
Appendix A Model and Training Specification

Architecture and optimization details. In all environments, we use a Transformer architecture
with four layers and four self-attention heads. The total input vocabulary of the model is V ⇥ (N +
M +2) to account for states, actions, rewards, and rewards-to-go, but the output linear layer produces
logits only over a vocabulary of size V ; output tokens can be interpreted unambiguously because their
offset is uniquely determined by that of the previous input. The dimension of each token embedding
is 128. Dropout is applied at the end of each block with probability 0.1.

We follow the learning rate scheduling of (Radford et al., 2018), increasing linearly from 0 to
2.5 ⇥ 10�4 over the course of 2000 updates. We use a batch size of 256.

Hardware. Model training took place on NVIDIA Tesla V100 GPUs (NCv3 instances on Microsoft
Azure) for 80 epochs, taking approximately 6-12 hours (varying with dataset size) per model on one
GPU.

Appendix B Discrete Oracle

The discrete oracle in Figure 3 is the maximum log-likelihood attainable by a model under the
uniform discretization granularity. For a single state dimension i, this maximum is achieved by a
model that places all probability mass on the correct token, corresponding to a uniform distribution
over an interval of size

ri � `i
V

.

The total log-likelihood over the entire state is then given by:

NX

i=1

log
V

ri � `i
.

Appendix C Baseline performance sources

Offline reinforcement learning The results for CQL, IQL, and DT are from Table 1 in Kostrikov
et al. (2021). The results for MBOP are from Table 1 in Argenson & Dulac-Arnold (2021). The
results for BRAC are from Table 2 in Fu et al. (2020). The results for BC are from Table 1 in Kumar
et al. (2020a).

Appendix D Datasets

The D4RL dataset (Fu et al., 2020) used in our experiments is under the Creative Commons Attribution
4.0 License (CC BY). The license information can be found at

https://github.com/rail-berkeley/d4rl/blob/master/README.md

under the “Licenses” section.

15

https://github.com/rail-berkeley/d4rl/blob/master/README.md


Appendix E Beam Search Hyperparameters

Beam width maximum number of hypotheses retained during beam search 256
Planning horizon number of transitions predicted by the model during 15
Vocabulary size number of bins used for autoregressive discretization 100
Context size number of input (st,at, rt, Rt) transitions 5
kobs top-k tokens from which observations are sampled 1
kact top-k tokens from which actions 20

Beam width and context size are standard hyperparameters for decoding Transformer language
models. Planning horizon is a standard trajectory optimization hyperparameter. The hyperparameters
kobs and kact indicate that actions are sampled from the most likely 20% of action tokens and next
observations are decoded greedily conditioned on previous observations and actions.

In many environments, the beam width and horizon may be reduced to speed up planning without
affecting performance. Examples of these configurations are provided in the reference implementation:
github.com/jannerm/trajectory-transformer.

16

https://github.com/JannerM/trajectory-transformer


Figure 7 (Goal-Reaching in MiniGrid) Example paths of the Trajectory Transformer planner in
the MiniGrid-MultiRoom-N4-S5. Lock symbols indicate doors.

Appendix F Goal-Reaching on Procedurally-Generated Maps

The method evaluated here and the experimental setup is identical to that described in Section 3.2
(Goal-conditioned reinforcement learning), with one distinction: because the map changes each
episode, the Transformer model has an additional context embedding that is a function of the current
observation image. This embedding is the output of a small convolutional neural network and is
added to the token embeddings analogously to the treatment of position embeddings. The agent
position and goal state are not included in the map; these are provided as input tokens as described in
Section 3.2.

The action space of this environment is discrete. There are seven actions, but only four are required
to complete the tasks: turning left, turning right, moving forward, and opening a door. The training
data is a mixture of trajectories from a pre-trained goal-reaching policy and a uniform random policy.

94% of testing goals are reached by the model on held-out maps. Example paths are shown in
Figure 7.

17


	Introduction
	Related Work
	Reinforcement Learning and Control as Sequence Modeling
	Trajectory Transformer
	Planning with Beam Search

	Experiments
	Model Analysis
	Reinforcement Learning and Control

	Discussion and Limitations
	Model and Training Specification
	Discrete Oracle
	Baseline performance sources
	Datasets
	Beam Search Hyperparameters
	Goal-Reaching on Procedurally-Generated Maps

