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| Equivariant Features and Operations | (1) When trained with IS2RE data, Equiformer improves upon
A previous state-of-the-art models.
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accordingly when input graphs are rotated. — = improves upon GNS and Graphormer and has 2.3x% to 15.5%
( less training time.
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N Results on OC20 IS2RE testing set when IS2RS is adopted during training. T denotes using
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Ablation study results on OC20 IS2RE validation set.




