12

Diff-HySAC: Supplementary Materials

Anonymous Author(s)
Affiliation
Address

email

A Theoretical Results
We show the proof of the lower bound objective function. The proof is based on structured varia-
tional inference [1].

The evidence distribution over O is p(Oy|s;,a;) = exp(ir(s;, a;)), with @ > 0. We want to
approximate the trajectory distribution p(7) with a variational distribution ¢(7), as defined

T T
Hp St+1\3t,at] €xXp <Z 7"<3t7at)>
t=1 t=1

where we assume full trajectory 7 is {s1, a(l):K See., ST, a%K }, which takes into account all sampled
actions of the diffusion policy’s denoising process. Notice that given the denoised action a! the
evidence distribution, dynamics and rewards are conditionally independent from a!*%.

p(0t|3t7a?:K) =p(0t|3t7ag)

D(St41]8¢, a?:K) = p(S¢+1]8¢, a?).

From now, we write a; to mean the denoised action a?. Assuming that ¢(s;) = p(s;) and

q(st+1)8t, ar) = p(Siy1lst, ar), and ¢(7) is defined by

T
[Hq St+1(8¢, ar)])| a(af™sy).
t=1
We now compute the lower bound of the maximum reward likelihood as
log p(O1.1) = IOg/p(OlzT;T)dT

:log/p(OLTyT)ZE:;dT

p(olzTaT)
IOgETNq(T)/q(T)dT

> Erg(r) logp(Or.r,7) —logq(r)] (Jensen’s inequality)
=Erg(r) [logp(Or.1, s1:7, a?:IT() —logq(s1.r,adiy)]

T
=]ETNq(T) [Z (T(St, at -« Z Iqu +1|at ’ St)>‘| :

where the variational policy distribution q(a**!|a¥, s,) is parameterized as 7y (a¥*t|a¥, k, s,).

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

23
24
25
26

27

28

29
30
31
32

B Algorithm and Training Details

DiffSAC and ConSAC The pseudo-code of DiffSAC is provided in in Algorithm 2. In addition,
we propose consistency model as RL policy and its maximum entropy policy algorithm, named
Consistency-SAC (ConSAC). With consistency action inference, the diffusion steps K can be large,
but the sub-sequence of time points used by actual inference is a lot smaller. Basically, the sub-
sequence is a linspace with (NN — 1) sub-intervals, 71 = ¢, and 7y = K where N < K [2]. The
action inference with learning variance is described in Algorithm 1. The pseudo-code of ConSAC
has few differences from DiffSAC in Algorithm 2 at: 1) the action selection at step 5 that is replaced
by Algorithm 1, ii) updates at steps 9 and 10 that differentiate through the consistency model policy
instead of the diffusion policy.

Diff-HySAC and Con-HySAC The pseudo-code for the Diff-HySAC and Con-HySAC algo-
rithms are depicted in Algorithm 3. Diff-HySAC is implemented with learning variance [3] and
adaptive temperature hyperparameter [4]. Con-HySAC uses consistency action inference in Algo-
rithm 1.

B.1 Algorithms

Algorithm 1 Consistency Action Inference with Learning Variance

Given: state s, fy, a sub-sequence of time points {7, },,c[n). diffusion steps K.
Initialize mean ay = 0, variance ¥y = K2T
forn =N to1do
Sample a from N (a.,, %)
Compute cqip = 0.25/ (75, — €)? + 0.25) and couy = 0.5 * (1, — €)/+/(72 + 0.25)
Compute a,,, %, = fo(s,a,7,)
Compute output a,, = Cskip * a + Cout * Qp,
end for
return a;

WA kw2

Algorithm 2 DiffSAC

Initialize policy mp and critic networks Q4, and Q4,
Initialize the target networks: Q4 and Qg
Initialize replay buffer: D = ()
while not converge do
Sample action a; from diffusion policy as in Eq. 3, e.g. DDPM sampling
Execute action ato, observe r; and sy
Add sample {s;, a{,r;,a? ,} to replay buffer D
Sample a minibatch {s, a’, 7, '} from D
Update the critic L(¢) as in Section 3.3
Update the actor with gradient defined by Eq. 6
Adjust temperature o
Update the target networks, i.e. using standard delayed updates like in SAC.
: end while
: return final policy 7.

P RDINR R

—_—
R0

B.2 Training Details

HySAC (Ours): HySAC is implemented as a modification on top of HACMan (https://
github.com/HACMan-2023/HACMan) [5]. The reinforcement learning implementation is based
on Stable-Baselines3 (https://github.com/DLR-RM/stable-baselines3). The encoder back-
bones for both the actor and the critic are PointNet++ segmentation-style from PyG (https:

https://github.com/HACMan-2023/HACMan
https://github.com/HACMan-2023/HACMan
https://github.com/HACMan-2023/HACMan
https://github.com/DLR-RM/stable-baselines3
https://pytorch-geometric.readthedocs.io
https://pytorch-geometric.readthedocs.io
https://pytorch-geometric.readthedocs.io

33
34

35
36
37

38
39
40

41
42

43
44

45
46

Algorithm 3 Diff-HySAC

Initialize policy 7y and critic networks Q4, and Q4,

Ju—

2: Initialize the target networks:)y, and Qg

3: Initialize replay buffer: D = ()

4: while not converge do

5: Forward the encoder to compute features f = f(s;)

6: Sample action map a;" from diffusion policy as in Eq. 3, e.g. DDPM sampling
7: Compute Q-value map Q = Q4 (f, a")

8: Select contact point x; using location policy Eq. 4

9: Select corresponding action’s motion parameter a;’;
10 Execute action (x;, am’o), observe r; and sy

11: Add sample {s;, (z;, aZ;’O), T¢, S¢+1} to replay buffer D

12: Sample a minibatch {s, (x;,a?;),r:, '} from D

13: Update the critic as in Eq. 2 with target y; defined in Section 4.3.

14: Update the actor with loss J,;(#) as defined in Section 4.3

15: Adjust temperature «

16: Update the target networks, i.e. using standard delayed updates like in SAC.
17: end while

18: return final policy my.

//pytorch-geometric.readthedocs.io). The network size and learning rate are identical for
both the actor and the critic.

HybridDiff-TD3 (Ours): The diffusion model implementation is based on Diffusion Poli-
cies for Offline RL method, Diffusion-Q Learning (https://github.com/Zhendong-Wang/
Diffusion-Policies-for-0ffline-RL).

HybridCon-TD3 (Ours): The consistency model implementation is based on Consistency Models
for RL (https://github.com/quantumiracle/Consistency_Model_For_Reinforcement_
Learning).

Diff-HySAC (Ours) and Con-HySAC (Ours): The implementations are based on HySAC and their
corresponding HybridDiff-TD3 and HybridCon-TD3 models.

HACMan (Baseline): We use the original implementation from the authors (https://github.
com/HACMan-2023/HACMan).

The hyperparameters these algorithms are included in Table 1. We manually fine-tune the location
policy temperature 3 and select the best setting for each algorithm.

Table 1: Hyperparameters.

Hyperparameters Values
Initial timesteps 2000
Batch size 64
Discount factor (v) 0.99
Critic update frequency per env step 2
Actor update frequency per env step 0.5
Target update frequency per env step 0.5
Learning rate 0.0001
Noise scheduler Cosine
Diffusion steps 5
MLP size [128, 128, 128]
Location policy temperature (3) 0.1(TD3)
0.01(SAC)

https://pytorch-geometric.readthedocs.io
https://pytorch-geometric.readthedocs.io
https://pytorch-geometric.readthedocs.io
https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL
https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL
https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL
https://github.com/quantumiracle/Consistency_Model_For_Reinforcement_Learning
https://github.com/quantumiracle/Consistency_Model_For_Reinforcement_Learning
https://github.com/quantumiracle/Consistency_Model_For_Reinforcement_Learning
https://github.com/HACMan-2023/HACMan
https://github.com/HACMan-2023/HACMan
https://github.com/HACMan-2023/HACMan

47

48

49
50
51
52
53
54
55
56
57

58
59
60
61
62
63

64
65
66
67

68
69

70

71
72
73
74
75

76
7

78

79
80
81
82
83
84

85
86
87
88
89
90

91
92
93

C Simulation and Real Robot Settings

C.1 Simulation Setting

We base our implementation on HACMan. In particular, the observation space comprises a point
cloud of the entire scene X, consisting of background points X* and object points X°%7. Af-
ter each action, the gripper is moved to a reset position, ensuring it is not visible in the point
cloud. Three cameras surrounding the bin capture depth data, which is transformed into point lo-
cations in the robot’s base frame and then merged. The object points are downsampled to a voxel
size of 0.005 m, while the background points are downsampled to 0.02 m. Normals of the ob-
ject points are estimated using Open3D (http://www.open3d.org/docs/0.7.0/python_api/
open3d.geometry.estimate_normals.html), and these estimated normals are utilized during
execution.

Each point’s features include its XYZ coordinates, the goal flow, and a segmentation mask (ma-
nipulated object vs background). The goal flow for object points is determined based on the goal
pose, whereas background points have a goal flow of zero. Segmentation labels are obtained from
Robosuite during simulation. The goal flow indicates the displacement from each object point in the
current point cloud to its corresponding point in the goal point cloud. This 3D vector is concatenated
with other features of the input point cloud.

Action Representation: As detailed in HACMan, the object-centric action space is composed of two
parts: a contact location a'°® on an object and motion parameters a™, which define the gripper’s
delta movements after contact. When executing an action, the end-effector first moves to a free-
space location near a'°¢, then interacts with the object according to the motion parameters a.

Goal flow: same as described in HACMan, the goal flow is calculated by subtracting each corre-
sponding current point from their transformed goal point cloud.

Benchmarking HACMan tasks

All Training Objects: The task, as described in HACMan [5], involves a dataset of 32 objects with
initial and goal poses randomly selected from a list of 100 stable goal poses for each object. These
poses are sample from an SE(3) object pose above the bin, and wait until it becomes stable and then
recorded. An episode is considered successful if the average distance between the corresponding
points of the object and the goal is less than 3 cm.

Cube: This task, also described in HACMan [5], focuses on a single cube object. The initial and
goal poses of the cube are randomly sampled from the stable goal poses.

C.2 Real Robot Setting

The real robot setup is shown in Fig la. The setup contains three Realsense cameras on different
perspectives, a Franka Robot arm with parallel gripper (in closed state). In addition, we set up a
recording camera for experiment video, the view from recording camera can be view at Fig 1b. The
point clouds recorded from three cameras are registered to get a full point cloud of the scene using
Open3D library [6]. We segment the object point cloud from the full point cloud using the known
location and dimensions of the bin.

For the goals in the real world evaluation, we record 10 goal point clouds for each object by manually
random setting the objects into different poses. During each time step, we use pointcloud registration
algorithm to estimate the goal transformation to calculate the goal flow. Specifically, we use the
global registration implementation from Open3D and then use Iterative Closest Point (ICP). The
evaluation process is done automatically, the reward and the episode termination condition (less
than 3cm) are both calculated automatically.

For the real robot experiments, we use the trained policy for ”All Object” dataset with the corre-
sponding ”6D” and “non-planar” tasks. We perform zero-shot sim2real transfer evaluation without
finetuning or additional data collection steps.

http://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.estimate_normals.html
http://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.estimate_normals.html
http://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.estimate_normals.html

95

96
97
98
99

100

101
102
103
104

Rabot
Gripper

Recording
Camera

(b) Real Robot Setup - Recording Camera View

D Additional Results

D.1 Simulation Results

In this section, we include the evaluation results for all methods with translation and 6D tasks for
all Objects and Cube. Fig. 2 include the evaluation success rate for all methods, over 200k training
steps. As discussed in Section 5, the performance of Diff-HySAC and Con-HySAC is comparable
to or better than baselines HACMan and HySAC on simple tasks (on Train objects and Cube).

D.2 Ablation

In this section, we conduct ablations where we trained with different parameters on a hammer ob-
ject from the train dataset. Fig. 3 report results that evaluate different diffusion steps setting for
HybirdDiff-TD3, Con-HySAC, and HybridCon-TD3. The results showed that a diffusion step of 5
give the best performance (Note that the diffusion steps of consistency models is N in Algorithm 1).

0.8

1] o 0.6
2 z
@ @
o I
8 8
3 304
0.2
0.0
0 25000 50000 75000 100000 125000 150000 175000 200000 0 25000 50000 75000 100000 125000 150000 175000 200000
Steps Steps
(a) 6D Task All Objects (b) Translation Task All Objects
1.0 1.0
0.8 0.8
Lo6 Lo6
& &
a a
o 8
8 8
304 304
0.2 0.2
0.0 0.0
0 20000 40000 60000 80000 100000 120000 140000 0 20000 40000 60000 80000 100000 120000 140000
Steps Steps
(c) 6D Task Cube (d) Translation Cube
--- HACMan -—- HybridDiff-TD3 (ours) - - - HybridCon-TD3 (ours)
——— HySAC (ours) —— Diff-HySAC (ours) —— Con-HySAC (ours)

Figure 2: Evaluation of success rate on 6D and Translation taskf for All Objects (200k training
steps) and Cube (150k training steps).

Success Rate

Success Rate

0.8

0.7

0.6

o
«

o
>

o
w

0.2

0.1

0.0

0.8

0.6

oS
>

0.2

0

25000 50000 75000 100000 125000 150000 175000 200000
Steps

(a) Diff-HySAC

25000 50000 75000 100000 125000 150000 175000 200000

Steps

(c) Con-HySAC
Diffusion Steps - 2

Success Rate

Success Rate

0.7

0.6

0.5

I
IS

o
w

0.1

0.0

0

0.6

0.5

I
IS

o
w

o
N

0.1

Diffusion Steps -5 - - -

25000 50000 75000 100000 125000 150000 175000 200000
Steps

(b) HybridDiff-TD3

25000 50000 75000 100000 125000 150000 175000 200000
Steps

(d) HybridCon-TD3
Diffusion Steps - 10

Figure 3: Ablation on different diffusion steps of the Cosine scheduler.

105

107

108
109

110
111

112
113
114

115
116
117
118
119

120
121

References

[1] S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

[2] Y. Song and P. Dhariwal. Improved techniques for training consistency models. In The Twelfth
International Conference on Learning Representations, 2024.

[3] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Interna-
tional conference on machine learning, pages 8162-8171. PMLR, 2021.

[4] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

[5] W. Zhou, B. Jiang, F. Yang, C. Paxton, and D. Held. HACMan: Learning hybrid actor-critic
maps for 6d non-prehensile manipulation. In J. Tan, M. Toussaint, and K. Darvish, editors,
Conference on Robot Learning, CoRL 2023, 6-9 November 2023, Atlanta, GA, USA, volume
229 of Proceedings of Machine Learning Research, pages 241-265. PMLR, 2023. URL https:
//proceedings.mlr.press/v229/zhou23a.html.

[6] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D data processing.
arXiv:1801.09847, 2018.

https://proceedings.mlr.press/v229/zhou23a.html
https://proceedings.mlr.press/v229/zhou23a.html
https://proceedings.mlr.press/v229/zhou23a.html

	Theoretical Results
	Algorithm and Training Details
	Algorithms
	Training Details

	Simulation and Real Robot Settings
	Simulation Setting
	Real Robot Setting

	Additional Results
	Simulation Results
	Ablation

