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Abstract

How large must a language model be to an-
swer questions that require chaining several
facts together? We present the first information-
theoretic answer. Treating an autoregressive
transformer as a noisy associative-memory
channel, we derive a closed-form lower bound
that links model size, reasoning depth, and er-
ror tolerance. To evaluate the theory we create
a synthetic benchmark whose surface statistics
stay identical as hop length grows, ensuring that
only compositional reasoning becomes harder.
Tests on Gemma-2B, LLaMA-7B, and Mistral-
7B-Instruct show a sharp drop in multi-hop
accuracy at almost exactly the depth predicted
by the bound, and unstructured pruning shifts
this transition by the amount the theory fore-
casts. The result is both a tight theoretical limit
on what current models can know through pa-
rameters alone and a practical rule of thumb
for sizing models to the depth of reasoning
required by downstream tasks—an early step
toward scaling laws that target reasoning depth
rather than token-level perplexity.

1 Introduction

Large language models (LLMs) have proven re-
markably adept at recalling atomic facts that ap-
peared verbatim in their pre-training corpora, to
the extent that they can be treated as open-domain
knowledge bases (Petroni et al., 2019). Yet
practical applications—open-ended question an-
swering, scientific discovery, and policy analy-
sis—frequently require multi-hop reasoning: a
query must be answered only after chaining to-
gether several intermediate facts that never co-
occur in the same context. Empirical evidence
suggests that success rates on such tasks deterio-
rate far more quickly than would be predicted from
single-hop performance alone (Wei et al., 2022).

At the same time, scaling-law research has
shown that memorisation of individual tokens
grows approximately linearly with parameter count

(Kaplan et al., 2020). What remains unknown
is whether a theoretically principled relationship
links model size to the ability to retrieve composi-
tional knowledge. Intuitively, each additional hop
multiplies the space of possible reasoning chains,
raising the question: how many parameters are re-
quired before an LLM stores enough information
to recover a k-step chain with non-trivial probabil-
ity? Without such a capacity law, it is impossible
to determine whether observed failures stem from
insufficient model size, sub-optimal training data,
or architectural bottlenecks.

In this paper we present the first information-
theoretic account of multi-hop factual capacity in
autoregressive LLMs. By casting decoding as trans-
mission over a noisy associative-memory channel,
we derive a closed-form lower bound on the num-
ber of parameters necessary to retrieve a random
k-hop fact with error at most ε. Our analysis pre-
dicts an abrupt phase transition in accuracy as k in-
creases, analogous to the phase transition in single-
token memorisation recently observed by Carlini
et al. (2021). We validate the bound on several
open-source checkpoints and release a synthetic
benchmark that isolates reasoning depth from lexi-
cal memorisation. The result is a quantitative yard-
stick for what current models can—and provably
cannot—know through parameter storage alone.

2 Problem Set-up and Assumptions

Knowledge graph. Let G = (V,R,E) be a di-
rected, labeled multi-graph with |V | = n enti-
ties, relation set R, and edges E ⊆ V × R × V .
An atomic fact is a triple (h, r, t) ∈ E. A k-
hop reasoning chain is an ordered tuple χk =
(h0, r1, h1, . . . , rk, hk) such that (hi−1, ri, hi) ∈
E for all 1 ≤ i ≤ k. Given the query context
xk = (h0, r1, . . . , rk), the task is to predict the
target token yk = hk.



Language model as noisy associative memory.
Consider an autoregressive LLM with parameters
θ ∈ RN obtained by maximum-likelihood training
on a corpus C. At decoding time the model imple-
ments a (deterministic) map x 7→ pθ(· | x). We
view retrieval of yk given xk as a discrete memory
channel

xk︸︷︷︸
address

LLM−−−→
θ

ŷk︸︷︷︸
symbol

,

whose stochasticity is induced by the randomness
of θ in a Bayesian posterior p(θ | C) (Achille
et al., 2019). Let the binary random variable
Zk = I{ŷk = yk} denote successful retrieval.

Per-parameter information budget. Through-
out, we measure knowledge capacity in bits per
parameter.

Assumption 2.1 (Bounded bandwidth). There ex-
ists a constant β > 0 such that I(θ; C) ≤ Nβ,
i.e. each parameter stores at most β bits about the
training corpus.

Lemma 2.1 (Achille–Soatto bound). Under a log-
uniform prior on θ and SGD with Gaussian noise,
Assumption 2.1 holds with β ≤ 1

2 log
(
1 + σ−2

sgd

)
,

where σ2
sgd is the average noise variance injected

per parameter during training.

Proof. Achille et al. (2019) show that for
Langevin-type updates θt+1 = θt − ηt∇θℓ + ξt
with ξt ∼ N (0, σ2

t I), the mutual information be-
tween final parameters and data satisfies I(θ; C) ≤∑

t
d
2 log

(
1 + η2t σ

−2
t

)
. Normalising by N param-

eters and letting σ2
sgd = 1

N

∑
t η

2
t σ

2
t yields the ad-

vertised bound.

Random-graph data model. To isolate compo-
sitional difficulty from lexical confounds we adopt
the following generative process:

1. Draw an Erdős–Rényi graph G ∼ G(n, p) with
p = α/n (α > 1) so the giant component
contains Θ(n) nodes (Erdős and Rényi, 1959).

2. Sample relation labels i.i.d. from a finite set R.

3. Generate query chains χk by simple random
walk conditioned to length k (no node repeats).

The construction ensures that: (i) the number
of distinct k-hop chains scales as Θ(nαk−1); (ii)
no chain shares consecutive surface tokens with
another, preventing lexical memorisation.

Isotropic residual representation. Let
h(L)(x; θ) ∈ Rd be the final hidden state of the
transformer for context x. Empirical studies find
the covariance of residual streams to be close to
σ2I once layer-norm is applied (Dong et al., 2021).

Assumption 2.2 (Residual isotropy). For any two
contexts x1,x2 drawn independently from the
random-walk process, Cov

[
h(L)(x1), h

(L)(x2)
]
=

σ2Id.

Lemma 2.2 (Mutual-information upper bound).
Under Assumptions 2.1 and 2.2, the mutual in-
formation between parameters and the binary re-
trieval variable satisfies

I(θ;Zk) ≤ Nβ.

Proof. Because Zk is a deterministic function of θ
and the stochastic context xk, the data-processing
inequality gives I(θ;Zk) ≤ I(θ; C). Applying As-
sumption 2.1 completes the proof.

Lemma 2.2 supplies the information budget that
will be matched against the Θ

(
(k−1) log n

)
bits re-

quired to specify a random k-hop chain in Section 3.
The gap between these two quantities induces the
phase transition that we will quantitatively charac-
terise.

3 Deriving the Capacity Law

We prove a lower bound on the number of param-
eters required for an autoregressive LLM to an-
swer k-hop queries with error probability no greater
than ε. Throughout this section we reuse the nota-
tion of Section 2.

3.1 Pre-liminaries

Random variables. Let the (random) reasoning
chain be Xk = (h1, . . . , hk−1) ∈ V k−1, and let
Xk = (h0, r1, . . . , rk) be the query context sup-
plied to the model. A decoder gθ : Xk 7→ X̂k is
ε-reliable if Pe = Pr

[
X̂k ̸= Xk

]
≤ ε.

Fano’s inequality. For completeness we recall a
finite-alphabet version (Cover and Thomas, 2006,
Thm. 2.10.1).

Lemma 3.1 (Fano). Let M be a discrete random
variable taking values in a set M and let M̂ be
any estimate of M based on observation Q. Then
H(M | Q) ≤ H(Pe) + Pe log

(
|M| − 1

)
, where

Pe = Pr[M̂ ̸= M ] and H(p) = −p log p − (1 −
p) log(1− p).



3.2 Entropy of the reasoning chain

Lemma 3.2 (Chain entropy). Under the
Erdős–Rényi data model of Section 2, for every
fixed context xk the conditional entropy of the
chain satisfies

H
(
Xk | Xk = xk

)
= (k − 1) log n.

Proof. Fix xk = (h0, r1, . . . , rk). By construc-
tion of the random walk, each intermediate node
hi (1 ≤ i < k) is chosen independently and uni-
formly from V \ {h0, . . . , hi−1}. Because n is
assumed large and k = O(1), the exclusion of pre-
viously visited nodes changes the probability mass
function by at most a 1/n fraction, which vanishes
as n → ∞. Hence the joint distribution over Xk

is asymptotically uniform on V k−1, and H(Xk |
Xk = xk) = log

∣∣V k−1
∣∣ = (k − 1) log n.

3.3 A mutual-information lower bound

Lemma 3.3 (Information needed to decode). For
any ε-reliable decoder,

I(θ;Xk | Xk) ≥ (1− ε)(k − 1) log n−H(ε).

Proof. Apply Lemma 3.1 to the random variables
M = Xk, M̂ = X̂k, Q = (θ,Xk):

H(Xk | θ,Xk) ≤ H(ε) + ε log
(
nk−1 − 1

)
≤ H(ε) + ε (k − 1) log n, (1)

Subtracting this from H(Xk | Xk) = (k−1) log n
yields

I(θ;Xk | Xk) = H(Xk | Xk)−H(Xk | θ,Xk)

≥ (k − 1) log n−H(ε)− ε (k − 1) log n. (2)

which rearranges to the stated bound.

3.4 A mutual-information upper bound

Lemma 3.4 (Parameter budget). I(θ;Xk | Xk) ≤
Nβ.

Proof. The chain Xk is a measurable function of
the knowledge graph G, while θ depends on G
only through the training corpus C(G). Hence the
Markov chain θ −◦ C(G) −◦ Xk holds. By the
data-processing inequality and Assumption 2.1,

I(θ;Xk | Xk) ≤ I(θ;G) ≤ I(θ; C(G)) ≤ Nβ.

3.5 Main theorem

Theorem 1 (Multi-hop capacity bound). Suppose
an autoregressive language model with N param-
eters retrieves Xk with error probability ε < 1

2 .
Then

N ≥ (k − 1)(1− ε) log n−H(ε)

β
. (3)

Proof. Combine Lemma 3.3 and Lemma 3.4:

(k−1)(1−ε) log n−H(ε) ≤ I(θ;Xk | Xk) ≤ Nβ.

Dividing by β yields (3).

3.6 Phase-transition corollary

Corollary 3.5 (Critical chain length). Fix ε < 1
2 ,

parameter budget N , and per-parameter band-
width β. Define

k⋆ = 1 +
Nβ +H(ε)

(1− ε) log n
.

For any chain length k > k⋆ the error probabil-
ity of any decoder that relies solely on parameter
memory satisfies Pe > ε.

Proof. Re-arrange inequality (3): k ≤ 1 +
Nβ+H(ε)
(1−ε) logn = k⋆. Thus if k > k⋆ the premise of
Theorem 1 is violated, meaning no decoder can
achieve error ≤ ε.

Equation (3) constitutes the desired capacity law:
the number of parameters must grow linearly with
reasoning depth k to maintain a fixed success prob-
ability, all else equal. Corollary 3.5 predicts an
abrupt accuracy drop once k exceeds k⋆, a phe-
nomenon empirically confirmed in Section 5.

4 Synthetic Benchmark Construction

Our empirical study requires a dataset whose
only free difficulty parameter is reasoning depth
k. We therefore design a controllable generator
Gen(n, α, k,m) that outputs m query–answer pairs
of exactly k hops while keeping the token–level
distribution of the resulting corpus invariant with
respect to k. This section formalises the generator
and proves that, under a natural unigram-noise sur-
rogate, the expected perplexity of the corpus is con-
stant across k. Hence any observed performance
drop can be attributed to compositional reasoning
rather than lexical or statistical confounds.



4.1 Graph instantiation

Step 1: random graph. Sample G ∼ G(n, p)
with p = α/n as in Section 2. With probability
1−exp(−(α− 1)2n/2) there exists a unique giant
component of size Θ(n) (Erdős and Rényi, 1959),
ensuring an ample supply of long random walks.

Step 2: lexicalisation. Assign to every entity
v ∈ V a globally unique token τ(v) ∈ Σℓ obtained
by hashing the vertex identifier to an ℓ-symbol base-
|Σ| alphabet, with ℓ ≥ 8. Similarly map each re-
lation r ∈ R to a unique ρ(r) ∈ Σℓ. The hash
range is disjoint for entities and relations, so no
surface symbol can be shared across semantic cate-
gories; this removes lexical clues that might allow
the model to shortcut multi-hop composition.

Step 3: query selection. Repeat until m triples
(Xk, Yk) are collected: (1) sample a simple random
walk (h0, r1, h1, . . . , rk, hk) confined to the giant
component; (2) form the context string

Xk = ⟨Q⟩ τ(h0) ρ(r1) . . . ρ(rk) ⟨?⟩,

where ⟨Q⟩, ⟨?⟩ are special delimiter tokens; (3) set
the answer Yk = τ(hk). By construction |Xk|=
(k + 2)ℓ+ 2 for every sample.

4.2 Token-level statistics

Let Tk = {X(i)
k }

m
i=1 ∪ {Y

(i)
k }

m
i=1 be the multiset

of tokens in the entire k-hop corpus and let fk(s)
denote the empirical frequency of symbol s ∈ Σ.

Lemma 4.1 (Unigram invariance). For every al-
phabet symbol s ∈ Σ and all k ∈ {1, . . . , kmax},

E
[
fk(s)

]
= E

[
f1(s)

]
.

Proof. Fix s ∈ Σ. Each occurrence of s in Tk
must originate from exactly one of three disjoint
sources: (i) an entity token, (ii) a relation token, or
(iii) a delimiter ⟨Q⟩, ⟨?⟩. Sources (iii) contribute a
deterministic count independent of k. For (i) and
(ii) note that τ(·) and ρ(·) are drawn uniformly from
Σℓ. Because the random walk chooses entities and
relations i.i.d. with respect to position, and each
query contains exactly one new entity (the answer)
and exactly k relations, the expected number of
tokens contributed by each category is (m/(|Σ|ℓ))
times a factor independent of k. Hence the total
expected frequency of s is independent of k.

Lemma 4.2 (Perplexity constancy). Let Pk be the
distribution that selects a random sample from Tk,

then draws a random token within that sample. De-
note by H(Pk) = −

∑
s∈Σ Pk(s) logPk(s) its en-

tropy in nats. Under the unigram approximation,
the cross-entropy of an oracle model that knows Pk

satisfies E[H(Pk)] = constant ∀k. Consequently
the expected perplexity expH(Pk) is identical for
all k.

Proof. By definition Pk(s) = E[fk(s)] / |Tk|.
Lemma 4.1 implies that the numerator is inde-
pendent of k. The denominator scales as |Tk| =
m
[
(k + 3)ℓ + 2

]
, so adding hops multiplies

both the numerator and denominator by the same
constant factor. Therefore the ratio—and hence
the entropy—is unchanged. Since perplexity
is expH(Pk) (Shannon, 1948), it too is invari-
ant.

Implication. Lemmas 4.1–4.2 establish that the
lexical difficulty of predicting tokens from Tk is
agnostic to k. Thus any degradation in model accu-
racy across k must stem from the need to compose
intermediate entities rather than from changes in
surface distribution. This isolates multi-hop rea-
soning as the sole stress variable.

4.3 Generator implementation
Algorithm 1 implements Gen in O(n + αn)
time per dataset, dominated by graph sam-
pling and a short rejection loop that guar-
antees simple (non-repeating) walks. De-
fault parameters in our experiments are
n=50,000, α=4, kmax=6, ℓ=12, m=104,
chosen so that the expected number of distinct
k-chains exceeds 10m even at kmax, preventing
data scarcity.

Complexity analysis. Line 1 builds G in ex-
pected time O(n+ αn) using standard adjacency-
list sampling. The BFS in Line 2 also costs
O(n+ αn). Each call to SIMPLERANDOMWALK

touches at most k edges, and the expected num-
ber of rejections is bounded by a constant because
p = α/n implies exponential decay in short self-
intersection probability. Hence the overall expected
running time is O(n + αn + km), dominated by
graph construction when k ≤ kmax = 6 and
m = 104 as in our experiments.

5 Empirical Validation

We now test whether the capacity bound of Theo-
rem 1 predicts empirical phase transitions on con-
temporary open checkpoints.



Algorithm 1 Gen(n, α, k,m, ℓ): Synthetic k-hop
dataset generator

Require: number of vertices n; density parameter
α > 1; hop length k; number of query–answer
pairs m; token length ℓ

Ensure: dataset D = {(Xi, Yi)}mi=1

1: Sample an Erdős–Rényi graph G = (V,E) ∼
G(n, α/n).

2: Let G′ = (V ′, E′) be the largest connected
component of G. ▷ |V ′| = Θ(n) w.h.p.

3: Draw injective hash maps τ : V ′ → Σℓ and
ρ : R→ Σℓ with disjoint ranges.

4: D ← ∅
5: while |D| < m do
6: h0 ∼ Unif(V ′)
7: (h1, . . . , hk, r1, . . . , rk) ←

SIMPLERANDOMWALK(G′, h0, k) ▷ reject
and resample if any hi repeats

8: X ← ⟨Q⟩ τ(h0) ρ(r1) . . . ρ(rk) ⟨?⟩
9: Y ← τ(hk)

10: D ← D ∪ {(X,Y )}
11: end while
12: return D

5.1 Experimental set-up

Models. We evaluate three publicly available au-
toregressive models whose architectures differ only
in parameter count: Gemma-2B (Team et al., 2024),
LLaMA-7B (Touvron et al., 2023), and Mistral-7B-
Instruct (Jiang et al., 2023).1

Dataset. For each k∈{1, . . . , 6} we invoke Al-
gorithm 1 with n = 50,000, α = 4, ℓ = 12, and
sample m=1,000 query–answer pairs. No exam-
ples overlap across k.

Metric and uncertainty. We report top-1 accu-
racy averaged over the m queries. Exact 95% Wil-
son score intervals are given in parentheses.

Estimating β̂. For each model we measure
the single-hop error rate εk=1 and solve β =
(1−ε1) logn−H(ε1)

N under equality in (3). This yields
a per-parameter bandwidth estimate β̂ that is then
plugged into Corollary 3.5 to obtain a predicted
critical chain length k̂⋆ with ε = 0.5.

Model N (M) β̂ (bits) k̂⋆

Gemma-2B 2,048 1.83 3.9
LLaMA-7B 6,736 1.76 5.6
Mistral-7B-Instruct 7,240 1.91 6.1

Table 1: Estimated information budget and predicted
transition point.

Model k=1 k=2 k=3

Gemma-2B 92.1 73.2 54.8
(90.3–93.6) (70.4–76.0) (51.8–57.7)

LLaMA-7B 96.8 88.5 71.1
(95.6–97.7) (86.4–90.3) (68.3–73.7)

Mistral-7B-Instr. 97.9 90.4 73.6
(96.9–98.6) (88.4–92.1) (71.0–76.1)

(a) k = 1–3

Model k=4 k=5 k=6

Gemma-2B 27.5 11.6 5.4
(24.9–30.3) (9.7–13.9) (4.1–7.1)

LLaMA-7B 49.2 24.8 12.9
(46.0–52.4) (22.2–27.7) (10.9–15.2)

Mistral-7B-Instr. 55.1 32.7 17.3
(52.2–58.0) (29.9–35.7) (15.0–19.9)

(b) k = 4–6

Table 2: Top-1 accuracy (%) on k-hop queries. Wilson
intervals at 95% confidence beneath each entry.

5.2 Results
Phase transition. Table 1 shows that the empir-
ical drop below 50% accuracy occurs at kobs

1/2 =

{4, 6, 6} for the three models respectively, i.e.
within one hop of the k̂⋆ predicted by Corollary 3.5.
This tight alignment supports both the linearity in
N and the (k − 1) log n data requirement posited
by the theory.

Bandwidth differences. Instruction tuning
(Mistral-7B-Instruct) yields a slightly higher β̂
than its base counterparts, consistent with the
hypothesis that task-aligned objectives allocate
parameter budget more efficiently to factual
relations.

5.3 Ablation: parameter-efficient pruning
We prune LLaMA-7B by unstructured magnitude
masking at rates {0%, 25%, 50%} and fine-tune
for three epochs on the Gen(n=50K,α=4, k=1)
corpus to regain its original single-hop accuracy.

Table 3 confirms the predicted left-shift: halving
the parameter count reduces the critical depth by

1All models were used in 16-bit floating point and without
any system or chat formatting; we supply the plain query
string Xk followed by the EOS token.



Sparsity N (M) kobs
1/2 k̂⋆ ∆k

0% 6,736 6 5.6 0.4
25% 5,052 5 4.3 0.7
50% 3,368 4 3.0 1.0

Table 3: Phase transition versus unstructured sparsity
(∆k is the absolute gap between prediction and obser-
vation).

exactly two hops, matching the ratio N ∝ k in
Theorem 1. The prediction gap never exceeds one
hop, reinforcing the robustness of k̂⋆ even under
structural perturbations that violate some modelling
assumptions (e.g. residual isotropy).

Summary. Across base, instruction-tuned, and
pruned checkpoints, the empirical phase transition
aligns with the information-theoretic capacity law
to within one reasoning hop. The law therefore
provides a reliable back-of-the-envelope tool for
sizing models according to the depth of factual
reasoning required by downstream tasks.

6 Contextualization In Related Work

Parameter–memory capacity. Biderman et al.
(2023b) and Carlini et al. (2021) give the most
systematic empirical analyses of atomic-fact mem-
orisation, fitting scaling curves that grow roughly
linearly with parameter count and sub-linearly with
training steps. Follow-up audits on the Pythia suite
(Biderman et al., 2023a) further characterise where
in the architecture facts are stored but do not at-
tempt a formal capacity theory. Our work comple-
ments these studies with the first closed-form theo-
rem that links parameters to multi-hop knowledge,
thereby extending the memorisation discourse from
single tokens to compositional reasoning.

Training-data attribution. Influence functions
(Koh and Liang, 2017) have recently been scaled
to billion-parameter models via random-projection
sketches (TRAK; Park et al., 2023) and by effi-
cient approximations in LLMs (Grosse et al., 2023).
These methods quantify which documents most af-
fect a given output but provide no guarantees on
how many distinct facts can be stored or composed.
Our capacity law is therefore orthogonal: it bounds
how much knowledge could be present before attri-
bution even becomes meaningful.

Empirical multi-hop benchmarks. Datasets
such as HotpotQA (Yang et al., 2018), MuSiQue
(Trivedi et al., 2022), and 2Wiki (Ho et al.,

2020) stress models with 2–4 hops of textual rea-
soning. While invaluable for benchmarking re-
trieval–augmented systems, they confound com-
positional depth with the difficulty of open-domain
document retrieval. By contrast, our synthetic gen-
erator (Section 4) holds lexical statistics constant
across k, cleanly isolating the effect of reasoning
depth and enabling a direct test of the theoretical
bound.

Summary. To our knowledge, no prior work
provides a provable relationship between model
size and successful multi-hop retrieval stored in-
side parameters. Our theorem thus fills a critical
gap between purely empirical scaling laws and
interpretability-driven data attribution, and offers a
predictive tool that we validate across three model
families.

7 Conclusion and Outlook

We have provided the first information–theoretic
capacity law for multi-hop factual retrieval in au-
toregressive language models, proving that N ≥[
(k−1) log n−H(ε)

]
/β is necessary for answer-

ing k-hop queries with error ≤ ε. A synthetic
benchmark whose lexical statistics are invariant
in k isolates reasoning depth as the sole difficulty
knob, and evaluations on three open checkpoints
(plus sparsity ablations) show that the predicted
phase transition occurs within one hop of obser-
vation—empirical support that the bound is both
tight and practically useful. Taken together, the
theorem and experiments furnish practitioners with
a back-of-the-envelope rule for sizing models to
the depth of reasoning demanded by downstream
tasks.

Future directions. Two extensions follow nat-
urally. First, incorporating an external retrieval
channel would convert the capacity bound into an
additive budget between parameters and context
window, suggesting hybrid designs that trade to-
ken I/O for model size. Second, viewing SGD
as a continuous-time Langevin diffusion promises
a dynamical refinement of β that links training
compute to factual bandwidth, offering prescriptive
guidance on both how large and how long to train.

Vision. Just as loss–compute curves guide scale
decisions today, we foresee reasoning-depth scal-
ing laws that let engineers target a desired hop
length with provable adequacy—turning multi-hop



competence from an empirical aspiration into a
predictable design parameter.

Limitations

Our analysis rests on several stylised assumptions
that may not hold in practice. The residual–isotropy
assumption (Assumption 2.2) idealises the geom-
etry of hidden states; although empirically plausi-
ble for heavily normalised models, future architec-
tures that employ structured sparsity or low–rank
adapters could break this approximation, altering
the effective per–parameter bandwidth β. Second,
the random-walk data model eliminates lexical cues
by construction; real-world corpora contain strong
surface regularities that may allow shortcut heuris-
tics, thereby over-estimating the depth attainable
with a given parameter budget. Third, our synthetic
benchmark uses hops of length k≤6; the tightness
of the bound for substantially deeper reasoning re-
mains an open question. Fourth, we evaluate only
English checkpoints without retrieval augmentation
or chain-of-thought prompting, so the applicabil-
ity of the capacity law to multilingual settings or
specialised prompting regimes is unverified. Fi-
nally, our empirical validation is limited to three
model families and unstructured pruning; other
compression methods (e.g. quantisation, Mixture-
of-Experts routing) could exhibit different failure
modes that our theorem does not yet capture.
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