
Diff-HySAC: Supplementary Materials

Anonymous Author(s)
Affiliation
Address
email

A Theoretical Results1

We show the proof of the lower bound objective function. The proof is based on structured varia-2

tional inference [1].3

The evidence distribution over O is p(Ot|st,at) = exp(1
αr(st,at)), with α > 0. We want to4

approximate the trajectory distribution p(τ) with a variational distribution q(τ), as defined5

p(τ) =

[
p(s1)

T∏
t=1

p(st+1|st,at)

]
exp

(
T∑

t=1

r(st,at)

)

where we assume full trajectory τ is {s1,a0:K
1 , . . . , sT ,a

0:K
T }, which takes into account all sampled6

actions of the diffusion policy’s denoising process. Notice that given the denoised action a0
t the7

evidence distribution, dynamics and rewards are conditionally independent from a1:K .8

p(Ot|st,a0:K
t) = p(Ot|st,a0

t)

p(st+1|st,a0:K
t) = p(st+1|st,a0

t).

From now, we write at to mean the denoised action a0
t . Assuming that q(s1) = p(s1) and9

q(st+1|st,at) = p(st+1|st,at), and q(τ) is defined by10

q(τ) =

[
q(s1)

T∏
t=1

q(st+1|st,at)

]
q(a0:K

t |st).

We now compute the lower bound of the maximum reward likelihood as11

log p(O1:T) = log

∫
p(O1:T , τ)dτ

= log

∫
p(O1:T , τ)

q(τ)

q(τ)
dτ

= logEτ∼q(τ)

∫
p(O1:T , τ)

q(τ)
dτ

≥ Eτ∼q(τ) [log p(O1:T , τ)− log q(τ)] (Jensen’s inequality)

= Eτ∼q(τ)

[
log p(O1:T , s1:T ,a

0:K
1:T)− log q(s1:T ,a

0:K
1:T)

]
= Eτ∼q(τ)

[
T∑

t=1

(
r(st,at)− α

K−1∑
k=0

log q(ak+1
t |ak

t , st)

)]
.

where the variational policy distribution q(ak+1
t |ak

t , st) is parameterized as πθ(a
k+1
t |ak

t , k, st).12

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

B Algorithm and Training Details13

DiffSAC and ConSAC The pseudo-code of DiffSAC is provided in in Algorithm 2. In addition,14

we propose consistency model as RL policy and its maximum entropy policy algorithm, named15

Consistency-SAC (ConSAC). With consistency action inference, the diffusion steps K can be large,16

but the sub-sequence of time points used by actual inference is a lot smaller. Basically, the sub-17

sequence is a linspace with (N − 1) sub-intervals, τ1 = ϵ, and τN = K where N ≪ K [2]. The18

action inference with learning variance is described in Algorithm 1. The pseudo-code of ConSAC19

has few differences from DiffSAC in Algorithm 2 at: i) the action selection at step 5 that is replaced20

by Algorithm 1, ii) updates at steps 9 and 10 that differentiate through the consistency model policy21

instead of the diffusion policy.22

Diff-HySAC and Con-HySAC The pseudo-code for the Diff-HySAC and Con-HySAC algo-23

rithms are depicted in Algorithm 3. Diff-HySAC is implemented with learning variance [3] and24

adaptive temperature hyperparameter [4]. Con-HySAC uses consistency action inference in Algo-25

rithm 1.26

B.1 Algorithms27

Algorithm 1 Consistency Action Inference with Learning Variance

1: Given: state s, fθ, a sub-sequence of time points {τn}n∈[N], diffusion steps K.
2: Initialize mean aN = 0, variance ΣN = K2I
3: for n = N to 1 do
4: Sample â from N (an,Σn)

5: Compute cskip = 0.25/
(
(τn − ϵ)2 + 0.25

)
and cout = 0.5 ∗ (τn − ϵ)/

√
(τ2n + 0.25)

6: Compute an,Σn = fθ(s, â, τn)
7: Compute output an = cskip ∗ â+ cout ∗ an

8: end for
9: return a1

Algorithm 2 DiffSAC

1: Initialize policy πθ and critic networks Qϕ1
and Qϕ2

2: Initialize the target networks: Qϕ′
1

and Qϕ′
2

3: Initialize replay buffer: D = ∅
4: while not converge do
5: Sample action at from diffusion policy as in Eq. 3, e.g. DDPM sampling
6: Execute action a0

t , observe rt and st+1

7: Add sample {st,a0
t , rt,a

0
t+1} to replay buffer D

8: Sample a minibatch {s,a0, rt, s
′} from D

9: Update the critic L(ϕ) as in Section 3.3
10: Update the actor with gradient defined by Eq. 6
11: Adjust temperature α
12: Update the target networks, i.e. using standard delayed updates like in SAC.
13: end while
14: return final policy π.

B.2 Training Details28

HySAC (Ours): HySAC is implemented as a modification on top of HACMan (https://29

github.com/HACMan-2023/HACMan) [5]. The reinforcement learning implementation is based30

on Stable-Baselines3 (https://github.com/DLR-RM/stable-baselines3). The encoder back-31

bones for both the actor and the critic are PointNet++ segmentation-style from PyG (https:32

2

https://github.com/HACMan-2023/HACMan
https://github.com/HACMan-2023/HACMan
https://github.com/HACMan-2023/HACMan
https://github.com/DLR-RM/stable-baselines3
https://pytorch-geometric.readthedocs.io
https://pytorch-geometric.readthedocs.io
https://pytorch-geometric.readthedocs.io

Algorithm 3 Diff-HySAC

1: Initialize policy πθ and critic networks Qϕ1
and Qϕ2

2: Initialize the target networks: Qϕ′
1

and Qϕ′
2

3: Initialize replay buffer: D = ∅
4: while not converge do
5: Forward the encoder to compute features f = f(st)
6: Sample action map am

t from diffusion policy as in Eq. 3, e.g. DDPM sampling
7: Compute Q-value map Q = Qϕ(f,a

m
t)

8: Select contact point xi using location policy Eq. 4
9: Select corresponding action’s motion parameter am

t,i

10: Execute action (xi,a
m,0
t,i), observe rt and st+1

11: Add sample {st, (xi,a
m,0
t,i), rt, st+1} to replay buffer D

12: Sample a minibatch {s, (xi,a
0
t,i), rt, s

′} from D
13: Update the critic as in Eq. 2 with target yt defined in Section 4.3.
14: Update the actor with loss Jπ(θ) as defined in Section 4.3
15: Adjust temperature α
16: Update the target networks, i.e. using standard delayed updates like in SAC.
17: end while
18: return final policy πθ.

//pytorch-geometric.readthedocs.io). The network size and learning rate are identical for33

both the actor and the critic.34

HybridDiff-TD3 (Ours): The diffusion model implementation is based on Diffusion Poli-35

cies for Offline RL method, Diffusion-Q Learning (https://github.com/Zhendong-Wang/36

Diffusion-Policies-for-Offline-RL).37

HybridCon-TD3 (Ours): The consistency model implementation is based on Consistency Models38

for RL (https://github.com/quantumiracle/Consistency_Model_For_Reinforcement_39

Learning).40

Diff-HySAC (Ours) and Con-HySAC (Ours): The implementations are based on HySAC and their41

corresponding HybridDiff-TD3 and HybridCon-TD3 models.42

HACMan (Baseline): We use the original implementation from the authors (https://github.43

com/HACMan-2023/HACMan).44

The hyperparameters these algorithms are included in Table 1. We manually fine-tune the location45

policy temperature β and select the best setting for each algorithm.46

Table 1: Hyperparameters.

Hyperparameters Values
Initial timesteps 2000
Batch size 64
Discount factor (γ) 0.99
Critic update frequency per env step 2
Actor update frequency per env step 0.5
Target update frequency per env step 0.5
Learning rate 0.0001
Noise scheduler Cosine
Diffusion steps 5
MLP size [128, 128, 128]
Location policy temperature (β) 0.1(TD3)

0.01(SAC)

3

https://pytorch-geometric.readthedocs.io
https://pytorch-geometric.readthedocs.io
https://pytorch-geometric.readthedocs.io
https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL
https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL
https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL
https://github.com/quantumiracle/Consistency_Model_For_Reinforcement_Learning
https://github.com/quantumiracle/Consistency_Model_For_Reinforcement_Learning
https://github.com/quantumiracle/Consistency_Model_For_Reinforcement_Learning
https://github.com/HACMan-2023/HACMan
https://github.com/HACMan-2023/HACMan
https://github.com/HACMan-2023/HACMan

C Simulation and Real Robot Settings47

C.1 Simulation Setting48

We base our implementation on HACMan. In particular, the observation space comprises a point49

cloud of the entire scene X , consisting of background points X b and object points X obj . Af-50

ter each action, the gripper is moved to a reset position, ensuring it is not visible in the point51

cloud. Three cameras surrounding the bin capture depth data, which is transformed into point lo-52

cations in the robot’s base frame and then merged. The object points are downsampled to a voxel53

size of 0.005 m, while the background points are downsampled to 0.02 m. Normals of the ob-54

ject points are estimated using Open3D (http://www.open3d.org/docs/0.7.0/python_api/55

open3d.geometry.estimate_normals.html), and these estimated normals are utilized during56

execution.57

Each point’s features include its XYZ coordinates, the goal flow, and a segmentation mask (ma-58

nipulated object vs background). The goal flow for object points is determined based on the goal59

pose, whereas background points have a goal flow of zero. Segmentation labels are obtained from60

Robosuite during simulation. The goal flow indicates the displacement from each object point in the61

current point cloud to its corresponding point in the goal point cloud. This 3D vector is concatenated62

with other features of the input point cloud.63

Action Representation: As detailed in HACMan, the object-centric action space is composed of two64

parts: a contact location aloc on an object and motion parameters am, which define the gripper’s65

delta movements after contact. When executing an action, the end-effector first moves to a free-66

space location near aloc, then interacts with the object according to the motion parameters am.67

Goal flow: same as described in HACMan, the goal flow is calculated by subtracting each corre-68

sponding current point from their transformed goal point cloud.69

Benchmarking HACMan tasks70

All Training Objects: The task, as described in HACMan [5], involves a dataset of 32 objects with71

initial and goal poses randomly selected from a list of 100 stable goal poses for each object. These72

poses are sample from an SE(3) object pose above the bin, and wait until it becomes stable and then73

recorded. An episode is considered successful if the average distance between the corresponding74

points of the object and the goal is less than 3 cm.75

Cube: This task, also described in HACMan [5], focuses on a single cube object. The initial and76

goal poses of the cube are randomly sampled from the stable goal poses.77

C.2 Real Robot Setting78

The real robot setup is shown in Fig 1a. The setup contains three Realsense cameras on different79

perspectives, a Franka Robot arm with parallel gripper (in closed state). In addition, we set up a80

recording camera for experiment video, the view from recording camera can be view at Fig 1b. The81

point clouds recorded from three cameras are registered to get a full point cloud of the scene using82

Open3D library [6]. We segment the object point cloud from the full point cloud using the known83

location and dimensions of the bin.84

For the goals in the real world evaluation, we record 10 goal point clouds for each object by manually85

random setting the objects into different poses. During each time step, we use pointcloud registration86

algorithm to estimate the goal transformation to calculate the goal flow. Specifically, we use the87

global registration implementation from Open3D and then use Iterative Closest Point (ICP). The88

evaluation process is done automatically, the reward and the episode termination condition (less89

than 3cm) are both calculated automatically.90

For the real robot experiments, we use the trained policy for ”All Object” dataset with the corre-91

sponding ”6D” and ”non-planar” tasks. We perform zero-shot sim2real transfer evaluation without92

finetuning or additional data collection steps.93

4

http://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.estimate_normals.html
http://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.estimate_normals.html
http://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.estimate_normals.html

(a) Real Robot Setup - Main View (b) Real Robot Setup - Recording Camera View

D Additional Results94

D.1 Simulation Results95

In this section, we include the evaluation results for all methods with translation and 6D tasks for96

all Objects and Cube. Fig. 2 include the evaluation success rate for all methods, over 200k training97

steps. As discussed in Section 5, the performance of Diff-HySAC and Con-HySAC is comparable98

to or better than baselines HACMan and HySAC on simple tasks (on Train objects and Cube).99

D.2 Ablation100

In this section, we conduct ablations where we trained with different parameters on a hammer ob-101

ject from the train dataset. Fig. 3 report results that evaluate different diffusion steps setting for102

HybirdDiff-TD3, Con-HySAC, and HybridCon-TD3. The results showed that a diffusion step of 5103

give the best performance (Note that the diffusion steps of consistency models is N in Algorithm 1).104

5

(a) 6D Task All Objects (b) Translation Task All Objects

(c) 6D Task Cube (d) Translation Cube
HACMan HybridDiff-TD3 (ours) HybridCon-TD3 (ours)
HySAC (ours) Diff-HySAC (ours) Con-HySAC (ours)

Figure 2: Evaluation of success rate on 6D and Translation taskf for All Objects (200k training
steps) and Cube (150k training steps).

6

(a) Diff-HySAC (b) HybridDiff-TD3

(c) Con-HySAC (d) HybridCon-TD3
Diffusion Steps - 2 Diffusion Steps - 5 Diffusion Steps - 10

Figure 3: Ablation on different diffusion steps of the Cosine scheduler.

7

References105

[1] S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.106

arXiv preprint arXiv:1805.00909, 2018.107

[2] Y. Song and P. Dhariwal. Improved techniques for training consistency models. In The Twelfth108

International Conference on Learning Representations, 2024.109

[3] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Interna-110

tional conference on machine learning, pages 8162–8171. PMLR, 2021.111

[4] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,112

P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,113

2018.114

[5] W. Zhou, B. Jiang, F. Yang, C. Paxton, and D. Held. HACMan: Learning hybrid actor-critic115

maps for 6d non-prehensile manipulation. In J. Tan, M. Toussaint, and K. Darvish, editors,116

Conference on Robot Learning, CoRL 2023, 6-9 November 2023, Atlanta, GA, USA, volume117

229 of Proceedings of Machine Learning Research, pages 241–265. PMLR, 2023. URL https:118

//proceedings.mlr.press/v229/zhou23a.html.119

[6] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D data processing.120

arXiv:1801.09847, 2018.121

8

https://proceedings.mlr.press/v229/zhou23a.html
https://proceedings.mlr.press/v229/zhou23a.html
https://proceedings.mlr.press/v229/zhou23a.html

	Theoretical Results
	Algorithm and Training Details
	Algorithms
	Training Details

	Simulation and Real Robot Settings
	Simulation Setting
	Real Robot Setting

	Additional Results
	Simulation Results
	Ablation

