates on a single point, by standard anti-concentration result of Gaussian distribution (e.g.,
Lemma 8 in [5]), we have Pt(Eanti

t,f ) � p with p := 1
4e

p
⇡

. Similarly, we also have Pt(Eanti
t,g ) � p.

By independent sampling of ft and gt, we have Pt

�
Eanti

t

�
� p3 with p3 = p2. The boundedness

condition holds due to
PT

t=1 p2,t  2
PT

t=1 1/t
2
 ⇡2/3 := C 0 and p4 = O(p2).

Proof of Corollary 2. By Definition 2, ft(x) = µt�1(x) + Zt�t�1(x), where Zt ⇠ N (0,�2
t ) and

gt(x) = eµt�1(x) + eZte�t�1(x), where eZt ⇠ N (0, e�2
t ). By concentration of Gaussian, we have

Pt(8x, |ft(x)� µt�1(x)|  2�t�1(x)�t

p

ln t) � 1� 1/t2,

thanks to the “coupled” noise. Hence, we have Pt

⇣
Econc

t,f

⌘
� 1 � 1/t2 with c(2)f,t = 2�t

p
ln t.

Similarly, we have Pt

�
Econc

t,g

�
� 1� 1/t2 with c(2)g,t = 2e�t

p
ln t. Thus, by the union bound, we have

Pt (Econc
t ) � 1�p2,t with p2,t = 2/t2. By the anti-concentration of Gaussian, we have Pt(Eanti

t,f ) �

Pt(Zt � �t) � p, where p := 1
4e

p
⇡

. Similarly, we have Pt(Eanti
t,g ) � Pt(Zt  �e�t) � p. Since the

noise Zt and eZt are independent, we have Pt

�
Eanti

t

�
� p3 with p3 = p2. Then, the boundedness

condition holds due to C 0 = ⇡2/3 and p4 = O(p2).
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